
Model-to-Code transformation from Product-Line Architecture Models to Aspect J 

Jessica Diaz, Jennifer Perez, Carlos Fernandez-Sanchez, Juan Garbajosa 
Technical University of Madrid (UPM) - Universidad Politecnica de Madrid 

Systems & Software Technology Group (SYST), E.U. Informdtica, Madrid, Spain 
Email: yesica.diaz,carlos.fernandez-at-upm.es,jenifer.perez,jgs-at-eui.upm.es 

Abstract—Software Product Line Engineering has signifi
cant advantages in family-based software development. The 
common and variable structure for all products of a fam
ily is defined through a Product-Line Architecture (PLA) 
that consists of a common set of reusable components and 
connectors which can be configured to build the different 
products. The design of PLA requires solutions for capturing 
such configuration (variability). The Flexible-PLA Model is a 
solution that supports the specification of external variability 
of the PLA configuration, as well as internal variability of 
components. However, a complete support for product-line 
development requires translating architecture specifications 
into code. This complex task needs automation to avoid human 
error. Since Model-Driven Development allows automatic code 
generation from models, this paper presents a solution to auto
matically generate AspectJ code from Flexible-PLA models -
previously configured to derive specific products. This solution 
is supported by a modeling framework and validated in a 
software factory. 

I. INTRODUCTION 

Software Product Line Engineering (SPLE) has proved to 
have significant advantages in family-based development [1], 
[2], but also implies an upfront design in product-line archi
tecture (PLA) from which individual product applications 
can be engineered. PLAs consist of a set of common and 
reusable building blocks (components and connectors from 
the structural viewpoint) that can be configured to build the 
different and/or customized products that make up a product-
line. Such configuration is an expression of variability. In 
fact, variability is one of the most important drivers of these 
kinds of architectures that support a set of members of 
a product-line. However, the modeling of the architectural 
variability has become a challenge for SPLE [3]. 

The Flexible-PLA Model [4] extends previous approaches 
for modeling architectural variability [5], [6], [7], [8] not 
only at the level of the external architecture configuration, 
but also at the level of internal specification of components. 
However, a complete support for product-line development 
requires translating architecture specifications into code. 
This complex task needs traceability from architecture to 
code and automation to avoiding human error. Model-
Driven Development (MDD) is presented as a solution 
for dealing with these issues through the use of models, 
model transformations, and traceability between models. In 

this way, architecture and code models can be linked and 
inconsistencies due to evolution are avoided by updating 
PLA models, and then re-generating code. 

To provide the advantages of MDD in the product-line 
development, this paper presents a solution to (i) automat
ically generate code from Flexible-PLA models that are 
configured to derive specific products, and (ii) guarantee the 
traceability among architecture and code. This solution is 
supported by a modeling framework called FPLA1 which 
supports the description of Flexible-PLA models ready to be 
configured and involved in a MDD process by automatically 
transforming their outputs into code, specifically AspectJ [9]. 
AspectJ is an extension of the Java programming language to 
support Aspect-Oriented Programming (AOP) [10] that aims 
to increase code modularity through separation of crosscut-
ting concerns. Therefore, FPLA automatically generates the 
AspectJ code of one or more product applications from a 
product-line after configuring and deriving the variability 
defined in a Flexible-PLA model, and after populating and/or 
importing code from external sources. Specifically, FPLA 
automatically generates the code skeletons from Flexible-
PLA models and composes the code from external sources 
by defining a model-to-code transformation. 

The FPLA Modeling Framework has been developed by 
using the infrastructure provided by the Eclipse Modeling 
Framework (EMF) [11], and the model-to-code transfor
mation is implemented by using the Epsilon Generation 
Language (EGL) from the Epsilon Generative Modeling 
Technologies (GMT) research project [12]. We have empiri
cally validated the code generation in a project developed 
in a software factory [13]. We refer to this project as 
OPTIMETER, which is part of several projects2 focused on 
Smart Grids. The validation consisted of the design of the 
PLA of a family of power metering management systems 
and the automation of code generation. 

