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Abstract
Private and public clouds are good means for getting on-demand intensive comput-
ing resources. In such a context, selecting the most appropriate clouds and virtual 
machines (VMs) is a complex task. From the user’s point of view, the challenge 
consists in efficiently managing cloud resources while integrating prices and per-
formance criteria. This paper focuses on the problem of selecting the appropriate 
clouds and VMs to run bags-of-tasks (BoT): big sets of identical and independent 
tasks. More precisely, we define new mathematical optimization models to deal 
with the time of use of each VMs and to jointly integrate the execution makespan 
and the cost into the objective function through a bi-objective problem. In order to 
provide trade-off solutions to the problem, we propose a lexicographic approach. In 
addition, we introduce, in two different ways, capacity constraints or bounds on the 
number of VMs available in the clouds. A global limit on the number of VMs or 
resource constraints at each time period can be defined. Computational experiments 
are performed on a synthetic dataset. Sensitivity analysis highlights the effect of the 
resource limits on the minimum makespan, the effect of the deadline in the total 
operation cost, the impact of considering instantaneous capacity constraints instead 
of a global limit and the trade-off between the cost and the execution makespan.

Keywords Cloud computing · Mathematical programming · Bag of tasks · Multi 
cloud

1 Introduction

Currently cloud computing is considered as the step after clusters or grids for mas-
sive and intensive computation in parallel or distributed environments. More pre-
cisely, according to Buyya et  al. (2009) a cloud can be viewed as a distributed 
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collection of inter-connected virtual computers that can be provisioned by users in a 
dynamic way. Even if clouds and grids share some characteristics, clouds have some 
specificities as pointed by Foster et al. (2008): (i) they are ‘massively scalable”, (ii) 
they are “abstract entities” able to deliver different levels of services, (iii) they are 
driven by “economies of scale” and (iv) cloud services can be configured and deliv-
ered dynamically on demand.

Public cloud providers offer different types of instances of virtual machines 
(VMs) which can be provisioned to meet the computational demands of users. The 
prices vary with the type of hardware, the amount of memory required, the operat-
ing system, the storage capacity, the availability zone (the geographical area where 
the services physically stay), the bandwidth, etc.

Cloud providers offer different types of computing power services in a Plat-
form-as-a-Service (PaaS) market and different modalities for hiring VMs. In the 
“on-demand” modality, instances can be hired or released when needed. In the 
“reserved” modality users pre-pay for long-term reservations to insure lower tariffs 
and a better availability. In most cases, there is a maximum number of instances that 
can be used at a given moment. There is also an opportunistic market in which pro-
viders offer instances when they have some excess of capacity (unused resources), 
such as the Spot instances of Amazon web services or Preemptible VM of Google 
cloud. And more recently, also “burstable” instances could be hired. A burstable 
instance provides a baseline level of performance, but that can burst to a higher level 
for occasional spikes in usage.

From the cloud user’s point of view, the challenge consists in efficiently man-
aging cloud resources while integrating prices and performance criteria. Díaz et al. 
(2017) solve an allocation problem with reserved VMs and on-demand VMs that 
takes into account the predicted load of each time slot to minimize the cost while a 
required level of performance is guaranteed for the service. The load is expressed 
in a “request per second” metric and it determines firstly the optimal allocation of 
reserved VMs followed by the number of on-demand VMs if necessary, i.e. the later 
decision is made for only one time slot depending on its load. Genez et al. (2020) 
define an integer linear programming model to determine the VMs to be leased from 
multiple cloud providers to execute workflows while meeting the user’s deadline and 
minimizing the leasing costs. The loads are scientific workflows decomposed into 
smaller tasks to be processed in a defined order. In the proposed model only one VM 
can execute each processing demand.

The focus of this work is related to another very popular type of workload named 
a Bag-of-Task (BoT). It consists in a set of identical independent tasks that can be 
operated in parallel. The execution of a BoT usually consumes a large amount of 
computational time as well as data storage and transfer. Determining the alloca-
tion of VM instances to tasks is a scheduling problem which is NP-hard (Abdi et al. 
2018; Abed-alguni and Alawad 2021). The goal of the paper is to solve a BoT sched-
uling problem in a multi-cloud environment.

The primary motivation of this work is to develop an integrated model to con-
sider both cost and makespan criteria in the provisioning and scheduling procedure 
of BoT applications in multi-cloud environments with capacity constraints using on-
demand instances. For this purpose, the contributions of the paper are the following:
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– We define new optimization models integrating three type of decisions: instance 
type selection, resource scaling and workload allocation.

– We introduce two optimization criteria: the cost and the execution makespan. A 
lexicographical approach is used to deal with both criteria.

– To the difference of previous works by Abdi et al. (2017) and Abdi et al. (2018), 
tasks of the same BoT are allowed to run on different instance types and the 
requirement for an instance to be hired from the beginning to the deadline is 
relaxed.

– We propose and compare two approaches to introduce capacity constraints into 
the model.

The paper is organized as follows. Section 2 presents related work. In Sect. 3, we 
first introduce a new integer programming model to schedule BoTs in a multi-cloud 
environment in order to minimize the cost of executing the whole set of tasks while 
satisfying a specified deadline. Next, a new criteria related to the minimization of 
the makespan is introduced into the objective function. In Sect.  4, we extend the 
models defined in Sect. 3 to integrate instantaneous capacity constraints and present 
a comprehensive study of its properties. In Sect.  5, we put into highlight through 
computational experiments the performance of the proposed models and, in particu-
lar, the impact of including instantaneous capacity constraints. Section 6 is devoted 
to conclusions and future research proposals.

2  Related work

The scheduling of general tasks in (multi) cloud environments has been deeply stud-
ied (Alkhanak et  al. 2015; Mann 2015; Keivani and Tapamo 2019; Kumar et  al. 
2019. In a survey and taxonomy of resource optimization for BoTs, (Thai et al. 2018) 
put into highlight three relevant characteristics to be taken into account: the type of 
instances to hire, the time during which each instance must work and the workload 
to be allocated to each hired instance. The special characteristics of BoT problems 
has made it possible to develop solutions specifically adapted to this field. We next 
review some recent papers involving a mathematical model. All these articles and 
the references they contain provide an update on this subject that is currently attract-
ing so much interest.

