

 University of Groningen

ValySeC
Sun, Chang-ai; Xue, Tieheng; Aiello, Marco

Published in:
IEEE Asia-Pacific Services Computing Conference

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Sun, C., Xue, T., & Aiello, M. (2010). ValySeC: a Variability Analysis Tool for Service Compositions using
VxBPEL. In IEEE Asia-Pacific Services Computing Conference IEEE (The Institute of Electrical and
Electronics Engineers).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-06-2022

https://research.rug.nl/en/publications/ee745e4d-ef95-4a96-b61d-1642e3114b71

ValySeC: a Variability Analysis Tool for Service Compositions using VxBPEL

Chang-ai Sun1, Tieheng Xue2, Marco Aiello3
1,2 School of Information Engineering

University of Science and Technology Beijing,
100083, Beijing, P.R. China

casun@ustb.edu.cn, xuetieheng@gmail.com

3Johann Bernoulli Institute
University of Groningen

9747 AG, Groningen, The Netherlands
aiellom@cs.rug.nl

Abstract

Nowadays applications are increasingly developed

based on remote Web services and service composition
has become a powerful novel development paradigm.
Due to the fact that such applications in the context of
Internet are deployed and executed in an open and
dynamic environment, adaptability is one of the
crucial requirements for developing such applications.
In our previous work, we presented a variability-based
approach to address the adaptability issue of service
compositions, and developed the VxBPEL, an
extension of BPEL with respect to variability.

This paper presents a variability analysis tool for
variability-based adaptive service compositions called
ValySeC. ValySeC extracts the variation from service
compositions specified using VxBPEL and provides a
variation view. With the view, the designer can better
understand variation points and the possible instances,
and efficiently maintain the variation within service
compositions. The paper presents the design and
implementation of ValySeC using a case study to
handle service compositions with variations to
illustrate the main concepts.

1. Introduction
Nowadays, applications are increasingly developed
based on Web services and service compositions have
evolved as a novel development paradigm [14]. In the
traditional software development, the applications are
often constructed based on the exiting components
which are usually retrieved from a local library. The
scenario in the context of service compositions varies
greatly. Web services are loosely coupled elements
and dynamically orchestrated to fulfill a business goal.

Let us consider a travel agency service. It may
compose in a travel package that exposes to the
external world by composing, for instance, flight and

accommodation services, which are provided by third
party service providers. Web services themselves are
deployed and executed in an open and dynamic
environment, availability of the services is an issue in
itself. This in turn requires that the composition should
be able to select another one, for example, when a
flight service becomes unavailable. Furthermore, the
customers may come from different countries and have
different purposes, thus their requirements vary
significantly. When a traveler is arranging a personal
trip to China, she would prefer the cheaper flight and
accommodation. However if the trip is for business,
the things change. Service compositions executing the
business processes must be flexible enough to deal
with dynamic requirements and deliver differentiated
services. The Business Process Execution Language
(BPEL) [5] is an executable service composition
language. The standard BPEL is not sufficient for
constructing the above-mentioned business process
because it only supports the static or fixed Web service
compositions.

VxBPEL [9] is an extension to BPEL that we
developed to deal with adaptation in Web service
compositions from the perspective of variability
management, which is originally from the area of the
software product lines [11]. VxBPEL provides the
constructs for the variability concepts in the language
level, and treats the changes as first-class entities,
which are currently missing in most related approaches,
particularly those focusing on the implementation level.

In this paper, we present a variability analysis tool
ValySeC that extracts the variation of Web service
compositions specified with VxBPEL and provides a
variation configuration view. This is particularly useful
when service compositions contain complex variation
configurations. With the tool, the designer can better
understand variation of service compositions, and
efficiently maintain the variation. This tool is a follow-

2010 IEEE Asia-Pacific Services Computing Conference

978-0-7695-4305-5/10 $25.00 © 2010 IEEE

DOI 10.1109/APSCC.2010.30

307

up of previous work reported in [9, 19, 20] and part of
a design and analysis tool suite for variability-based
adaptive service compositions that we are developing.