This paper is structured as follows: Section II describes 
the Flexible-PLA Model upon which the model-to-code 
transformation is performed. Section III describes a case 
study used to validate the transformation. Section IV 
presents the transformation from Flexible-PLA models to 

1 https://syst.eui.upm.es/FPLA/home (Eclipse Public License vl.O) 
2IMPONET http://innovationenergy.org/imponet and NEMO&CODED 

http://innovationenergy.org/nemocoded/ 

https://syst.eui.upm.es/FPLA/home
http://innovationenergy.org/imponet
http://innovationenergy.org/nemocoded/


AspecLT code. Section VI discusses related work. Finally, 
conclusions and further work are presented in Section VII. 

II. BACKGROUND 

A. Variability in Software Architecture 

The integration of variability concepts into architectural 
specifications is essential in order to successfully develop 
SPLs [6], [3]. Most mechanisms for describing architectural 
variability specify what we have called external variation of 
the architecture. External variation allows the specification 
of flexibility points by modifying the structural configuration 
of the architecture [5], as well as of composite components 
(e.g., through the use of representations [8]). However, 
external variation is not enough to completely define all 
kinds of variabilities [6] and trace these variabilities from 
requirements to the architecture [14], or even code. Some
times variations may happen inside components. As a result, 
it is necessary to specify internal variation, i.e., variations 
of non-composite components. 

To support internal variability, the Flexible-PLA Model is 
based on a novel concept called Plastic Partial Component 
(PPC) [4]. PPC's approach applies the advantages of aspect-
oriented software architectures [15] (see Figure l.a) by 
defining components as fragment boxes that hook a set 
of reusable fragments of code—aspects—, which makes 
components easier to be maintained, and by extension 
software architectures. Specifically, PPCs take advantage of 
aspect-oriented concepts to specify the internal variation 
of components, in such a way that part of its behavior 
corresponds to the core functionality of a SPL and part 
of its behavior is specific of a product or set of products 
from that SPL. The variability of a PPC is specified using 
variability points, which hook fragments of code known as 
variants to the PPC (see Figure l.b). The specification of 
a variability point must include the definition of weavings 
between the PPC and the variants (see Figure l.b). The 
notion of weaving originally comes from AOP and provides 
the functionality needed to specify where and when to extend 
components through the use of aspects. Unlike AOP, our 
weavings specify where and when to extend PPCs through 
the use of variants. AOP defines a set of weaving primitives: 
pointcuts and advices, which are applied to weave a PPC 
with variants. Pointcuts define where the code of a variant 
is going to be inserted. Specifically, a pointcut is the call to 
one or a subset of services that a PPC provides. The services 
of a PPC, which can be intercepted during their execution to 
insert code, are called services for derivation. The fragment 
of code to be inserted in a PPC, widely named advice in 
AOP terminology, is provided by variants. Each variant is 
composed of several advices, and each advice is modeled 
as a service for derivation. The definition of the weaving 
operator consists of establishing when to insert the advice 
of the variant in regard to a pointcut. It could be before, 
after or insteadOf the call of the pointcut. 

B. Flexible-PLA Ecore 

To specify Flexible-PLA models it is necessary to define 
a domain-specific (modeling) language (DSL). The DSL 
abstract syntax has been specified through a metamodel. 
Specifically, the Flexible-PLA metamodel has been spec
ified through an Ecore Model in order to be deployed 
in a framework for DSL definition, such as the Eclipse 
Modeling Framework. The Flexible-PLA Ecore Model has 
been described in terms of (E)Classes, relationships between 
classes, and their cardinality. The Flexible-PLA Ecore Model 
is described in Figure 2. 

Components are described by the EClass Component. A 
component defines an attribute name which is inherited from 
the EClass NamedElement. A component is characterized 
by a set of properties (see the EClass Property and the 
aggregation relationship characterizedBy in Figure 2), and 
offers a set of services (see the EClass ServiceForCore and 
the aggregation relationship ojfersServices in Figure 2). A 
component has a set of ports that publish its services (see the 
EClass AbsPort and the aggregation relationship hasPorts 
in Figure 2). Ports publish the services that a component 
provides or requires through interfaces. This relationship is 
represented by the aggregation publisheslnterfaces between 
the EClasses AbsPort and Abslnterface (see Figure 2). 
Ports can be mandatory or optional while interfaces can be 
required or provided (see Figure 2). 

