50 research outputs found

    Managing Process Variants in the Process Life Cycle

    Get PDF
    When designing process-aware information systems, often variants of the same process have to be specified. Each variant then constitutes an adjustment of a particular process to specific requirements building the process context. Current Business Process Management (BPM) tools do not adequately support the management of process variants. Usually, the variants have to be kept in separate process models. This leads to huge modeling and maintenance efforts. In particular, more fundamental process changes (e.g., changes of legal regulations) often require the adjustment of all process variants derived from the same process; i.e., the variants have to be adapted separately to meet the new requirements. This redundancy in modeling and adapting process variants is both time consuming and error-prone. This paper presents the Provop approach, which provides a more flexible solution for managing process variants in the process life cycle. In particular, process variants can be configured out of a basic process following an operational approach; i.e., a specific variant is derived from the basic process by applying a set of well-defined change operations to it. Provop provides full process life cycle support and allows for flexible process configuration resulting in a maintainable collection of process variants

    FPLA: a modeling framework for describing flexible software product line architecture

    Get PDF
    Nowadays, Software Product Line (SPL) engineering [1] has been widely-adopted in software development due to the significant improvements that has provided, such as reducing cost and time-to-market and providing flexibility to respond to planned changes [2]. SPL takes advantage of common features among the products of a family through the systematic reuse of the core-assets and the effective management of variabilities across the products. SPL features are realized at the architectural level in product-line architecture (PLA) models. Therefore, suitable modeling and specification techniques are required to model variability. In fact, architectural variability modeling has become a challenge for SPLE due to the fact that PLA modeling requires not only modeling variability at the level of the external architecture configuration (see [3,4] literature reviews), but also at the level of internal specification of components [5]. In addition, PLA modeling requires preserving the traceability between features and PLAs. Finally, it is important to take into account that PLA modeling should guide architects in modeling the PLA core assets and variability, and in deriving the customized products. To deal with these needs, we present in this demonstration the FPLA Modeling Framework

    Towards Variable Service Compositions Using VxBPEL

    Get PDF

    ValySeC:a Variability Analysis Tool for Service Compositions using VxBPEL

    Get PDF

    Model-to-Code transformation from product-line architecture models to aspectJ

    Get PDF
    Software Product Line Engineering has significant advantages in family-based software development. The common and variable structure for all products of a family is defined through a Product-Line Architecture (PLA) that consists of a common set of reusable components and connectors which can be configured to build the different products. The design of PLA requires solutions for capturing such configuration (variability). The Flexible-PLA Model is a solution that supports the specification of external variability of the PLA configuration, as well as internal variability of components. However, a complete support for product-line development requires translating architecture specifications into code. This complex task needs automation to avoid human error. Since Model-Driven Development allows automatic code generation from models, this paper presents a solution to automatically generate AspectJ code from Flexible-PLA models previously configured to derive specific products. This solution is supported by a modeling framework and validated in a software factory

    Issues in Modeling Process Variants with Provop

    Get PDF
    For a particular business process, typically, different variants exist. Each of them constitutes an adjustment of a basic process (e.g. a reference process) to specific requirements building the process context. Contemporary business process management (BPM) tools, however, do not adequately support the modeling and management of process variants. Either the variants have to be specified by separate process models or they are expressed in terms of conditional branches within the same process model. Both methods can lead to high model redundancies, which make model adaptations a time consuming and error-prone task. In this paper we discuss advanced modeling concepts of our Provop approach, which provides a flexible and powerful solution for modeling and managing process variants. With Provop, a particular process variant can be configured at a high level of abstraction by applying a set of well-defined change operations to a basic process model

    Guaranteeing Soundness of Configurable Process Variants in Provop

    Get PDF
    Usually, for a particular business process a multitude of variants exists. Each of them constitutes an adjustment of a reference process model to specific requirements building the process context. While some progress has been achieved regarding the configuration of process variants, there exists only little work on how to accomplish this in a sound and efficient manner, especially when considering the large number of process variants that exist in practice as well as the many syntactical and semantical constraints they have to obey. In this paper we discuss advanced concepts for the context- and constraint-based configuration of process variants, and show how they can be utilized to ensure soundness of the configured process variants. Enhancing process-aware information systems with the capability to easily configure sound process models, belonging to the same process family and fitting to the given application context, will enable a new quality in engineering process-aware information systems

    A Case Study of the Architecture Business Cycle for an In-Vehicle Software Architecture

    Get PDF
    This paper presents the theoretical and practical benefits from a case study using a the Architecture Business Cycle to understand the management of software architecture at an automotive manufacturer. The study was done to prepare for architectural changes driven by new technology and in the automotive business environment. Our results show that the architecture business cycle worked well in defining the theoretical context for the study after some modifications; the architecture had to be precisely defined in the interview situation to gain more useful data rather than broad generalisations. Further contributions of the study were a deeper understanding of role of the architecture and it's position among other artefacts in the organisation, and an increased focus on architectural issues in management meetings. The study also indirectly affected a subsequent re-organisation
    corecore