The rest of the paper is organized as follows.
Section 2 introduces the underlying concepts and
techniques. Section 3 presents the variability analysis
tool ValySeC which is based on the COVAMOF
framework and the VxBPEL. Section 4 reports a case
study with ValySeC. Section 5 discusses related work
and Section 6 concludes the paper.

2. Background
We first present the concepts and techniques used by
ValySeC, and then introduce the variability
management platform that we have developed for
variability-based adaptive service compositions.
Variability is the ability of a software system or
artifact to be extended, changed, customized, or
configured for use in a specific context [17].
Variability management includes the design, use, and
maintenance of variability [3].

2.1 The COVAMOF framework
Variability management is an important reuse issue in
product families [11]. Many variability modeling
approaches have been reported [16, 2]. However, they
are not adequate to handle variability issues relevant
for industrial purposes [18]. This observation resulted
in the creation of the COVAMOF framework which
has been tested and evaluated positively in industrial
settings [6, 16, 17]. The COVAMOF framework offers
modeling facilities to model variation points and
dependencies uniformly over multiple layers of
abstraction.

The COVAMOF-VS (http://www.covamof.com/vs)
is a tool suite developed for the COVAMOF
framework. The tool suite is an add-in for Microsoft
Visual Studio .NET, and can be used to create
variability models of a software product family, and
these models can then be used for the derivation of
individual products. All COVAMOF models conform
to the COVAMOF meta model presented in Fig. 1.

The variability concepts within the COVAMOF meta
model are
• Variation point and variant: Variation points

represent a location at which a choice is provided.
A variation point has a number of properties, such
as variation type, abstraction layer, binding time,
and rationale. Variants represent the options
available at a variation point. Variants have an
effectuating actions property, which specifies
which effectuating actions should be executed
when the variant is selected.

• Realization: Variation points can exist at different
levels of abstraction. Realization relations specify
rules that determine which variants at lower layers
of abstraction should be selected, in order to
realize the choice at variation points in higher
layers.

• Dependency: A dependency represents a system
property and specifies how the binding of
variation points influences the value of that
property, i.e., how the selection of certain variants
influences the value of that property.
Dependencies can have many variation points
from different layers of abstraction associated
with it and bridge multiple artifacts.

• Association: For each variation point associated to
a dependency, an association entity is part of the
dependency. Associations refer to variation points
that affect the value of the systemproperty. Each
association defines the relation with one variation
point.

• Reference data: Besides associations,
dependencies also contain so-called reference data
elements. These entities contain information on
the value of the system property acquired through
testing. They consist of a set of variation point
bindings, and the corresponding value of the
system property.

2.2 VxBPEL
BPEL4WS [5] defines Web service orchestrations in
terms of workflows by providing the core constructs,
such as partner, partner links, message, activities and
some handlers. Activities can be classified into simple
activities such as invoke, assign, receive and reply, and
structured activities such as scope, sequence, flow and
switch.

VxBPEL [9] is an extension to the BPEL4WS that
allows for run-time variability in service-based
systems. In order to introduce variability into service
compositions, VxBPEL extends BPEL with the
constructs for defining and managing the variability.
During the development of constructs for variants, Fig.1. The COVAMOF meta model

Product Variation Point Dependency

Variant

0..N

0..N 1..N

Association

0..N

Realization

0..N
2..N

Dependency
Interaction

0..N
2..N

1..N
Reference

Data

0..N

308

variation points, and their associations, VxBPEL
employs the COVAMOF framework and adapts it to
the context of Web services due to its outstanding
features, including treating variation points and
dependencies as first-class citizens, tool support and its
validation in industry. To indicate that a part of BPEL
processes may be variable, we enclose it by new
VxBPEL elements.

 Fig. 2 and Fig. 3 illustrate the syntax of the variant
element and the variation point element, respectively.
The prefix vxbpel indicates the namespace of VxBPEL
elements, which are not included in the standard BPEL
namespace. To indicate the association between
variation point and variants, the vxbpel:Variants tag
which follows the variation point is used to enclose
these variants. For example, the CA variant and the LH
variant are associated with the selecting an airline
service variation point.