Connectors model interactions among components. Al
though we advocate the approach of considering connectors 
as first-class entities in software architecture representa
tions [16], the Flexible-PLA Ecore Model implements a 
simplification of connectors as simple attachments. Hence, 
connectors define the communication channels between the 
ports of two components. This connection between com
ponents is represented in the metamodel by the associa
tion relationships attachesMandatory and attaches Optional, 
which are recursive with the EClasses PortMandatory and 
PortOptional respectively (see Figure 2). Such relationships 
determine whether the connection is optional, i.e., whether 
it belongs to the core of the PLA, or whether the connection 
is specific to a product (or subset or products) from the SPL 
that is being modeled. As a result, a component that has all 
their ports optional, is naturally optional. Therefore, external 
variability is realized by adding or removing optional com
ponents (and their ports) to/from PLAs, i.e., by modifying 
their structural configuration. 

PPCs are a specialization of components, as the EClass 
PlasticPartialComponent inherits all the properties and be
havior from the EClass Component (see Figure 2). Internal 
variations are specified using PPCs, i.e., components that 
define a set of variability points which hook variants. Hence, 
a PPC is characterized by the definition of a set of variability 
points, i.e., the place where the different variants are hooked 
to one or more PPCs. This relationship is modeled by means 



a) Aspect-Oriented Software Architectures (AOSA) b) Plastic Partial Component (PPC) 

Component [ Component 

aspects 

Figure 1. AOSA applied to the specification of internal variability of components: PPCs 

of the association relationship called defines (see Figure 2), 
which relates the EClass PlasticPartialComponent to the 
EClass Variability Point. 

The set of variants that a variability point provides is 
specified through the association relationship hooks between 
the EClasses VariabilityPoint and Variant (see Figure 2). 
The EClasses VariabilityPoint and Variant define an attribute 
name which is inherited from the EClass NamedElement. 
Additionally, the EClass VariabilityPoint defines an attribute 
to specify the cardinality of the variability point (see the 
attribute cardinalitySelection in Figure 2), i.e., optional, 
alternative or multiple variants. 

Variability points are characterized by the weaving that 
pinpoints where and when to extends PPCs through the 
use of variants. The weaving is defined by the EClass 
Weaving. The EClass Weaving is part of the variability 
point as it specifies the weaving between PPCs and variants, 
and it is dependent on the linking context. As a result, a 
variability point must specify all the weavings that can be 
applied to the PPC(s) that define it and its variants. This 
relationship is defined in the metamodel through the aggre
gation relationship weaves, which is inclusive. The EClass 
Weaving has three attributes: name, (weaving) operator, 
and selection. The first one allows the identification of the 
weaving, whereas the second one establishes when to insert 
the advice of the variant in regard to a pointcut: before, after, 
instead (see Figure 2). The attribute selection determines 
if a weaving has to be applied to or not. This means, 
at the time of deriving or configuring a specific product 
from a SPL, this attribute determines which pointcuts— 
service(s) of a PPC or set of PPCs—are intercepted by 
the advice of a variant. The pointcut and the advice are 
represented by the EClass ServiceForDerivation. This is 
why the EClasses PlasticPartialComponent and Variant are 
composed by ServicesForDerivation (see the aggregation 
relationships composedof and constitutedby in Figure 2). 

ServiceForDerivation are the services that participate in 
the weaving to specify where to insert the code of the advice 
in the pointcut (see the aggregation relationships pointcut 
and advice in Figure 2). The EClass ServicesForDerivation 

is a specialization of services that inherits all the properties 
and behavior of a common service of the EClass Service 
(see Figure 2). They are a specialization because they 
are services that participate in a variability point. Hence, 
common components (non-PPCs) cannot be composed of 
this kinds of services, only PPCs and variants can be 
composed of services that participate in a variability point, 
i.e., ServicesForDerivation. 

Finally, it is necessary to specify the DSL concrete syntax 
by defining a graphical language representation. A graphical 
modeling language is defined as this kind of language is 
usually more intuitive. This language reuses common graph
ical metaphors of components [17], as well as variability 
points [1]. Its usage has been pursued to be as friendly as 
possible for use in the PLA community. Figure 3 shows 
the graphical representation of the main concepts of the 
Flexible-PLA model. 

IIL CASE STUDY 

With the purpose of validating the code generation result
ing of configuring Flexible-PLA models, we have conducted 
a case study within a project in an experimental i-smart soft
ware factory (iSSF [13]). The iSSF is a software engineering 
research and education setting in close cooperation with the 
top industrial and research collaborators in Europe. Indra 
Software Labs leads this initiative at the corporate level 
in Spain in conjunction with the Technical University of 
Madrid (UPM). 