Wang et al. (2016) present a heuristic algorithm for solving a binary non-linear 
program whose goal is to minimize the cost of renting VMs while respecting the 
respective deadlines. Abdi et al. (2017) and Abdi et al. (2018) provide a binary lin-
ear programming formulation for the scheduling of BoT applications with a fixed 
deadline. The model consists in allocating an instance type of one of the clouds to 
each BoT of the submitted applications. The restrictive assumption that only one 
instance type can be used allows them to compute the coefficients of the mathemati-
cal model. More precisely, the authors determine the number of required VMs to 
complete the BoT for each instance type. For this purpose, the so-called master VMs 
are run until the deadline is met. If necessary, the required time of running an extra 
VM is added to execute remaining tasks. Wang et al. (2019) solve the optimization 
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problem maximizing the global utilization of the servers by using a scheduling 
method with different degrees of task parallelism. Each task is characterized by a 
deadline requirement and its parallel degree. More precisely, the number of cores 
executing the task at a time, is tuned between one and its maximum value according 
to the available cores of the server during its execution. The authors define a nonlin-
ear program solved by heuristic methods.

Teylo et  al. (2021) propose a framework for the execution of BoT applications 
with deadline constraints including, both spot and on-demand burstable VMs, aim-
ing at minimizing the monetary cost and the execution time. The objective function 
is a weighted function of both terms. In order to ensure the deadline is respected, 
the framework considers the possibility of migrating tasks in the hibernated spot 
instances and those not yet executed to on-demand instances. They use an iterated 
local search to obtain an approximate solution at an acceptable computing time of 
the non linear model.

Karaja (2022) focus on solving the BoT scheduling problem in a dynamic multi-
cloud environment. They rely on a dynamic batch approach: tasks to be scheduled 
are collected and scheduled in batches at predefined times. They propose a bi-level 
multi-follower model. The upper level represents the multi-cloud scheduler that 
aims to minimize the completion time of the BoT while taking into consideration 
the budget constraints. The lower level aims to minimize simultaneously the execu-
tion cost and the completion time of tasks belonging to the BoT. Metaheuristics are 
defined to efficiently solve the problem.

Chhabra et  al. (2022) also adopt a solution based on a heuristic approach. The 
problem of scheduling concurrent BoTs is considered as a biobjective optimization 
problem to minimize the makespan and energy consumption. The biobjective prob-
lem is reformulated as a single objective one and a heuristic algorithm is defined 
on the basis of the fitness function. More precisely, they define the Whale Parti-
cle Swarm Optimization algorithm integrating the search mechanism of opposi-
tion-based learning and particle swarm optimization mechanisms together with the 
standard whale optimization algorithm.

Yin et al. (2022) focus on the uncertainty around the real time required to exe-
cute a BoT task and the performance of any given VM. The time required can vary 
depending on many aspects such as the concrete data to be processed. In addition, 
due to virtualization, the same VM can result in varying execution times for the 
same task. These authors consider such times as random variables and propose a 
BoT scheduling problem whose aim is to maximize the profit of the cloud provider 
while considering the deadline constraints imposed by the user. The problem takes 
the point of view of a a service cloud provider, and considers the integration of the 
private cloud resources within public clouds. The stochastic optimization problem is 
solved by a metaheuristic named Immune Algorithm-based BoT Scheduling (IABS).

All previous works based on mathematical optimization models, linear or non lin-
ear, rely on heuristic-based solution approaches. In this work the problem is mod-
eled as a single level biobjective linear mathematical optimization model integrating 
time dependent decision variables which can be solved by one of the shelf soft-
ware. Moreover, the biobjective optimization problem is solved by a lexicographic 
approach leading to the generation of two specific efficient solutions.



1 3

A biobjective model for resource provisioning in multi‑cloud… Page 5 of 32 31

3  Mathematical models for scheduling BoT applications

A BoT application is composed of a set of BoTs. In a multi-cloud environment, 
assigning each application to a single cloud makes sense, as it is assumed that all 
the BoTs in an aplication share some common data and this single allocation avoids 
the time and monetary costs of transferring and storing the same data in multiple 
clouds. BoTs in an application are independent, that is, there are not precedence con-
straints among them, and all the tasks can be executed in parallel.

In this section we define three models generalizing the integer optimization 
problem IP-NDS defined by Abdi et al. (2017). They pre-process the problem for 
a given deadline by computing for each instance type the number of VMs needed 
to run each BoT. The decisions in model IP-NDS are thus reduced to deciding 
which type of instance is selected for each BoT. For completeness, this model is 
included in the Appendix and notations in Table 1. In this paper, we first relax 
the assumption that only one type of instance can be allocated to a given BoT 

Table 1  Notation used in the mathematical problem formulations

Notation Description

K Set of clouds
Jk Set of VM instances types in cloud k ∈ K

Pkj The cost of using VM instance j ∈ Jk , per time unit.
ccukj The performance level of a VM instance type j ∈ Jk

Uk The maximum number of instances allowed in cloud k ∈ K

Ukj The maximum number of VMs of VM instance type j ∈ Jk

I Set of applications.
Bi Set of independent BoTs in application i ∈ I

�ib The number of independent tasks in BoT b ∈ Bi

ETib The execution time of task b ∈ Bi in a VM with a performance of 1 CCU.
D The deadline
T Set of time periods
�ibkj The execution time of a task in BoT b ∈ Bi on an instance type j ∈ Jk

wd
ibkj

The number of tasks in BoT b ∈ Bi executed by an instance type j ∈ Jk  during 
exactly d time periods

yik ∈ {0, 1} Equals 1 if application i is submitted to cloud k
Nd
ibkj

≥ 0 Integer. Number of VMs of instance type j ∈ Jk working on BoT b ∈ Bi  during 
exactly d time periods.

zd ∈ {0, 1} Equals 1 if any VM is working during d time periods
� ≥ 0 Time period
Additional notation IP-NDS
�ibkj The maximum number of tasks of BoT b ∈ Bi solved by one VM  of instance type 

j ∈ Jk for a deadline D
�ibkj The number of required master VMs of instance type j ∈ Jk for executing tasks of 

BoT b ∈ Bi

Tibkj The running time of the master VMs of instance type j ∈ Jk executing BoT b ∈ Bi
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imposed in Abdi et al. (2017) to formulate the allocation problem. Relaxing this 
assumption allows to explore all the feasible solutions involving one or more 
instance types of one cloud, while IP-NDS model only computes a subset of fea-
sible solutions. The second extension consists in considering a makespan criteria 
into the objective function in place of considering a pre-established deadline D. 
Finally the third one integrates simultaneously a cost minimization and makespan 
criteria into the objective function.