In order to manage variability constructs at runtime,
we extended the BPEL engine ActiveBPEL [1]. Fig.4
illustrates service compositions using VxBPEL and
their runtime platform. The specification of service
compositions consists of native BPEL elements and
VxBPEL elements. At run-time, the original BPEL
engine, i.e. ActiveBPEL, is wrapped by the VxBPEL
interpreter which is responsible for the interpretation
of the VxBPEL elements. The variability management
analyzes the relationship among VxBPEL elements

and provides a variability configuration view which is
a great aid for comprehending variation of service
compositions. Thus, VxBPEL is not just an idea,
instead a practical approach to constructing service
compositions with variability management.

2.3 The variability management platform for
adaptive service compositions
Developing the VxBPEL is the first step towards
application of the COVAMOF framework to Web
service-based systems. To leverage the potential of the
COVAMOF framework for variability management in
Web service-based systems, we further developed a
framework and related tool suite for modeling and
managing the variability of Web service-based systems
for design and run-time, respectively [20].
 In the current treatment, the variability
management platform, as illustrated in Fig. 5, employs
the COVAMOF-VS tool suite to maintain variation
information of service compositions. In the different
abstraction layer, the corresponding model providers
are used to extract the variability information from the
software artifacts and create the variability model
which follows the meta model as illustrated in Fig.1.
The COVAMOF-VS then provides the variation point
view and the dependency view based on the variation
information collected by the model provider. In this
sense, the COVAMOF-VS tool suite is only
responsible for visualization of variation information.

Although the COVAMOF-VS tool suite provides a
generic and powerful infrastructure to visualize and
manipulate variation information at the different

<vxbpel:Variant name= “CA”>
 <vxbpel:VPBpelCode>

<invoke …>
 </vxbpel:VPBpelCode >
</vxbpel:Variant>

Fig. 2. The VxBPEL Variant construct

<vxbpel:VariationPoint
name= “selecting an airline service”>

<vxbpel:Variants>
<vxbpel:Variant name= “CA”>

 <vxbpel:VPBpelCode>
 <invoke …>

</vxbpel:VPBpelCode >
</vxbpe:Variant>
<vxbpel:Variant name= “LH”>

 <vxbpel:VPBpelCode>
 <invoke …>
 </vxbpel:VPBpelCode >

</vxbpel:Variant>
</vxbpel:Variants>

</vxbpel:VariationPoint>

Fig. 3. The VxBPEL Variation Point construct Software artifacts

Service composition executor

COVAMOF-VS Architecture using
UML-VWS

Implementation
using VxBPEL

Features
 (XVL files)

VxBPEL
Intepreter

BPEL engine
(ActiveBPEL5.0.2)

Fig. 5. The variability management platform
for service compositions

Variability
 Management

UML-VWS
Model Provider

VxBPEL
Model Provider

Feature Layer
Model Provider

Model Provider

Fig. 4. Service compositions with variability
and their run-time support

Native
BPEL

VxBPEL

BPEL engine
(ActiveBPEL)

VxBPEL
Interpreter

Design Run-time

service

composition

instances

Variability Management

309

abstraction layer. However, we feel that variability-
based adaptive service compositions call for a new
variability management platform because of the
following observations.

(1) Different motivation and settings. The
COVAMOF-VS tool suite is designed to
support reuse within software product families,
and therefore does not yet focus on adaptability
in the context of Service Oriented Architecture.

(2) Improvement of functionality is impossible.
Currently, source code and documentation of
the COVAMOF-VS tool suite are not available.

(3) Seamless integration with VxBPEL engine and
service composition designer is difficulty. The
current version of the COVAMOF-VS tool
suite is written in C# and implemented as a
DLL library, while the VxBPEL engine and
intended service composition designer is
implemented in Java.

3. The variability analysis tool ValySeC
Based on the concepts of the COVAMOF framework
and the VxBPEL, we are developing a variability-
based adaptive service composition platform. The
platform supports the analysis, design, execution, and
maintenance of variation of services compositions
using the VxBPEL. ValySeC is part of the platform
and responsible for the variability analysis and
maintenance. We discuss next the design and
implementation of ValySeC.