The case study consists of a project, called OPTIMETER, 
to develop a SPL of metering management systems in 
electric power networks. OPTIMETER is part of several 
projects2 focused on the Smart Grids. Metering manage
ment systems capture meter data from a huge number of 
distributed energy resources, load these data in a database, 
support data querying and processing, and provide these data 
to other systems for billing, forecasting or purchasing. Data 
loading and querying require to leverage high performance 
through the use of data clustering technologies. To manage 
meter data with high performance it is necessary to manage 
several of the large data storing technologies available in 
the market (such as Berkeley DB, Oracle llg, together 



Figure 2. Flexible-PLA Ecore Model 

clustering technologies such as Hadoop and Oracle Real 
Application Clusters) to use those more suitable in each 
particular case. Therefore, these technologies are alternative 
variants to develop a family of metering management sys
tems. 

The case study here described focused on the development 
of two products from OPTIMETER SPL. These products re
spectively implement the data storing technologies Berkeley 
DB over Apache Hadoop clustering and Oracle l lg over 
RAC. To that end, the architects designed two PPCs for 
data loading and querying respectively (see DataLoader and 
DataQuerying in Figure 3.a). These components are defined 
as PPCs to implement the variability for the different data 
storing technologies. Both PPCs define the variability point 
clustering which hooks the variants HadoopMAP/REDUCE 
and RAC (see Figure 3.a). Additionally, the architects de
fined the weavings to specify where and when to extend the 
code of the PPC DataLoader using the code of these vari
ants (see the weavings WeavingClusteringHadoop, Weav-
ingRunJobHadoop, WeavingClusteringRAC, WeavingRunJo-
bRAC in Figure 3.a). 

Figure 3.b shows the PPC DataLoader which provides 
the service load that is published through the interface 
IDataLoader, so that other components can require it. This 
service is a ServiceForCore, i.e., all products of the OP
TIMETER SPL has a component DataLoader that pro
vides the service load. The PPC DataLoader also de
fines other two services: initializeCluster and runJob (see 

Figure 3.b). Both services are not provided or required 
to/from other components, and are ServiceForDerivation 
which means that these services participate in a weaving 
definition —pointcuts—, and therefore the code of these 
services can be completed (through the weavings opera
tors after and before) or replaced (through the weaving 
operator instead) by the services defined by variants. The 
variant HadoopMAP/REDUCE is composed of two services: 
hadoopcluster and hadoopRunJob (see Figure 3.b). Both 
services are ServiceForDerivation which means that these 
services participate in a weaving definition - advices. 

Finally, Figure 3.c shows the weaving definition (point-
cuts and advices) to derive a specific product application 
from OPTIMETER SPL. Specifically, to derive a metering 
management system working with Berkeley DB running 
over Apache Hadoop clustering. To that end, the code of 
the service hadoopcluster is injected instead of the service 
initializeCluster and the code of the service hadoopRunJob 
is injected instead of the service runJob. 

IV. TRANSFORMATION: FROM FLEXBILE-PLA MODELS 

TO ASPECTJ CODE 

The FPLA Modeling Framework provides modeling prim
itives for describing PLAs conforming to the Flexible-
PLA metamodel (see marker 1 in Figure 4). Next, FPLA 
supports the selection of a particular configuration out of 
the multitude of available architectural configurations that 
the PLA implements (see marker 2 in Figure 4). The result 
is a product architecture model. Finally, FPLA automatically 



a)C&C definition 

ngClusterJngRAC 

ir.leterProcessoi 

b) Service definition 

llData Loader 

MloadMeterData 

• hadoopMAP/REDUCE 

hadoopclu<.ter 

c) Weaving definition 

JnitJali;eClu-tgr 

— Ojtc.CjJtr 

p 
IDatiLosdei 

MIoadMetFrDjta 

' i—lload 

initio lireC lurtcr . — — — "" 

' i—lload 

initio lireC lurtcr . — — — "" 
—" 

i*j wttvingC lustring Hi do op L I had DO pMAP /REDUCE 

badoopcluster 

|~] .•.eE/ingfiurJcbHadooa 
li.-;lrccP JPJCE 

; " instead ft* 

Figure 3. OPTIMETER SPL - Flexible-PLA model 

transforms this model into AspecJ code (see marker 3 in 
Figure 4). This transformation consists in the generation of 
code skeletons and the composition of external source code. 

