3 research outputs found

    A biobjective model for resource provisioning in multi-cloud environments with capacity constraints

    Get PDF
    Private and public clouds are good means for getting on-demand intensive computing resources. In such a context, selecting the most appropriate clouds and virtual machines (VMs) is a complex task. From the user’s point of view, the challenge consists in efficiently managing cloud resources while integrating prices and performance criteria. This paper focuses on the problem of selecting the appropriate clouds and VMs to run bags-of-tasks (BoT): big sets of identical and independent tasks. More precisely, we define new mathematical optimization models to deal with the time of use of each VMs and to jointly integrate the execution makespan and the cost into the objective function through a bi-objective problem. In order to provide trade-off solutions to the problem, we propose a lexicographic approach. In addition, we introduce, in two different ways, capacity constraints or bounds on the number of VMs available in the clouds. A global limit on the number of VMs or resource constraints at each time period can be defined. Computational experiments are performed on a synthetic dataset. Sensitivity analysis highlights the effect of the resource limits on the minimum makespan, the effect of the deadline in the total operation cost, the impact of considering instantaneous capacity constraints instead of a global limit and the trade-off between the cost and the execution makespan

    A survey and taxonomy of resource optimisation for executing Bag-of-Task applications on public clouds

    Get PDF
    Cloud computing has been widely adopted due to the flexibility in resource provisioning and on-demand pricing models. Entire clusters of Virtual Machines (VMs) can be dynamically provisioned to meet the computational demands of users. However, from a user’s perspective, it is still challenging to utilise cloud resources efficiently. This is because an overwhelmingly wide variety of resource types with different prices and significant performance variations are available. This paper presents a survey and taxonomy of existing research in optimising the execution of Bag-of-Task applications on cloud resources. A BoT application consists of multiple independent tasks, each of which can be executed by a VM in any order; these applications are widely used by both the scientific communities and commercial organisations. The objectives of this survey are as follows: (i) to provide the reader with a concise understanding of existing research on optimising the execution of BoT applications on the cloud, (ii) to define a taxonomy that categorises current frameworks to compare and contrast them, and (iii) to present current trends and future research directions in the area.PostprintPeer reviewe

    Optimising the usage of cloud resources for execution bag-of-tasks applications

    Get PDF
    Cloud computing has been widely adopted by many organisations, due to its flexibility in resource provisioning and on-demand pricing models. Entire clusters of machines can now be dynamically provisioned to meet the computational demands of users. By moving operations to the cloud, users hope to reduce the costs of building and maintaining a computational cluster without sacrificing the quality of service. However, cloud computing has presented challenges in scheduling and managing the usage of resources, which users of more traditional resource pooling models, such as grid and clusters, have never encountered before. Firstly, the costs associated with resource usage changes dynamically, and is based on the type and duration of resources used; this prevents users from greedily acquiring as many resources as possible due to the associated costs. Secondly, the cloud computing marketplace offers an assortment of on-demand resources with a wide range of performance capabilities. Given the variety of resources, this makes it difficult for users to construct a cluster which is suitable for their applications. As a result, it is challenging for users to ensure the desired quality of service while running applications on the cloud. The research in this thesis focuses on optimising the usage of cloud computing resources. We propose approaches for scheduling the execution of applications on to the cloud, such that the desired performance is met whilst the incurred monetary cost is minimised. Furthermore, this thesis presents a set of mechanisms which manages the execution at runtime, in order to detect and handle unexpected events with undesirable consequences, such as the violation of quality of service, or cost overheads. Using both simulated and real world experiments, we validate the feasibility of the proposed research by executing applications on the cloud with low costs without sacrificing performance. The key result is that it is possible to optimise the usage of cloud resources for user applications by using the research reported in this thesis
    corecore