3.1 Design principle of ValySeC
As mentioned before, when the service composition
implements a complex business process and may
involve a large number of activities and variations, it
then becomes a difficult task to understand and
maintain variation configurations. Hence, the primary
goal of ValySeC is to provide a visual analysis of
variations in service compositions and maintain their
consistency when the changes happen.

The architecture of ValySeC is illustrated in Fig. 6.
It employs the Model View Controller (MVC)
structure. ValySeC reads in VxBPEL specifications and
extracts the variability data to form the variability
model. The extraction is left for a parser which
traverses the VxBPEL specifications and collects the
variability-related data. These collected data are then
stored in the form of the variability meta model as
illustrated in Fig. 1. The UI is responsible for
visualization of variability information once a request
from user is received. Actually, ValySeC is a kind of
reverse analysis tools and thus follows the principle of
general reverse engineering [21].

In order to aid the designers to better understand

and maintain the variation, ValySeC provides the
following features.
• Extraction of variability-related elements, such as

Variation Point, Variant, Rationale, VPChoice, and
ConfigurableVariationPoint.

• Reasoning the relationships and dependencies
among variability elements.

• Visualization of the variation configuration.
• Query on the variability elements, relationships,

and configuration.
Note that the VxBPEL supports the incorporation

of variability management into service compositions in
different ways. One is to separate the variability
constructs from the main BPEL process. The other is
to inline variability constructs in the main BPEL
process. In terms of variation design, we recommend
that the inline way should be employed because the
separate way splits variability management into
multiple files and causes a large number of references
to the original BPEL process. However, the inline way
scatters variation definitions and configurations among
the whole composition specification and thus this
poses the difficulty to the extraction and reasoning of
variation. To increase adaptability and scalability of
ValySeC, an adapter is introduced to extract variability
data for the different ways of variation representations.

3.2 Implementation of ValySeC
We have implemented ValySeC in Java and based on
JDK 1.6.0. During the implementation, we employ
XML parser technologies (i.e. XML DOM interfaces)
to extract the various variability-related data which are
stored in the Document Class. Based on the collected
data, we can further identify the type of variation
representations according to the type of the root node
corresponding to the service compositions. The type of
variation representation belongs to one of the Separate,
Inline, Configurable, and Inline Configurable.

 The relationships among variability elements are
decided by their hierarchy associated with the

Fig. 6. The architecture of ValySeC

Controller

UI Model Parser

view

query extraction

action

VxBPEL
specification

Variability
Model

Users
/Designers

310

VxBPEL specification. The hierarchy is easy to obtain
from the XML file because these elements are defined
following the XML schema and the variability meta
model. For example, variants A and B are associated
with variation point VP1, then the definitions of A and
B must be included as elements of the definition of
VP1. Similarly, all detailed information about variants
and variation points are defined as their properties or
elements.

Once the hierarchy of elements is decided, next is
to visualize the variation configuration and provide the
interactions to users. We employ a tree view for this
task because the tree is a natural choice to represent
the hierarchical configuration. Query on the tree view
is supported through showing the detailed information
about the selected variability elements.

Fig. 7 shows a snapshot of ValySeC when the
variability representation is the Inline type indicated by
the top title. The Inline type means that the variation
elements are defined together the main business
process. Note that the circle, triangle and rectangle are
used to represent the variation point, variant and
collection of variants, respectively. In the service
composition illustrated in Fig. 7, the variation point
has two variants. To query information of some
variation elements, one just needs to select the element
in the variation configuration tree view and then click
the right mouse button. The separate window within
the main window shows the information about the
second variant.

VxBPEL supports complex variable service
compositions and the ConfigurableVariationPoint is
used to specify the dependencies among variation
elements. Fig. 8 shows a snapshot of ValySeC with the
Inline Configurable type. The root node in the
variability tree view is vxbepl:
VariationConfigurationInformation represented as a
rhombus. The vxbepl:ConfigurableVariationPoints that
is represented as a four-square set contains one or
more ConfigurableVariationPoints represented as a
circle. The detailed configuration of each

ConfigurableVariationPoint is further elaborated
through its name, rationale and variants. The name and
rationale are represented as an ellipse and an ellipse
filled with a rectangle, respectively. Each variant is
elaborated through its name, RequiredConfiguration
and a set of VPChoices represented as a rectangle
filled with a label of “vpc”. The
RequiredConfiguration represented as a regular
hexagon can be used to specify the complex
dependencies among the configuration, and the
VPChoice represented as a triangle filled with a label
of “vpc” lists out the possible alternative for this
variant.