To transform a Flexible-PLA model into AspecLT code, 
we have used the Epsilon Generation Language (EGL) to 
define a model-to-text transformation (see a fragment of 
the EGL transformation in Code 1). This fragment shows 
how the code of aspects is generated from the information 
modeled in the weavings (see Figure 3.c) as follows. First, 
the header is generated (see line 4 in Code 1). Then, the 
transformation iterates on the services of a weaving to locate 
both the pointcut and the advice (see lines 6-7 and 11-12 
in Code 1). Line 23 prints the poincut, line 32 prints the 
aspect operator, and finally line 33 prints the advice of the 
aspect - i.e., this line prints the code that has been previously 
imported in a Flexible-PLA model. 

The generated code is structured into three packages: com
ponents, interfaces, and variants. Hence, for each component 
and PPC of a Flexible-PLA model the transformation that 
we have implemented generates a Java class (file .Java in 
the package components), although complex components— 
or subsystems— could be structured in sub-packages. For 
each interface, that the components or PPCs of a Flexible-
PLA model provide, the transformation generates a Java 
interface (file .Java in the package interfaces). Finally, for 
each weaving, that the variability points of a Flexible-PLA 
model weave, the transformation generates an aspect (file .aj 
in the package variants). 

The code on the left in Figure 5 shows a class generated 
by applying the transformation to the PPC DataLoader 
shown in Figure 3. As this code shows, the transformation 

generates: 
1) 
2) 
3) 

4) 
5) 

6) 

7) 

Headers for package and import definitions. 
Class headers. 
Interfaces implementation (see the interface IDat-
aLoader). 
Constructor(s) definition. 
Attributes definition, as well as setter and getter meth
ods for each attribute (see the property cluster). 
Implementation of those ServicesForCore that are pro
vided through an interface or that are private (see the 
service load). 
Partial definition of those ServicesForDerivation that 
are provided through an interface or that are private 
(see the services initializecluster and runJob). 

The code on the right in Figure 5 shows an aspect 
generated by applying the transformation to the weaving 
WeavingClusteringHadoop. As this code shows, the trans
formation generates: 

1) Pointcut definition (see the poincut initializeCluster or 
runJob). 

2) Weaving operator (see the operator around). 
3) Advice definition (this is the code imported by the 

variant HadoopMAR/REDUCE, specifically by the ser
vice hadoopcluster, see Figure 3). 

V. DISCUSSION 

The people involved in the case study were interviewed 
to check whether Flexible-PLA modeling primitives were 
effective in providing the capabilities for (i) specifying 
most common kinds of variations that the SPL engineers 
required to define, (ii) configuring two different metering 



Model-to-code | | 
transformation 

Figure 4. FPLA Modeling Framework: the Model-Driven Development process of FPLA 

Code 1 EGLTransformation 
pac 
imp 

kage [%=directoryVariant%] 

ort [%=directoryComponent% 

3 
4 

5 
6 

7 
8 

9 
10 

11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

public aspect [%=weaving-name%]{ 

for (variant in Variant - all - select(v|v-hasService- exists(sv sv-Advice - exists(p|p-name=weaving-name) )) ) 
for (serviceVar in variant -hasService- select(sv| sv-Advice - exists(p|p-name=weaving- name) )) { 

var weavingAdvice =""; 
var weavingPointCut =""; 

var weavingCode =serviceVar-getCodeMethod(); 

for (components in PlasticPartialComponent- all - select(v|v-composedOf- exists(sc sc-Pointcu 
(pip-name=weaving-name)))){ 

for (serviceCom in components -composedOf- select(sc sc-Pointcut- exists(p|p-name=weaving 
var method = "execution (* " + components - name + "-" + serviceCom-name -getNameMethod 
if (weavingPointCut=""){ 

weavingPointCut = method; 
weavingAdvice =serviceCom-name -getNameMethod() + "Method"; 

}else { 

weavingPointCut = weavingPointCut + " || " + method; 

ut- exists 

- name) ) ) { 

0 + "(--))' 

pointcut [%=weavingAdvice%] () [%=weavingPointCut % ] ; 

var weavingOperator = weaving-Operator; 
var weavingReturnType =""; 
if (weaving-Operator - name -isSubstringOf('instead')) 

weavingOperator = "around"; 
weavingReturnType = "void"; 

