17 research outputs found

    Source File Set Search for Clone-and-Own Reuse Analysis

    Get PDF
    Clone-and-own approach is a natural way of source code reuse for software developers. To assess how known bugs and security vulnerabilities of a cloned component affect an application, developers and security analysts need to identify an original version of the component and understand how the cloned component is different from the original one. Although developers may record the original version information in a version control system and/or directory names, such information is often either unavailable or incomplete. In this research, we propose a code search method that takes as input a set of source files and extracts all the components including similar files from a software ecosystem (i.e., a collection of existing versions of software packages). Our method employs an efficient file similarity computation using b-bit minwise hashing technique. We use an aggregated file similarity for ranking components. To evaluate the effectiveness of this tool, we analyzed 75 cloned components in Firefox and Android source code. The tool took about two hours to report the original components from 10 million files in Debian GNU/Linux packages. Recall of the top-five components in the extracted lists is 0.907, while recall of a baseline using SHA-1 file hash is 0.773, according to the ground truth recorded in the source code repositories.Comment: 14th International Conference on Mining Software Repositorie

    FDDetector: A Tool for Deduplicating Features in Software Product Lines

    Get PDF
    Duplication is one of the model defects that affect software product lines during their evolution. Many approaches have been proposed to deal with duplication in code level while duplication in features hasn’t received big interest in literature. At the aim of reducing maintenance cost and improving product quality in an early stage of a product line, we have proposed in previous work a tool support based on a conceptual framework. The main objective of this tool called FDDetector is to detect and correct duplication in product line models. In this paper, we recall the motivation behind creating a solution for feature deduplication and we present progress done in the design and implementation of FDDetector

    Extraction of Product Evolution Tree from Source Code of Product Variants

    Full text link
    Proceedings of the 17th International Software Product Line Conference SPLC '13 Proceedings of the 17th International Software Product Line Conferenc

    Locating Distinguishing Features Using Diff Sets

    Get PDF
    ABSTRACT In this paper, we focus on the problem of feature location for families of related software products realized via code cloning. Locating code that corresponds to features in such families is an important task in many software development activities, such as support for sharing features between different products of the family or refactoring the code into product line representations that eliminate duplications and facilitate reuse. We suggest two heuristics for improving the accuracy of existing feature location techniques when locating distinguishing features -those that are present in one product variant while absent in another. Our heuristics are based on identifying code regions that have a high potential to implement a feature of interest. We refer to these regions as diff sets and compute them by comparing product variants to each other. We exemplify our approach on a small but realistic example and describe initial evaluation results

    Model Defects in Evolving Software Product Lines: A Review of Literature

    Get PDF
    Software products lines (SPLs) are long living systems that undergo several evolutions throughout their lifetime due to many reasons related to technology, strategy, business, etc. These evolutions can be the source of several defects that impact the different artefacts of SPLs, namely requirements, models, architecture and code. Many studies in the literature have dealt with the correction of defects in software product lines, but to our knowledge, no reviews have been carried out to provide an extensive overview of these studies. In this paper, we present a literature review of model defects in software product lines. The purpose of this review is to enumerate the different defects discussed in literature and to present the approaches proposed to detect and correct them. The findings of this review reveal new research leads to explore in this issue

    The state of adoption and the challenges of systematic variability management in industry

    Get PDF
    Handling large-scale software variability is still a challenge for many organizations. After decades of research on variability management concepts, many industrial organizations have introduced techniques known from research, but still lament that pure textbook approaches are not applicable or efficient. For instance, software product line engineering—an approach to systematically develop portfolios of products—is difficult to adopt given the high upfront investments; and even when adopted, organizations are challenged by evolving their complex product lines. Consequently, the research community now mainly focuses on re-engineering and evolution techniques for product lines; yet, understanding the current state of adoption and the industrial challenges for organizations is necessary to conceive effective techniques. In this multiple-case study, we analyze the current adoption of variability management techniques in twelve medium- to large-scale industrial cases in domains such as automotive, aerospace or railway systems. We identify the current state of variability management, emphasizing the techniques and concepts they adopted. We elicit the needs and challenges expressed for these cases, triangulated with results from a literature review. We believe our results help to understand the current state of adoption and shed light on gaps to address in industrial practice.This work is supported by Vinnova Sweden, Fond Unique Interminist´eriel (FUI) France, and the Swedish Research Council. Open access funding provided by University of Gothenbur

    Consolidation of Customized Product Copies into Software Product Lines

    Get PDF
    In software development, project constraints lead to customer-specific variants by copying and adapting the product. During this process, modifications are scattered all over the code. Although this is flexible and efficient in the short term, a Software Product Line (SPL) offers better results in the long term, regarding cost reduction, time-to-market, and quality attributes. This book presents a novel approach named SPLevo, which consolidates customized product copies into an SPL

    Consolidation of Customized Product Copies into Software Product Lines

    Get PDF
    Copy-based customization is a widespread technique to serve individual customer needs with existing software solutions. To cope with long term disadvantages resulting from this practice, this dissertation developed an approach to support the consolidation of such copies into a Software Product Line with a future-compliant product base providing managed variability
    corecore