The tree view can be folded as required. This is
particular helpful for the user to focus on some
variability elements while omit other elements. The
implementation presented above is still a preliminary
version. There are still several limitations. Only the
variation point view is provided. The dependency view
is under development. The variation that ValySeC is
able to handle lies in the implementation layer.
Currently, ValySeC focuses on the analysis and
maintenance of variability. One of our future tasks is to
support the visual variability design based on ValySeC
and then effectuate the design into service composition
specifications.

4. A case study
We use the loan approval application to examine the
effectiveness and performance of ValySeC.

The application is implemented by several Web
services taken directly from the WS-BPEL 2.0 website
[13]. This application has also been used to examine
the VxBPEL and its interpreter [9]. With this loan

Fig. 8. A snapshot of ValySeC with the Inline
Configurable type

Fig. 7. A snapshot of ValySeC with the Inline
type

311

approval application, customers send their requests for
loans, including personal information and the amount
being requested. Based on the information, the loan
service runs a simple process that results in either a
‘‘loan approved” message or a ‘‘loan rejected”
message. The approval decision can be reached in two
different ways, depending on the amount requested
and the risk associated with the requester. For low
amounts (less than $10,000) and low-risk individuals,
approval is automatic. For high amounts or medium
and high-risk individuals, each credit request needs to
be studied in greater detail.

To process each request, the loan service uses the
functionality provided by two other Web services. In
the streamlined processing available for low amount
loans, a ‘‘risk assessment” service is used to obtain a
quick evaluation of the risk associated with the
requesting individual. When the streamlined process is
not applicable, a ‘‘loan approval” service is used to
obtain in-depth assessments of requests.

The graphic representation of the BPEL
specification for the loan approval process is
illustrated in Fig. 9. The orchestration process involves
five activities. Each is a variation point because it may
require different processing, namely default or
encrypted. Thus, the variability design applies to these
activities. Fig. 10 shows a small part of such a
VxBPEL specification.

Now, we employ ValySeC to view and maintain
the variation information contained by such a variable
service composition using VxBPEL. Fig. 11 shows a
snapshot when ValySeC is used to analyze the
VxBPEL specification of the loan approval. Results of
the analysis are illustrated in Fig. 12 and reveal that the
VxBPEL specification for the loan approval
application contains inline and inline configurable
variation configurations. In the section of inline, there

Fig. 9 The flowchart of BPEL specification
for the loan approval process

Fig. 11. A snapshot of ValySeC for the loan
approval application

Fig.10. An segment of VxBPEL for the
loan approval application Fig. 12. A snapshot of variation view of the

loan approval application

312

are totally five variation points and each of them is
associated with two variants. In the section of inline
configurable, there is one ConfigurableVariationPoint.
It defines two complex variants and they are further
defined by their RequiredConfigurations which are
specified in terms of a set of VPChoices. By analysing
their VPChoices, we find that the first variant requires
all “default” processing, while the second one requires
all “encrypted” processing.

As to the performance of ValySeC, the time
overhead mainly results from two aspects. One is
related to the computation time that is needed to parse
the variation elements in a variable business process
and proportional to the amount of variation elements
contained by the process. The other is related to the
reasoning of the relationships among the variation
elements. Compared with the former overhead, the
latter one is negligible. Table 1 summarizes the
performance of ValySeC when it runs the loan
approval application in a laptop.

Table 1. The performance of ValySeC with the
loan approval application

CPU (GHz) 1.8*2
Memory (GB) 1.0
Operating System Windows XP
Time (ms) 94

With this case study, we have applied ValySeC to

the loan approval application, a tiny but representative
variable service composition using the VxBPEL.
Results of the case study have validated the feasibility
and performance of ValySeC.