As a general rule, in cloud environments, the cost depends on the type of CPU, 
the amount of memory required, the storage capacity used for data management, 
etc. Usually, CPU and memory are considered as a whole by the cloud providers 
in the set of the proposed VM instances. In the following, we use the classical 
CCU metric developed by CloudHarmony (as mentionned in Abdi et al. 2017) to 
evaluate the performance of instance types belonging to a variety of clouds rented 
for executing different tasks. A value of 1 CCU indicates a CPU capacity of 1.0−
1.2 GHz Opteron or 2007 Xeon processor.

Table  1 shows the notations used in the mathematical formulation of the 
models.

Let K be the set of clouds. Each cloud k ∈ K provides a set Jk of VM instance 
types which are characterized by the fee Pkj of running per time unit, and the per-
formance level, ccukj , k ∈ K, j ∈ Jk . We assume a cloud provider-level restriction 
scenario, i.e there exist some capacity constraints. More precisely, resources are 
allocated in accordance to the limits defined by providers. For each cloud k ∈ K , 
Uk represents the maximal number of instances allowed by the cloud, while Ukj is 
the corresponding limit for each instance type j ∈ Jk.

On the other hand, let I be a set of applications. Each application i ∈ I consists 
of a set of independent BoTs Bi . A BoT b ∈ Bi includes �ib independent tasks and 
one task requires ETib execution time in a VM with a performance of 1 CCU. 
Therefore, the execution time of each task of BoT b ∈ Bi on an instance type 
j ∈ Jk, k ∈ K is computed as:

Given a deadline D, we define the set T = {1, 2,⋯ ,D} . Even if Abdi et al. (2017) 
consider an hour as the time unit, the models are valid for any time unit, such as 
minutes or seconds. A higher resolution in the time unit increases the cardinality of 
T. Without loss of generality we next use the term time unit. The number of tasks of 
BoT b ∈ Bi, i ∈ I executed by an instance type j ∈ Jk, k ∈ K during exactly d ∈ T  
time units is computed as follows:

The decision variables are:

�ibkj =
ETib

ccukj

wd
ibkj

=

⌊
d

�ibkj

⌋
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The Multi-Cloud Bot Scheduling (MCBS) problem for a fixed deadline D is formu-
lated as follows: 

 The objective function (1a) consists in minimizing the cost. Constraints (1b) guar-
antee that each application is submitted to only one cloud in the federation. If an 
application is not allocated to a cloud, none of the instances belonging to that cloud 
are chosen to run tasks from that application by constraints (1c). Constraints (1d) 
and (1e) are cloud and type capacity constraints. Constraints (1f) guarantee that the 
whole set of tasks are executed.

The optimal value of model MCBS is lower or equal to the one of model IP-
NDS since the feasible set of model IP-NDS is included in the feasible region of 
model MCBS. Indeed the optimal solution of IP-NDS is always feasible for MCBS. 
Moreover as shown in Example 1 at the end of this section, the inequality can be 
strict, which means that model MCBS can provide a better scheduling than model 
IP-NDS.

yik =

{
1 if application i is submitted to cloud k,

0 otherwise,
i ∈ I, k ∈ K

Nd
ibkj

= Number of VMs of instance type j in cloud k working on BoT b

during exactly d time units, k ∈ K, j ∈ Jk, i ∈ I, b ∈ Bi, d ∈ T

(1a)min
y,N

∑

k∈K

∑

j∈Jk

∑

i∈I

∑

b∈Bi

∑

d∈T

(Pkj × d)Nd
ibkj

(1b)s.t.:
∑

k∈K

yik = 1, i ∈ I

(1c)Nd
ibkj

≤ Ukjyik, i ∈ I, b ∈ Bi, k ∈ K, j ∈ Jk, d ∈ T

(1d)
∑

i∈I

∑

b∈Bi

∑

j∈Jk

∑

d∈T

Nd
ibkj

≤ Uk, k ∈ K

(1e)
∑

i∈I

∑

b∈Bi

∑

d∈T

Nd
ibkj

≤ Ukj, k ∈ K, j ∈ Jk

(1f)
∑

k∈K

∑

j∈Jk

∑

d∈T

wd
ibkj

Nd
ibkj

≥ �ib, i ∈ I, b ∈ Bi

(1g)yik ∈ {0, 1}, i ∈ I, b ∈ Bi, k ∈ K, j ∈ Jk, d ∈ T

(1h)Nd
ibkj

≥ 0, integer, k ∈ K, j ∈ Jk, d ∈ T
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Starting from MCBS we can define a model MCBS-M including a makespan 
criteria in place of a fixed deadline. The makespan is the length of time needed for 
executing all BoTs. In order to compute it, a binary variable, zd , is added for each 
d ∈ T  to determine whether there is an instance of any type running at that time d. 
In that case, the variable is equal to 1:

Then, the objective function of model MCBS-M consists of minimizing the maxi-
mum value of d ∈ T  in which some instance type j is used, j ∈ Jk, k ∈ K:

In order to avoid the non-linearity of the objective function (2), we introduce a con-
tinuous decision variable � and we include a set of constraints in model MCBS-M 
to guarantee that � is greater than or equal to dzd , for all d ∈ T  . Therefore, the model 
MCBS-M is linear and it is formulated as follows: 

zd =

{
1 if any Nd

ibkj
> 0, k ∈ K, j ∈ Jk, i ∈ I, b ∈ Bi,

0 otherwise

(2)min
y,z,N

max
d∈T

dzd

(3a)MCBS-M ∶ min
y,z,N,�

�

(3b)s.t.:
∑

k∈K

yik = 1, i ∈ I

(3c)Nd
ibkj

≤ Ukjyik, i ∈ I, b ∈ Bi, k ∈ K, j ∈ Jk, d ∈ T

(3d)
∑

i∈I

∑

b∈Bi

∑

j∈Jk

∑

d∈T

Nd
ibkj

≤ Uk, k ∈ K

(3e)
∑

i∈I

∑

b∈Bi

∑

d∈T

Nd
ibkj

≤ Ukj, k ∈ K, j ∈ Jk

(3f)
∑

k∈K

∑

j∈Jk

∑

d∈T

wd
ibkj

Nd
ibkj

≥ �ib, i ∈ I, b ∈ Bi

(3g)Nd
ibkj

≤ Ukjz
d, i ∈ I, b ∈ Bi, k ∈ K, j ∈ Jk, d ∈ T

(3h)� ≥ dzd, d ∈ T

(3i)yik ∈ {0, 1}, i ∈ I, k ∈ K



1 3

A biobjective model for resource provisioning in multi‑cloud… Page 9 of 32 31

Note that if there exists a variable Nd
ibkj

> 0 then at least one VM is active during 
d time units. The corresponding constraint (3g) guarantees that zd = 1 and by con-
straint (3h) � ≥ d . It results that the makespan will be more than d time units pro-
vided that there are VMs working d time units. The minimum makespan, denoted by 
�∗ , is thus implicitly computed. Constraint (3k) is a sign constraint on the decision 
variable � . Constraints (3b–3f) and (3i–3j) are the same as in MCBS problem.