=weavingReturnType%] [%=weavingOperator%]() : [%=weavingAdvice%] () 

=weavingCode%] 

managements system applications, and (iii) generating their 
code. Most of the people involved in the case study reported 
their satisfaction. They asserted they did not incur a big cost, 
and that automatic code generation was possible. However, 
the use of the Flexible-PLA Model requires to know and 
understand the modeling concepts on which it is based 
on, as well as to learn the usage of the FPLA Modeling 
Framework. The learning curve of these concepts as well as 
the usage of FPLA could slow down the process of putting 
model-driven SPL development into practice. In fact, the 
SPL engineers expressed reluctance at the time of putting 
the Flexible-PLA Model into practice, although later, the 
product engineers found code generation and (architecture-

to-code)traceability essential to do their work during the con
figuration of variability to derive the metering management 
system applications. 

However, the major limitation in case study research 
concerns external validity because only one case is stud
ied. On the contrary, case studies allow one to evaluate a 
phenomenon, a model, or a process in a real setting. This 
is something important in software engineering in which a 
multitude of external factors may affect to the validation re
sults, and that other techniques such as formal experiments, 
although they permit replication and generalization, do not 
consider as they are conducting under controlled settings. 



public class QataLoader implements IDataLoader { 

//constructor 
public DataLcader(){ 

initializeCluster(); 

} 

//attributes 
private Cluster cluster; 
public Cluster getCluster(){ 

return cluster; 

} 
public void setCluster(Cluster cluster){ 

this.cluster = cluster; 

> 

public aspect weavingClustering{ 

/
pointcut initializeClusterMethod () : execution (* DataLcader 
void aroundQ : initidlizeCluste^Method () { 

this.cluster = new JobConf (P̂ ccess.'lete'-D'ata . class); 
gUBBMG i 

-mAai this.cluster, set3obrJame( "P^ccessleterData"); 
' ' this.cluster.setQutputKeyClass(Text.class); 
I'D • rT~'T) this.cluster. setOutputValueClass(Text.class); 
!;-\iri5t0]Cj this.cluster. set'lapperClass (Map. class); 

this.cluster.setReducerClas5(Reduce.class); 
this.cluster.setlnputFormat(TextInputFormat.class); 

this, cluster. set0utput^o'-mat(TextOut put Format. class); 

} 

nitLalizeCluster(..))j 

//services 
private void load () { 

G"egc^ianCalendar ini_t =(GregcrianCaLendar)GregorianCalendar.getInstance(); 
long initial_tiine=ini_t.getTimeInMillis(); 
FilelnputFormat.setlnputPathsCgetClusterOj new Path(a-gs[0])); 
FileOutputForinat .setOutputPath(getCluster(), new Path(a-gs[l])); 
runJcb(getCluster()); 
G^egc^ianCalendar f i n a l _ t =(GregorianCalendar)Grego"ianCalendar. get lns tanceQ; 
long f inal_t ime="Final_t . get Time I n M i l l i s ( ) ; 
System.out.printin("Time: ™+(final_time-initial_tLme)/199a+1' s"); 

} 

publ ic void loadMeterData ( ) { 
l oad ( ) ; 

} 
private void initializeCluster f) { 
//partial definition ^ ^ _ ^ _ ^ ^ ^ ^ ^ 

: 

public aspect weavingRun3ob{ 

pointcut runJabMethod () : execution (* DataLoade-
void around() : rjnlobrlethod () { 

SobClient„runJob(c); 

} 

Java aspects 

Java class 

private void runjob (Cluster c) 
//partial definition ^ _ ^ _ 
} 

partial definition 

The coda of aspects is irjactec "arourd' ' the methods imtializac uster and 

runJobofthe cas DstaLocder 

Figure 5. OPTIMETER SPL - AspectJ code 

V I . RELATED WORK 

Most approaches and tools for specifying PLAs only ac
count for external variability. Thus, PL-Aspectual ACME [8] 
is based on the compositionality mechanism of software 
architectures to define multiple representations for a given 
component. The Koala Component Model [18] is also based 
on the compositionality mechanism through hierarchical 
specification of subcomponents; then selection between sub
component variants is realized by variation points called 
switches. The frameworks Mae and Dradel [5], [19] pro
pose variant components, variant connectors, and multi-
versioning connectors. 