5. Related work
We describe related work on variability modeling for
Web services, and adaptive service compositions.
 Mohan and Ramesh [12] present an approach that
makes use of ontology for variability management in
product and service families. The ontology is
integrated by a Knowledge Management System to
assist designers of a system in implementing
variability. The advantages include that it offers
flexibility in the use of different mechanisms for
implementing variability and it is domain independent.
However, a drawback is that it requires major
involvement from the user, which means the approach
can not be used for automatic reconfiguration of a
system.

Robak and Franczyk [15] introduce the concept of
modeling the variability of Web services using feature
diagrams. For a Web service-based system a feature
diagram can be created describing the commonalities

and differences within the range of possible systems.
The advantages includes that it supports automated
configuration of a system and provides a clear
overview of the variability and commonalities within a
system. However, describing variability only in this
manner means that realization relations and
dependencies are not modeled.

Kim and Doh [10] introduce a framework for
modeling adaptable Web services by analyzing the
variability. Their modeling framework focuses on the
variability of Web services from variation points of
structural features and behavioral features. Topaloglu
and Capilla [22] discuss the modeling of variability in
terms of pattern. Unlike these work, the VxBPEL is
developed to address variability design of adaptive
service compositions, in particular in connection to
BPEL.

AdaptiveBPEL [8] is a service composition
framework which leverages aspect-oriented techniques
to provide better dynamic adaptability of Web services.
Extra concerns are specified as aspects and the aspects
are weaved into BPEL processes through the policy-
driven negotiation process. AOBPEL [4] is an aspect-
oriented extension to BPEL which provides a solution
to the lack of appropriate means for the modularization
of crosscutting concerns and for supporting dynamic
changes in BPEL. These aspect-oriented extensions
effectively solve the scatter and the tangling problems.
However, aspect definitions split up the process logic
over different files and thus it difficult to comprehend
variation of, in particular, complex service
compositions. The implementation of aspects results in
a hybrid specification of service compositions.
VxBPEL overcomes these advantages by providing a
set of variability constructs whose style is consistent
with BPEL native constructs and a variation view
which is a great aid for comprehending variation of
service compositions.

Trap/BPEL and its predecessors [7] are a family of
extensions to BPEL for enhancing the robust web
services compositions by means of static, dynamic and
generic proxies, respectively. The adapted process is
augmented with a proxy that replaces failed services
with predefined or newly discovered alternatives.
Unlike VxBPEL, the approach does not treat changes
as first class citizens in the Web service compositions,
and hence it is difficult to know about the variation
points and their dependencies causing variation
configuration and maintenance a difficult task.

6. Conclusions and future work
We have presented a variability analysis tool ValySeC
which can be used to automatically analyze and

313

maintain the variability information within a service
composition using VxBPEL. The VxBPEL improves
the standard BPEL with explicit variability
management and results in a great deal of flexible
design. When the VxBPEL is used for the variability
design of complex service compositions, the analysis
and maintenance of variability information is a big
challenge. ValySeC presented in this paper is designed
to address this challenge. The effectiveness of ValySeC
has been validated by a case study.
 Our ultimate goal is to develop a variability-based
adaptive service composition methodology and
platform. Currently, the VxBPEL engine has been
integrated with ActiveBPEL engine to support the
execution of VxBPEL specifications. For the future
work, we plan to extend ValySeC to support variability
design, and integrate it with the ActiveBPEL Designer
to provide an efficient variability analysis, design and
maintenance platform.

Acknowledgements
The authors thank all the contributors of the
COVAMOF framework and VxBPEL. This research is
supported by the National Natural Science Foundation
of China (Grant No. 60903003), the Research Fund for
the Doctoral Program of Higher Education of China
(Grant No.2008000401051), the Scientific Research
Foundation for the Returned Overseas Chinese
Scholars, State Education Ministry, China (Grant No.
2008[890]), and NWO Jacquard project Software as a
Service for the varying needs of Local eGovernment
(SaS-LeG, http://www.sas-leg.net), contract no.
638.000.000.07N07.