Finally, both cost and deadline minimization can be addressed simultaneously 
from a biobjective perspective. In a biobjective problem, it is generally not possible 
to compute a single solution generating the best value for both objectives. In this 
context, reducing the makespan leads to an increase in cost. A solution is efficient 
for a biobjective problem if there is no other feasible solution which a lower value 
for both objective functions, one of which is strictly lower. The set of efficient solu-
tions provides different trade-offs between cost and makespan. In particular, a lexi-
cographic approach can be used to compute an efficient solution (Ehrgott 2005). The 
lexicographic approach is a nonscalarizing method for finding efficient solutions 
based on the ordering of the objectives according to some priorities. Model MCBS-
1 prioritizes cost over makespan and the MCBS-2 model takes the reverse order. 
Thus, this approach allows either i) to minimize the makespan in which the tasks are 
executed at minimum cost with a given deadline D:

or ii) to minimize the cost at the lowest feasible makespan:

In the next example, we compare the solutions provided by the models MCBS and 
MCBS-M to the solution resulting from the IP-NDS model.

Example 1 Table 2 displays the input data with one cloud ( |K| = 1 ), three instance 
types ( |J1| = 3 ) and one application ( |I| = 1 ) with two BoTs ( |B1| = 2 ). Let VMj 
denote a VM of instance type j.

Auxiliary parameters are required to formulate IP-NDS model: �bj is the maxi-
mum number of tasks of BoT b ∈ B1 solved by one VMj , j ∈ J1 for a given deadline 
D; although a master VM is run until the deadline is met, Tbj is the exact running 
time ot the master VMs and �bj is the number of required master VMs of instance 
type VMj for executing tasks of BoT b ∈ B1 . If 𝜏bj𝜂bj < 𝛿b the master VMj s cannot 
carry out the computation of all tasks of BoT b ∈ B1 . In this case, one extra VMj is 

(3j)Nd
ibkj

≥ 0, integer i ∈ I, b ∈ Bi, k ∈ K, j ∈ Jk, d ∈ T

(3k)� ≥ 0

MCBS-1 ∶ Lex min
y,z,N,�

(
∑

k∈K

∑

j∈Jk

∑

i∈I

∑

b∈Bi

∑

d∈T

(Pkj × d)Nd
ibkj

, �

)
,

MCBS-2 ∶ Lex min
y,z,N,�

(
�,

∑

k∈K

∑

j∈Jk

∑

i∈I

∑

b∈Bi

∑

d∈T

(Pkj × d)Nd
ibkj

)
.
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required during TRbj in time units. These auxiliary paramaters are mathematically 
defined in the Appendix. For the example the corresponding values are defined in 
Table 3. The first column gives the name of the instance; columns 2 to 7 (resp. 8 to 
13 ) present the corresponding data to BoT1 (resp. BoT2).

The optimal solution of IP-NDS is displayed in bold in Table 3. The minimum 
cost is equal to 40.8$. Both BoTs are executed by VM1 : 5 master and 1 extra (5 time 
units) for BoT1 and 1 master and 1 extra (3 time units) for BoT2.

Table 4 shows the value of the auxiliary parameters {wd
bj
} involved in problem 

MCBS. For each number of time units shown at the first row, the number of tasks 
executed by each VM is computed. As an example, a VM1 instance executes during 
5 time units 41 tasks of BoT2.

Table 2  Instance types 
specifications and BoTs of the 
Example 1

One cloud with limit U = 20 BoTs Number of 
tasks ( �b)

ETb

Instance type Price($/
time unit)

CCU Limit

VM1 0.6 10 10 BoT1 600 0.9
VM2 0.4 6 10 BoT2 100 1.2
VM3 0.2 2 10

Table 3  Auxiliary parameters in the IP-NDS model for a deadline D = 10 and the optimal solution with 
cost=40.8$

Instance BoT1 BoT2

�1j �1j �1j T1j TR1j Cost �2j �2j �2j T2j TR2j Cost

VM1 0.09 111 5 10 5 33 0.12 83 1 10 3 7.8
VM2 0.15 66 9 10 1 36.4 0.2 50 2 10 0 8
VM3 0.45 22 27 10 3 54.6 0.6 16 6 10 3 12.6

Table 4  Auxiliary parameters of the MCBS model for Example 1

BoT1

w1

1j
w2

1j
w3

1j
w4

1j
w5

1j
w6

1j
w7

1j
w8

1j
w9

1j
w10

1j

VM1 11 22 33 44 55 66 77 88 100 111
VM2 6 13 20 26 33 40 46 53 60 66
VM3 2 4 6 8 11 13 15 17 20 22

BoT2

w1

2j
w2

2j
w3

2j
w4

2j
w5

2j
w6

2j
w7

2j
w8

2j
w9

2j
w10

2j

VM1 8 16 25 33 41 50 58 66 75 83
VM2 5 10 15 20 25 30 35 40 45 50
VM3 1 3 5 6 8 10 11 13 15 16
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In the solution proposed by MCBS model, there is an intensive use of VM1 
instances for both, BoT1 and BoT2 : 6 instances executing tasks for BoT1 during 9 
time units, solving 600 tasks with a cost of 32.4$; 1 instance executing BoT2 tasks 
for 9 time units and another one for 3 time units, solving 75 and 25 tasks at a cost 
of 5.4$ and 1.8$, respectively. The total cost is 39.6$   which is lower than 40.8$. 
Moreover, the makespan is 9 time units, one time unit less than the deadline D = 10 
assumed in IP-NDS model.