When internal variability is addressed, mostly is based 
on UML compositionality and inheritance mechanisms [6], 
[20], [14], [21]. Hence, Bachmann & Bass [6] laid the 
basis for addressing internal variability by means of a root 
component, from which hangs components that implement 
the variation. The works [21], [20], [14] extend this contribu
tion and formalize it by using UML profiles. However, all 
these approaches use inheritance and aggregation patterns 
to establish relationships between components and their 
variants. Therefore, this notation is closer to class diagrams 
rather than to architectural descriptions. 

There is a growing number of approaches that combine 
AOP and SPLs [7], [22], [23]. The Aspect-Oriented Model
ing (AOM) [7] proposes a PL-ADL where everything is an 
aspect, but it rejects the main concepts of formal Architecture 
Description Languages. Finally, a work that is very close 
to the notion of PPC is proposed by Lee et al. [23]. They 

implement variable features that crosscut several modular 
units by using aspects. These aspects modify the internal 
behavior of components following invasive composition. 
This work is defined at the implementation level using 
the programming languages AspectJ [9]. However, the use 
of AspectJ makes their aspects dependent on the linking 
context (i.e., the component), and thus, they are not reusable. 
The Flexible-PLA Model also defines variants by using 
the concepts of aspect-oriented, but at an architecture-level. 
These variants specify their pointcuts and weaving operators 
outside the variants, thus they are reusable. And the most 
important advantage, Flexible-PLA takes an step forward 
providing an MDD support to PLAs by generating AspectJ 
code from Flexible-PLA models as a result of a model-to-
code transformation. 

VII. CONCLUSION AND FURTHER WORK 

This paper presents a model-to-code transformation to 
put model-driven SPL development into practice. We take 
the advantages of the Flexible-PLA Model and the concept 
of PPC to specify the external variability of the PLA 
configuration and the internal variability of components. The 
variability of Flexible-PLA models is configured to derive 
specific products, and then, the code for specific products 
is automatically generated. Thanks to this MDD process, 
architecture and code are automatically traced, and software 
evolution can be well-supported by employing high-level 
abstractions and automating code generation to reduce hu
man error. As future work we plan managing constraints 
of validation in model transformations, the specification of 



internal services through the UML activity diagrams to offer 
more automation, as well as to apply these advances in more 
case studies. 

ACKNOWLEDGMENT 

The work reported in here has been partially spon
sored by the Spanish fund: INNOSEP (TIN200913849), 
IMPONET (ITEA 2 09030, TSI-02400-2010-103), iSSF 
(IPT-430000-2010-038), NEMO&CODED (ITEA2 08022, 
IDI-20110864) and ENERGOS (CEN-20091048) and UPM 
(Researcher Training program). 

REFERENCES 

[1] K. Pohl, G. Bckle, and F. Linden, Software Product Line En
gineering: Foundations, Principles and Techniques. Springer, 
Germany, 2005. 

[2] F. Linden, K. Schmid, and E. Rommes, Software Product 
Lines in Action. Springer Berlin Heidelberg, 2007. 

[3] I. Schaefer et al., "Software diversity: state of the art and 
perspectives," International Journal on Software Tools for 
Technology Transfer, vol. 14, pp. 477-495, 2012. 

[4] J. Perez, J. Diaz, C. C. Soria, and J. Garbajosa, "Plastic partial 
components: A solution to support variability in architectural 
components," in WICSA/ECSA '09: Proceedings of the Joint 
Working IEEE/IFIP Conference on Software Architecture 
and European Conference on Software Architecture. IEEE 
Computer Society Press, 2009, pp. 221-230. 

[5] A. van der Hoek, D. Heimbigner, and A. L. Wolf, "Capturing 
architectural configurability: Variants, options, and evolution," 
Department of Computer Science, University of Colorado, 
Boulder, Colorado, Tech. Rep., 1999. 

[6] F Bachmann and L. Bass, "Managing variability in software 
architectures," in SSR '01: Proceedings of the 2001 sympo
sium on Software reusability. New York, NY, USA: ACM, 
2001, pp. 126-132. 

[7] N. Noda and T. Kishi, "Aspect-oriented modeling for variabil
ity management," in SPLC '08: Proceedings of the 2008 12th 
International Software Product Line Conference. Washing
ton, DC, USA: IEEE Computer Society, 2008, pp. 213-222. 