References
[1]ActiveBPEL, http://www.activebpel.org/. 2007
[2]M. Aiello, P. Bulanov, H. Groefsema. Requirements and

Tools for Variability Management. Proceedings of REFS
2010 in conjunction with COMPSAC 2010, pp245-250.

[3]F. Bachmann, L.J. Bass. Managing variability in software
architectures. Proceedings of ACM SIGSOFT Symposium
on Software Reusability, 2001, pp126–132.

[4]A. Charfi, M. Mezini. AO4BPEL: An Aspect-Oriented
Extension to BPEL. World Wide Web, 2007,10(3):309-344.

[5]F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S.
Weerawarana, Business process execution language for
Web services, Version 1.1 2003.

[6]S. Deelstra, M. Sinnema, J. Bosch. Product derivation in
software product families: a case study. Journal of
Systems and Software, 2005, 74(2):173–194.

[7]O. Ezenwoye, S. M. Sadjadi. TRAP/BPEL: A Framework
for Dynamic Adaptation of Composite Services,
http://www.cs.fiu.edu/~sadjadi/Publications/, 2006.

[8]A. Erradi, P. Maheshwari. AdaptiveBPEL: a Policy-
Driven Middleware for Flexible Web Services

Compositions, Proceedings of Middleware for Web
Services (MWS), 2005, pp5-12.

[9]M. Koning, C. Sun, M. Sinnema, P. Avgeriou. VxBPEL:
Supporting variability for Web services in BPEL.
Information and Software Technology, Elsevier, 2009,
51(1): 258-269.

[10]Y. Kim, K. Doh. Adaptable Web Services Modeling
using Variability Analysis, Proceedings of Third 2008
International Conference on Convergence and Hybrid
Information Technology, 2008, pp700-705.

[11]F. Linden. Software product families in Europe: The
Esaps & Cafe Projects. IEEE Software, 2002, 19(4):41-
49.

[12]K. Mohan, B. Ramesh. Ontology-based support for
variability management in product and service families.
Proceedings of the 36th Annual Hawaii International
Conference on System Sciences, 2003, p75.1.

[13]OASIS. Web Services Business Process Execution
Language Version 2.0 Committee Draft,
<http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wsbpel>, 2006.

[14]M. Papazoglou. P. Traverso, S. Dustdar, F. Leymann.
Service-Oriented Computing: a Research Roadmap.
International Journal on Cooperative Information
Systems (IJCIS), 2008, 17(2):223-255.

[15]S. Robak, B. Franczyk. Modeling Web services
variability with feature diagrams. Proceedings of the
NODe 2002, Springer, 2003, pp120 128.

[16]M. Sinnema, S. Deelstra. Classifying variability
modeling techniques. Information and Software
Technology, 2007, 49(7): 717-739.

[17]M. Sinnema, S. Deelstra, P. Hoekstra. The COVAMOF
derivation process, Proceedings of ICSR 2006, LNCS
4039, Springer, 2006, pp101–114.

[18]M. Sinnema, S. Deelstra, J. Nijhuis, J Bosch.
COVAMOF: a framework for modeling variability in
software product families. Proceedings of the Software
Product Line Conference (SPLC2004), 2004, pp197-213.

[19]C. Sun, M. Aiello. Towards variable service
compositions using VxBPEL. Proceedings of the
International Conference on Software Reuse (ICSR),
LNCS 5030. Springer, 2008, pp257-261.

[20]C. Sun, R. Rossing, M. Sinnema, P. Bulanov, M. Aiello.
Modeling and managing variability of Web service-based
systems, Journal of Systems and Software, Elsevier, 2010,
83 (3): 502-516.

[21]C. Sun, J. Zhou, J. Cao, M. Jin, C. Liu. ReArchJBs: a
Tool for Automated Software Architecture Recovery of
JavaBeans-based Applications, Proceedings of 16th
Australian Conference on Software Engineering
(ASWEC2005), 2005, pp270-280.

[22]Y. Topaloglu, R. Capilla. Modeling the variability of
Web services from a pattern point of view. Proceedings
of ECOWS 2004, LNCS 3250, Springer, 2004, pp128-
138.

314