Let us define upper bounds on the number of VMs of each instance type: 
U1 = U2 = 4 and U3 = 2 . With these constraints, IP-NDS problem is no feasible any 
more, although MCBS problem finds a solution for a deadline D = 10 . The optimal 
cost is 42.2$. Tasks of BoT1 are executed by 4 VM1 instances during 10 time units 
(444 tasks), 2 VM2 during 10 time units (132 tasks) and 1 VM3 during 10 time units 
(22 tasks) and another one during 1 time unit (2 tasks); BoT2 is executed by 2 VM2 
during 10 time units (100 tasks). The constraints on the number of resources are sat-
isfied since 4 VM1 , 4 VM2 and 2 VM3 have been rented.

Finally by solving model MCBS, the smallest feasible deadline within which the 
related assignment problem is feasible given the upper bounds: U1 = U2 = U3 = 10 
and U = 20 is D = 5 with a cost of 42.8$. For level constraints of the provider more 
restrictive, U1 = U2 = 4 and U3 = 2 , the smallest deadline threshold is 10 time units. 
If the constraints on the number of resources are U1 = 4, U2 = 7 and U3 = 4 and the 
deadline is D = 10 , model IP-NDS is not feasible any more and the optimal solu-
tions for the models defined in this section are displayed in Table 5. Note that the 
lexicographic approach provides two efficient points with both objective function 
values, the cost and the makespan, equal to (41.6, 9) and (43, 8) by solving models 
MCBS-1 and MCBS-2, respectively.

4  Global and instantaneous capacity constraints

From a practical point of view cloud providers limit the number of VMs available to 
a user at a given time even if from a theoretical point of view clouds could be able 
to provision an unlimited number of resources. Of course defining bounds on the 
number of resources strongly impacts the total cost and the feasible makespan since 
it directly affects the set of feasible allocations. The limits can be defined globally or 
instantaneously.

For example a global limit on the number of instances, independently of their types 
(50 instances per cloud service) is required by cloud Microsoft Azure. In the case of 
Amazon EC2, until September 2019 there were a limit of 20 VMs. Since October 2019, 
EC2 defines vCPU-based (virtual CPU) instance limits. Each instance has a (differ-
ent) number of vCPUs, depending on its type. The total number of instances depends 
on their types, and any combination is allowed while the total number of vCPUs does 
not exceed the limit. This is also the case of cloud Google Cloud (GC). The bound 
on the number of CPUs allowed refers to the total number of virtual CPUs in all VM 
instances in a region. Although global capacity constraints are common in the litera-
ture, the attention has been focused more recently on instantaneous bounds limiting 
the number of resources that can be used at a given time. Capacity constraints can be 
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more constraining in the case of using private clouds, which usually consist of a more 
restrictive set of resources. Also the fact of having a set of previously hired instances 
that could be used for solving the problem along the whole makespan is a source for 
constraints.

In this section we extend models MCBS and MCBS-M to integrate instantaneous 
resource constraints in place of global resource ones. The decision variable Nd

ibkj
 is 

replaced by Ndt0
ibkj

 , k ∈ K , j ∈ Jk , i ∈ I , b ∈ Bi , d ∈ T , t0 ∈ T to point out the starting 
time t0 of the VMs of instance type j in cloud k for execution of tasks of BoT b during 
exactly d time units. The new model MCBS-ins formulation is: 

(4a)min
y,N

∑

k∈K

∑

j∈Jk

∑

i∈I

∑

b∈Bi

∑

d, t0∈T

(Pkj × d)N
dt0
ibkj

(4b)s.t.:
∑

k∈K

yik = 1, i ∈ I

(4c)N
dt0
ibkj

≤ Ukjyik, i ∈ I, B ∈ Bi, k ∈ K, j ∈ Jk, d, t0 ∈ T

Table 5  Optimal solutions and optimal values for Example 1 with upper bounds U1 = 4, U2 = 7 and 
U3 = 4 and deadline D = 10

BoT MCBS: Minimum cost= 41.6$ MCBS-M: Minimum makespan �∗=8

VMs N d Tasks Cost($) VMs N d Tasks Cost($)

1 1 4 10 440 24 1 4 8 352 19.2
2 2 9 120 7.2 2 4 8 212 12.8
2 1 6 40 2.4 3 4 8 68 6.4

2 2 2 9 90 7.2 2 3 8 120 9.6
2 1 2 10 0.8

Total cost 41.6$ Total cost: 48$

MCBS-1: Minimum makespan �∗=9 MCBS-2: Minimum cost=43$ 

BoT VMs N d Tasks Cost($) VMs N d Tasks Cost($)

1 1 4 9 400 21.6 1 3 8 264 14.4
2 2 9 120 7.2 2 6 8 318 19.2
2 2 6 80 4.8 3 1 8 17 1.6

3 1 1 2 0.2
2 2 2 9 90 7.2 1 1 8 66 4.8

2 1 2 10 0.8 2 1 7 35 2.8
Total cost 41.6$ Total cost: 43$
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Several constraints from MCBS have been adapted. Constraints (4d) and (4e) ensure 
that for each time period t ∈ T  , the number of active VMs is lower or equal to the 
corresponding upper bound. Note that a VM started at time t0 for d time units is run-
ning at time t if and only if t0 + d − 1 ≥ t . An instance j ∈ Jk, k ∈ K executes wd

ibkj
 

tasks of BoT b ∈ Bi if and only if t0 + d − 1 ≤ D . Hence the index t0 of the last sum 
in constraints  (4f) goes from 1 to D − d + 1 . Since an instance running beyond D 
does not make sense, we can add the following set of constraints:

 Model MCBS-ins is less restrictive than MCBS and can result in an optimal solu-
tion with lower cost since the upper bound is applied to each time period.

Let v(M) denote the optimal value of a model M.

Proposition 4.1  v(MCBS-ins) ≤ v(MCBS) and the inequality can be strict.

