269 research outputs found

    Information security management in cloud computing:a case study

    Get PDF
    Abstract. Organizations are quickly adopting cloud computing in their daily operations. As a result, spending’s on cloud security solutions are increasing in conjunction with security threats redirecting to the cloud. Information security is a constant race against evolving security threats and it also needs to advance in order to accommodate the cloud computing adaptation. The aim of this thesis is to investigate the topics and issues that are related to information security management in cloud computing environments. Related information security management issues include risk management, security technology selection, security investment decision-making, employees’ security policy compliance, security policy development, and security training. By interviewing three different types of actors (normal employees, IT security specialists, and security managers) in a large ICT-oriented company, this study attempts to get different viewpoints related with the introduced issues and provide suggestions on how to improve information security management in cloud computing environments. This study contributes to the community by attempting to give a holistic perspective on information security management in the specific setting of cloud computing. Results of the research illustrate how investment decisions directly affect all other covered topics that in turn have an effect on one another, forming effective information security

    Securing industrial control system environments: the missing piece

    Get PDF
    Cyberattacks on industrial control systems (ICSs) are no longer matters of anticipation. These systems are continually subject to malicious attacks without much resistance. Network breaches, data theft, denial of service, and command and control functions are examples of common attacks on ICSs. Despite available security solutions, safety, security, resilience, and performance require both private public sectors to step-up strategies to address increasing security concerns on ICSs. This paper reviews the ICS security risk landscape, including current security solution strategies in order to determine the gaps and limitations for effective mitigation. Notable issues point to a greater emphasis on technology security while discounting people and processes attributes. This is clearly incongruent with; emerging security risk trends, the biased security strategy of focusing more on supervisory control and data acquisition systems, and the emergence of more sector-specific solutions as against generic security solutions. Better solutions need to include approaches that follow similar patterns as the problem trend. These include security measures that are evolutionary by design in response to security risk dynamics. Solutions that recognize and include; people, process and technology security enhancement into asingle system, and addressing all three-entity vulnerabilities can provide a better solution for ICS environments

    Management of Information Security: Challenges and Research Directions

    Get PDF
    Over the past decade management of information systems security has emerged to be a challenging task. Given the increased dependence of businesses on computer-based systems and networks, vulnerabilities of systems abound. Clearly, exclusive reliance on either the technical or the managerial controls is inadequate. Rather, a multifaceted approach is needed. In this paper, based on a panel presented at the 2007 Americas Conference on Information Systems held in Keystone, Colorado, we provide examples of failures in information security, identify challenges for the management of information systems security, and make a case that these challenges require new theory development via examining reference disciplines. We identify these disciplines, recognize applicable research methodologies, and discuss desirable properties of applicable theories

    Three Decades of Deception Techniques in Active Cyber Defense -- Retrospect and Outlook

    Full text link
    Deception techniques have been widely seen as a game changer in cyber defense. In this paper, we review representative techniques in honeypots, honeytokens, and moving target defense, spanning from the late 1980s to the year 2021. Techniques from these three domains complement with each other and may be leveraged to build a holistic deception based defense. However, to the best of our knowledge, there has not been a work that provides a systematic retrospect of these three domains all together and investigates their integrated usage for orchestrated deceptions. Our paper aims to fill this gap. By utilizing a tailored cyber kill chain model which can reflect the current threat landscape and a four-layer deception stack, a two-dimensional taxonomy is developed, based on which the deception techniques are classified. The taxonomy literally answers which phases of a cyber attack campaign the techniques can disrupt and which layers of the deception stack they belong to. Cyber defenders may use the taxonomy as a reference to design an organized and comprehensive deception plan, or to prioritize deception efforts for a budget conscious solution. We also discuss two important points for achieving active and resilient cyber defense, namely deception in depth and deception lifecycle, where several notable proposals are illustrated. Finally, some outlooks on future research directions are presented, including dynamic integration of different deception techniques, quantified deception effects and deception operation cost, hardware-supported deception techniques, as well as techniques developed based on better understanding of the human element.Comment: 19 page

    Gamification of Cyber Security Awareness : A Systematic Review of Games

    Get PDF
    The frequency and severity of cyber-attacks have increased over the years with damaging consequences such as financial loss, reputational damage, and loss of sensitive data. Most of these attacks can be attributed to user error. To minimize these errors, cyber security awareness training is conducted to improve user awareness. Cyber security awareness training that is engaging, fun, and motivating is required to ensure that the awareness message gets through to users. Gamification is one such method by which cyber security awareness training can be made fun, engaging, and motivating. This thesis presents the state of the art of games used in cyber security awareness. In this regard, a systematic review of games following PRISMA guidelines was conducted on the relevant papers published between 2010 to 2021. The games were analyzed based on their purpose, cyber security topics taught, target audience, deployment methods, game genres implemented and learning mechanics applied. Analysis of these games revealed that cyber security awareness games are mostly deployed as computer games, targeted at the general public to create awareness in a wide range of cyber security topics. Most of the games implement the role-playing genre and apply demonstration learning mechanics to deliver their cyber security awareness message effectively

    Fundamental Concepts of Cyber Resilience: Introduction and Overview

    Full text link
    Given the rapid evolution of threats to cyber systems, new management approaches are needed that address risk across all interdependent domains (i.e., physical, information, cognitive, and social) of cyber systems. Further, the traditional approach of hardening of cyber systems against identified threats has proven to be impossible. Therefore, in the same way that biological systems develop immunity as a way to respond to infections and other attacks, so too must cyber systems adapt to ever-changing threats that continue to attack vital system functions, and to bounce back from the effects of the attacks. Here, we explain the basic concepts of resilience in the context of systems, discuss related properties, and make business case of cyber resilience. We also offer a brief summary of ways to assess cyber resilience of a system, and approaches to improving cyber resilience.Comment: This is a preprint version of a chapter that appears in the book "Cyber Resilience of Systems and Networks," Springer 201

    Improving cyber security in industrial control system environment.