[8] E. Adachi Barbosa, T. Batista, A. Garcia, and E. Silva, "PL-
AspectualACME: An aspect-oriented architectural description 
language for software product lines," in Software Architecture, 
ser. LNCS, vol. 6903. Springer Berlin / Heidelberg, 2011, 
pp. 139-146. 

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, 
and W. G. Griswold, "An overview of aspectj," in EC OOP 
'01: Proceedings of the 15th European Conference on Object-
Oriented Programming. London, UK: Springer-Verlag, 2001, 
pp. 327-353. 

[10] G. Kizcales, J. Lamping, A. Mendhekar, and C. Maeda, 
"Aspect-oriented programming," in Proceedings of the 11th 
European Conference on Object-Oriented Programming 
(ECOOP), ser. Lecture Notes in Computer Science, vol. 1241. 
Springer-Verlag, 1997. 

[11] Eclipse.org, "Eclipse Modelling 
http://www.eclipse.org/gmt/emf. 

Framework," 

[12] Epsilon, "Extensible Platform for specification of 
Integrated Languages for mOdel maNagement," 
http://www.eclipse.org/gmt/epsilon. 

[13] J. L. Martin, A. Yague, E. Gonzalez, and J. Garbajosa, 
"Making software factory truly global: the smart software 
factory project," in Software Factory Magazine. Available on 
http://www.softwarefactory.ee/rnagazine, F Fagerholm, Ed., 
March 2010, p. 19. 

[14] T. Weiler, "Modelling architectural variability for software 
product lines," in SVM'03: Proceedings of the Software 
Variability Management Workshop, 2003, pp. 53-61. 

[15] J. Perez, N. Ali, J. Carsi, and I. Ramos, "Designing software 
architectures with an aspect-oriented architecture description 
language," in Component-Based Software Engineering, ser. 
LNCS, vol. 4063. Springer Berlin / Heidelberg, 2006, pp. 
123-138. 

[16] M. Shaw, "Procedure calls are the assembly language of soft
ware interconnection: Connectors deserve first-class status," 
in Studies of Software Design, ser. LNCS, vol. 1078. Springer 
Berlin / Heidelberg, 1996, pp. 17-32. 

[17] Object Management Group, "Unified Modeling 
Language (OMG UML), Superstructure Version2.2," 
http://www.omg.Org/spec/UML/2.2/Superstructure, 2009. 

[18] R. van Ommering, F van der Linden, J. Kramer, and 
J. Magee, "The koala component model for consumer elec
tronics software," Computer, vol. 33, no. 3, pp. 78-85, 2000. 

[19] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and N. Med-
vidovic, "Taming architectural evolution," in ESEC/FSE-9: 
Proceedings of the 8th European software engineering con
ference held jointly with 9th ACM SIGSOFT international 
symposium on Foundations of software engineering. New 
York, NY, USA: ACM, 2001, pp. 1-10. 

[20] D. L. Webber and H. Gomaa, "Modeling variability in soft
ware product lines with the variation point model," in ICSR-
7: Proceedings of the International Conference on Software 
Reuse, ser. LNCS, vol. 2319. Springer, 2002, pp. 109-122. 

[21] M. Razavian and R. Khosravi, "Modeling variability in the 
component and connector view of architecture using uml," 
in AICCSA '08: Proceedings of the International Conference 
on Computer Systems and Applications. Washington, DC, 
USA: IEEE Computer Society, 2008, pp. 801-809. 

[22] G. Kakarontzas, P. Katsaros, and I. Stamelos, "Elastic com
ponents: Addressing variance of quality properties in com
ponents," in EUROMICRO-SEAA'07: Proceedings of 33rd 
EUROMICRO Conference on Software Engineering and Ad
vanced Applications. IEEE Computer Society, 2007, pp. 
31-38. 

[23] K. Lee, K. C. Kang, M. Kim, and S. Park, "Combining 
feature-oriented analysis and aspect-oriented programming 
for product line asset development," in SPLC '06: Proceed
ings of the 10th International on Software Product Line 
Conference. Washington, DC, USA: IEEE Computer Society, 
2006, pp. 103-112. 

http://Eclipse.org
http://www.eclipse.org/gmt/emf
http://www.eclipse.org/gmt/epsilon
http://www.softwarefactory.ee/rnagazine
http://www.omg.Org/spec/UML/2.2/Superstructure