Proof Let (y,N) be an optimal solution of model MCBS. We define:

It easy to see that ŷ satisfies constraints (4b) and (4g). Since N meets constraints (1c) 
and (1h), then N̂ satisfies constraints  (4c) and (4h). Moreover, for each k ∈ K and 
t ∈ T:

(4d)
∑

i∈I

∑

b∈Bi

∑

j∈Jk

t∑

t0=1

D∑

d=t+1−t0

N
dt0
ibkj

≤ Uk, k ∈ K, t ∈ T

(4e)
∑

i∈I

∑

b∈Bi

t∑

t0=1

D∑

d=t+1−t0

N
dt0
ibkj

≤ Ukj, k ∈ K, j ∈ Jk, t ∈ T

(4f)
∑

k∈K

∑

j∈Jk

∑

d∈T

D−d+1∑

t0=1

wd
ibkj

N
dt0
ibkj

≥ �ib, i ∈ I, b ∈ Bi

(4g)yik ∈ {0, 1} i ∈ I, k ∈ K

(4h)N
dt0
ibkj

≥ 0 integer i ∈ I, b ∈ Bi, k ∈ K, j ∈ Jk, d, t0 ∈ T

(4i)N
dt0
ibkj

= 0, i ∈ I, B ∈ Bi, k ∈ K, j ∈ Jk, d ∈ T , t0 ≥ D − d + 2

ŷik = yik, i ∈ I, k ∈ K

N̂
dt0
ibkj

=

⎧
⎪
⎨
⎪⎩

N
d

ibkj
if t0 = 1

0 otherwise

i ∈ I, b ∈ Bi, k ∈ K, j ∈ Jk, d, t0 ∈ T



 L. Brotcorne et al.

1 3

31 Page 14 of 32

on the basis of constraints (1d). Therefore, constraints (4d) are satisfied. In a similar 
way, constraints (1e) ensure that N̂ satisfies constraints (4e). Constraint (4f) for i ∈ I 
and b ∈ Bi:

where the constraints (1f) have been applied in the last inequality.
In conclusion, any feasible solution for MCBS provides a feasible solution for 

model MCBS-ins. Moreover, since the objective function (4a) only depends on the 
duration while the machine is working on some BoT:

Hence, v(MCBS-ins) ≤ v(MCBS) . Example 1 (see below) provides an example for 
which the inequality is strict.   ◻

Example 1 (continued). For MCBS-2 model, the optimal resources allocation, 
where 4 VM1 , 7 VM2 and 2 VM3 are used, is displayed in Figure (1a). To reach this 
solution, first, the model MCBS-M with U1 = 4, U2 = 7, U3 = 4, U = 20 is solved 

∑

i∈I

∑

b∈Bi

∑

j∈Jk

t∑

t0=1

D∑

d=t+1−t0

N̂
dt0
ibkj

=
∑

i∈I

∑

b∈Bi

∑

j∈Jk

D∑

d=t

N
d

ibkj
≤

∑

i∈I

∑

b∈Bi

∑

j∈Jk

D∑

d=1

N
d

ibkj
≤ Uk

∑

k∈K

∑

j∈Jk

∑

d∈T

D−d+1∑

t0=1

wd
ibkj

N̂
dt0
ibkj

=
∑

k∈K

∑

j∈Jk

∑

d∈T

wd
ibkj

N
d

ibkj
≥ �ib

∑

k∈K

∑

j∈Jk

∑

i∈I

∑

b∈Bi

∑

d, t0∈T

(Pkj ⋅ d)N̂
dt0
ibkj

=
∑

k∈K

∑

j∈Jk

∑

i∈I

∑

b∈Bi

∑

d∈T

(Pkj ⋅ d)N
d

ibkj

Fig. 1  Optimal resources allocation for D = 8 time units and U1 = 4, U2 = 7, U3 = 4, U = 20 VMs
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to determine the minimum makespan, �∗ = 8 . Then the model MCBS for D = 8 pro-
vides the solution with the lowest cost, 43$ , displayed in Table 5.

The optimal solution of model MCBS-ins has a cost equal to 42.4$  which is 
strictly lower than v(MCBS) . Figure (1b) displays the optimal resources allocation. 
This solution, where 9 VM1 , 14 VM2 and 2 VM3 are allocated, is not a feasible solu-
tion for MCBS. However, the number of instances working in any time period is at 
most 4 for VM1 , 7 for VM2 and 2 for VM3.

The next proposition allows to fix N-variables to zero in order to reduce the size 
of the problem.

Proposition 4.2 Any optimal solution of MCBS-ins satisfies that for i ∈ I, b ∈ B
i
,

k ∈ K, j ∈ Jk, t0 ∈ T:

Proof Let us assume that there exists an optimal solution (y,N) of MCBS-ins and a 
variable N

d0t0

ibkj
> 0 with d0 ≠

⌈
m ⋅ �ibkj

⌉
 for a m ∈ ℕ . Suppose that 

⌈
m ⋅ 𝜏ibkj

⌉
< d0 <

⌈
(m + 1) ⋅ 𝜏ibkj

⌉
 . We can build a feasible solution (y, N̂) , with 

N̂
dt0
ibkj

= N
dt0

ibkj
 , except for N̂d0t0

ibkj
= 0 and N̂⌈m⋅�ibkj⌉t0

ibkj
= N

d0t0

ibkj
 . This feasible solution cor-

responds to a better objective function value:

This is in contradiction with the optimality of (y,N) .   ◻

In proposition 4.2, we consider tasks requiring more than one time period to be 
solved by an instance type. Any optimal solution will use that instance type during 
a time which is a multiple of the time required for a task. The same arguments hold 
for MCBS.

Lemma 4.3 Any optimal solution of MCBS satisfies that for i ∈ I, b ∈ B
i
,

k ∈ K, j ∈ Jk, d ∈ T:

The next proposition aims to reduce the symmetry introduced by model MCBS-
ins. More precisely, each feasible solution leads to alternative feasible solutions with 
the same objective function value by splitting the time during a machine is working 
as long as the number of tasks executed is not improved when the length of working 
time is increased. This result is not valid for model MCBS since the upper bound 
refers to the number of instances.

Proposition 4.4 An optimal solution of MCBS-ins exists such that for 
i ∈ I, b ∈ Bi, k ∈ K, j ∈ Jk, t0 ∈ T  such that 𝜏ibkj < 1:

N
dt0
ibkj

= 0, d ∈ T , d ≠
⌈
m ⋅ �ibkj

⌉
, m = 1, 2,…

w
d0
ibkj

= w
⌈m⋅𝜏ibkj⌉
ibkj

and(Pkj ⋅

�
m ⋅ 𝜏ibkj

�
)�N

⌈m⋅𝜏ibkj⌉t0
ibkj

< (Pkj ⋅ d0)N
d0t0

ibkj

Nd
ibkj

= 0, d ≠
⌈
m ⋅ �ibkj

⌉
, m = 1, 2,…
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Proof Suppose there exists an optimal solution (y,N) of MCBS-ins which does not 
satisfy the statement conditions.