    Get PDF
    Integrating industrial control system (ICS) with information technology (IT) and internet technologies has made industrial control system environments (ICSEs) more vulnerable to cyber-attacks. Increased connectivity has brought about increased security threats, vulnerabilities, and risks in both technology and people (human) constituents of the ICSE. Regardless of existing security solutions which are chiefly tailored towards technical dimensions, cyber-attacks on ICSEs continue to increase with a proportionate level of consequences and impacts. These consequences include system failures or breakdowns, likewise affecting the operations of dependent systems. Impacts often include; marring physical safety, triggering loss of lives, causing huge economic damages, and thwarting the vital missions of productions and businesses. This thesis addresses uncharted solution paths to the above challenges by investigating both technical and human-factor security evaluations to improve cyber security in the ICSE. An ICS testbed, scenario-based, and expert opinion approaches are used to demonstrate and validate cyber-attack feasibility scenarios. To improve security of ICSs, the research provides: (i) an adaptive operational security metrics generation (OSMG) framework for generating suitable security metrics for security evaluations in ICSEs, and a list of good security metrics methodology characteristics (scope-definitive, objective-oriented, reliable, simple, adaptable, and repeatable), (ii) a technical multi-attribute vulnerability (and impact) assessment (MAVCA) methodology that considers and combines dynamic metrics (temporal and environmental) attributes of vulnerabilities with the functional dependency relationship attributes of the vulnerability host components, to achieve a better representation of exploitation impacts on ICSE networks, (iii) a quantitative human-factor security (capability and vulnerability) evaluation model based on human-agent security knowledge and skills, used to identify the most vulnerable human elements, identify the least security aspects of the general workforce, and prioritise security enhancement efforts, and (iv) security risk reduction through critical impact point assessment (S2R-CIPA) process model that demonstrates the combination of technical and human-factor security evaluations to mitigate risks and achieve ICSE-wide security enhancements. The approaches or models of cyber-attack feasibility testing, adaptive security metrication, multi-attribute impact analysis, and workforce security capability evaluations can support security auditors, analysts, managers, and system owners of ICSs to create security strategies and improve cyber incidence response, and thus effectively reduce security risk.PhD in Manufacturin

    Deep Learning -Powered Computational Intelligence for Cyber-Attacks Detection and Mitigation in 5G-Enabled Electric Vehicle Charging Station

    Get PDF
    An electric vehicle charging station (EVCS) infrastructure is the backbone of transportation electrification. However, the EVCS has various cyber-attack vulnerabilities in software, hardware, supply chain, and incumbent legacy technologies such as network, communication, and control. Therefore, proactively monitoring, detecting, and defending against these attacks is very important. The state-of-the-art approaches are not agile and intelligent enough to detect, mitigate, and defend against various cyber-physical attacks in the EVCS system. To overcome these limitations, this dissertation primarily designs, develops, implements, and tests the data-driven deep learning-powered computational intelligence to detect and mitigate cyber-physical attacks at the network and physical layers of 5G-enabled EVCS infrastructure. Also, the 5G slicing application to ensure the security and service level agreement (SLA) in the EVCS ecosystem has been studied. Various cyber-attacks such as distributed denial of services (DDoS), False data injection (FDI), advanced persistent threats (APT), and ransomware attacks on the network in a standalone 5G-enabled EVCS environment have been considered. Mathematical models for the mentioned cyber-attacks have been developed. The impact of cyber-attacks on the EVCS operation has been analyzed. Various deep learning-powered intrusion detection systems have been proposed to detect attacks using local electrical and network fingerprints. Furthermore, a novel detection framework has been designed and developed to deal with ransomware threats in high-speed, high-dimensional, multimodal data and assets from eccentric stakeholders of the connected automated vehicle (CAV) ecosystem. To mitigate the adverse effects of cyber-attacks on EVCS controllers, novel data-driven digital clones based on Twin Delayed Deep Deterministic Policy Gradient (TD3) Deep Reinforcement Learning (DRL) has been developed. Also, various Bruteforce, Controller clones-based methods have been devised and tested to aid the defense and mitigation of the impact of the attacks of the EVCS operation. The performance of the proposed mitigation method has been compared with that of a benchmark Deep Deterministic Policy Gradient (DDPG)-based digital clones approach. Simulation results obtained from the Python, Matlab/Simulink, and NetSim software demonstrate that the cyber-attacks are disruptive and detrimental to the operation of EVCS. The proposed detection and mitigation methods are effective and perform better than the conventional and benchmark techniques for the 5G-enabled EVCS

    Cyber Threat Intelligence based Holistic Risk Quantification and Management

    Get PDF
    • …
    corecore