Since (y,N) does not satisfy the statement conditions, there exists a variable 
�N
d0t0
ibkj

> 0 with d0 ≥ 2 and wd0
ibkj

− w
d0−1

ibkj
≤ w1

ibkj
 for some d0 . Notice that wd

ibkj
 defines 

the number of tasks of BoT b ∈ Bi executed by a instance type j during exactly d 
time units, k ∈ K, j ∈ Jk, i ∈ I, b ∈ Bi, d ∈ T  . When 𝜏ibkj < 1 , the number of tasks 
of BoT b ∈ Bi executed by an instance type j during one time unit is at least one:

For d ≥ 2:

Moreover,

Therefore, for d ≥ 2:

Since wd0
ibkj

− w
d0−1

ibkj
≤ w1

ibkj
 and d0 ≥ 2 , we conclude that wd0

ibkj
= w

d0−1

ibkj
+ w1

ibkj
.

We can build a feasible solution (y, N̂) , with N̂dt0
ibkj

= N
dt0

ibkj
 , except for:

The new feasible solution has the same objective value function than (y,N) . In the 
case of �N(d0−1)t0

ibkj
> 0 such that d0 − 1 ≥ 2 and wd0−1

ibkj
− w

d0−2

ibkj
≤ w1

ibkj
 , we repeat the 

process for d0 − 1 .   ◻

Model MCBS-M can be extended to the MCBS-Mins problem to include instanta-
neous resource constraints. The mathematical formulation is written as follows: 

N
dt0
ibkj

= 0, d ∈ T such that d ≥ 2 and wd
ibkj

− wd−1
ibkj

≤ w1
ibkj

wd
ibkj

=

⌊
d

𝜏ibkj

⌋
⇒ d = wd

ibkj
𝜏ibkj + 𝜖d with 𝜖d < 𝜏ibkj

d = (d − 1) + 1 = wd−1
ibkj

�ibkj + �d−1 + 1 = wd−1
ibkj

�ibkj + �d−1 + w1

ibkj
�ibkj + �1

= (wd−1
ibkj

+ w1

ibkj
)�ibkj + (�d−1 + �1)

0 ≤ 𝜖d−1 + 𝜖1 < 2𝜏ibkj

wd
ibkj

=

{
wd−1
ibkj

+ w1
ibkj

if 𝜖d−1 + 𝜖1 < 𝜏ibkj

wd−1
ibkj

+ w1
ibkj

+ 1 if 𝜖d−1 + 𝜖1 ≥ 𝜏ibkj

N̂d0t0
ibkj = 0

N̂(d0−1)t0
ibkj = N

d0t0
ibkj + N

(d0−1)t0
ibkj

N̂1(t0+d0−1)
ibkj = N

d0t0
ibkj

(5a)min
y,N,�,z

�
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5  Computational experiments

In this Section, we present the results of some experiments carried out on a synthetic 
dataset generated from real data. Table 6 provides a summary of the above proposed 
models. The goal is to analyse in a realistic case the differences between the models 
and discuss their advantages and disadvantages. All models have been solved by using 
CPLEX 12.9.0.0. in a Intel(R) Core(TM) i7-9700 CPU 3.00GHz 32.0 GB RAM with 
Windows 10.

5.1  Dataset

The test instances have been defined in accordance with the features of instances 
defined by well-known public cloud providers. They usually offer some specific VMs 
better adapted for intensive computing. This is the case of the C4, C5 and C5n families 
for Amazon EC2, the Fsv2, Fs and the F series for MS-Azure and the C2 Compute 
Optimized family for Google Cloud. Table 7 shows the synthetic list of cloud providers 
and instances used for the experiments. We are considering three virtual cloud provid-
ers, namely C1 , C2 , C3 , offering, respectively, 6, 4 and 5 VMs types. Let VMkj denotes a 
VM of instance type j in cloud Ck.

(5b)s.t.:(4b) − (4h)

(5c)
N

dt0
ibkj

≤ Ukjzt0+d−1, i ∈ I, b ∈ Bi, k ∈ K, j ∈ Jk,

d, t0 ∈ T , t0 + d − 1 ≤ D

(5d)� ≥ dzd, d ∈ T

(5e)zd ∈ {0, 1}, d ∈ T

Table 6  Summary of the proposed models for Multi-Cloud Bot Scheduling

Single objective otpimization models
MCBS: Cost optimization with a fixed deadline
MCBS-M: Makespan optimization
Lexicographic approaches to a bi-objective optimization models
MCBS-1: First: cost minimization. Second: makespan optimization
MCBS-2: First: makespan minimization. Second: cost optimization
Models with capacity constraints
MCBS-ins: Cost optimization with instantaneous constraints
MCBS-Mins: Makespan optimization with instantaneous constraints
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Like EC2, we define the resource limit constraints in terms of vCPUs. Let Uk be 
the CPU quota for cloud k ∈ K and vckj be the number of vCPU of the instance type 
j ∈ Jk , k ∈ {C1, C2, C3} . Notice that, for a given upper bound Uk , an upper bound on 
the number of VMs of instance type j is computed as follows:

Therefore, the total number of VMs depends on their types and any combination is 
allowed while the total number of vCPUs does not exceed the limit. Last column of 
Table 7 shows the resource limit constraint for each instance type when the upper 
bound on the total number of vCPUs of each cloud is 100. Regarding the applica-
tions and BoTs, they have not established in an arbitrary way, but they have been 
chosen from the literature (Juve et al. 2013) so as to have a variety in terms of run-
ning times and number of tasks. We consider three applications I = {A1, A2, A3} 
and three BoTs in each application. BoT in application Ai are denoted by Bib with 
b ∈ {1, 2, 3} . As in Abdi et al. (2017), we define the computational size of an appli-
cation (CSA) as the execution time of its tasks on a VM with a performance of 1 
CCU. The data are summarized in Table 8.

5.2  Computing the minimum makespan for a set of given resource limits

In the resource allocation problem, once the availability for each cloud provider is 
known, we compute the minimum makespan, that is, a lower bound on the deadline 

Ukj =

⌊
Uk

vckj

⌋
, k ∈ K, j ∈ Jk

Table 7  Instance types specifications of the three clouds

Cloud Instance Virtual CPUs Ram (Gb) Price($/time unit) CCU Limit (U=100)

C1 VM11 2 4 10.2 90 50
VM12 4 8 20.4 170 25
VM1336 72 183.6 1410 2
VM14 48 96 244.8 1880 2
VM1572 144 367.2 2810 1
VM16 96 192 489.6 3750 1

C2 VM21 1 2 6.56 60 100
VM22 2 4 13.08 90 50
VM23 4 8 26.28 170 25
VM24 16 32 105 640 6

C3 VM31 4 16 25.06 240 25
VM32 8 32 50.11 460 12
VM3316 64 100.22 900 6
VM34 30 120 187.92 1670 3
VM3560 240 375.85 3300 1



1 3

A biobjective model for resource provisioning in multi‑cloud… Page 19 of 32 31

needed to deal with all BoTs. For the sake of clarity, we have run the experiments 
with the same resource limits for the three clouds, that is, Uk = U , k ∈ {C1, C2, C3} . 
The experiments are carried out for different values of U ∈ {25, 50, ,… , 200, 225} . 
By solving MCBS-M and MCBS-Mins models we determine the minimum makes-
pan ensuring that all the jobs could be finished.

Table 9 shows in the second and third columns, the minimum makespan �∗ and 
the CPU times required to solve model MCBS-M, respectively. The fourth and fifth 
columns include the same values for model MCBS-Mins.

Model MCBS-M requires a smaller computation time than MCBS-Mins. Since 
the feasible region of MCBS-Mins includes the feasible region of MCBS-M, 
this model may provide a worse solution than the one of MCBS-Mins model as 
for N = 125 . This behaviour is described in Fig.  2. When the resource limits are 
lower, the results given by MCBS-Mins are sharply better than those of MCBS-M. 
However, the maximum difference is 3 time units. As the availability of resources 
increases, the reduction of the deadline is slower, resulting in the same solution for 
both models.

Table 8  Tasks in the BoT 
workflows of each application

Application BoT Count Runtime CSA

A1 B11 17 282.37
B12 2102 1.73
B13 6172 0.66 12510.27

A2 B21 96 3.06
B22 96 84.92
B23 96 196.40 27300.48

A3 B31 1 55.95
B32 7 34.32
B33 8 11.01 384.27

Table 9  Minimum makespan 
in time units and CPU times in 
seconds for each upper bound 
on the number of instances

U MCBS-M MCBS-Mins

�∗ time units CPU time 
(seconds)

�∗ time units CPU time 
(seconds)

25 20 3.28 20 45.69
50 10 2.75 10 16.74
75 7 4.86 7 48.63
100 5 2.76 5 75.38
125 5 3.28 4 47.44
150 4 3.5 4 30.33
175 3 2.58 3 19.51
200 3 3.03 3 25.5
225 3 3.77 3 24.69
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5.3  Effect of the deadline in the cost

In Sect. 5.2 we have seen how an upper bound on the number of resources of each 
cloud provider allows to determine the minimum deadline to operate all the BoTs 
by solving models MCBS-M and MCBS-Mins. However, when the deadlines are 
extended, it is interesting to identify their impacts on the costs. In this subsection, 
we consider an upper bound U = 50 on the capacity of resources of the three cloud 
providers and compute the minimal cost for several values of D. We solve model 
MCBS, whose capacity constraint is globally imposed as the number of instances 
allowed along the deadline period, and model MCBS-ins in which the limits refer 
to the number of instances allowed to work in simultaneous way. We also compare 
these results with the value provided by model IP-NDS.

Table 10 displays the minimum cost and the computational time in seconds for 
the three models and four deadlines. IP-NDS model is a very simple allocation 
problem which is solved in less than one second. As in the previous subsection, 
model MCBS requires a much lower computation time than model MCBS-ins. 
The running time of CPLEX is limited to 300 s. When CPLEX is interrupted after 
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Fig. 2  Minimum makespan in time units vs Upper resources limit on VMs

Table 10  Minimum cost ($) and CPU times (seconds) vs the deadline ( U = 50 VMs)

D IP-NDS MCBS MCBS-ins

Cost CPU time Cost CPU time Cost CPU time

10 4468.212 0.01 4443.108 0.97 4387.248 7.88
15 4387.248 0.03 4387.248 47.58 4335.576 5.91
20 4335.576 0.02 4310.52 0.7 4310.52 300.66(0.014)
25 4335.576 0 4285.464 0.38 4285.464 300.63(0.010)
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this limit, the best integer solution is provided and we include between parenthe-
sis the MIP relative gap which refers to the quotient of the best integer objective 
minus the objective of the best node remaining between the best integer objective. 
For instance, for a deadline D = 25 both models MCBS and MCBS-ins provide the 
same objective value, 4285.464, however only model MCBS guarantees that this 
value is the optimal one. In the case of MCBS-ins, the relative gap of 0.01 means 
that CPLEX has found a feasible integer solution in the 1 percent of the optimal one.

Figure 3 displays the minimum cost behaviour as the deadline increases. Model 
MCBS-ins results in a lower cost value than MCBS for some deadlines. As 
expected, with a global upper bound on the number of vCPUs (model MCBS), a 
higher deadline is required to generate a cost similar to the one provided by MCBS-
ins with shorter deadlines. As shown in Fig. 3 both MCBS and MCBS-ins are non-
increasing monotone functions. However, IP-NDS makes use of the full deadline 
to allocate the instances which may result in a non monotone cost function. For 
MCBS-ins, the optimal value displayed is guaranteed to be the optimal only for 
D ∈ {10, 11, 12, 13, 23, 27, 28} . The remaining values refer to the best integer solu-
tion value. The difference between the costs of the solutions provided by MCBS and 
MCBS-ins ranges from 0 ( D ≥ 19 ) to 1.26% ( D = 10, 11).

5.4  Results from a biobjective perspective

Models MCBS-1 and MCBS-2 integrate jointly the cost and the makespan. In 
Sect.  5.2, the minimum makespan has been computed for a given set of resource 
limits, while in Sect. 5.3 the minimum cost is obtained for several values of dead-
line. The solutions are optimal when only one of the criteria is considered. Follow-
ing, models MCBS-1 and MCBS-2 are applied for computing the corresponding 
efficient solutions.

Table  11 shows in the first and second columns the bounds considered for the 
number of resources and the deadline, respectively. The third and fourth columns 
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Fig. 3  Minimum cost ($) vs deadline (time units) ( U = 50 VMs)
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include the cost and the makespan for the efficient solution computed by model 
MCBS-1 which first optimizes the cost. Model MCBS-2 first optimizes the makes-
pan which is displayed at the fifth column, while the sixth column shows the mini-
mum cost given that optimal makespan. Each row provides two efficient solutions 
for a given resource limit and a deadline. For instance, for U = 25 and D = 25 , the 
minimum cost is 4403.772$   and to achieve this cost at least 23 units of time are 
required. The only way to reduce the makespan and reach the minimum value of 20 

Table 11  Efficient solutions for the biobjective problem in which the cost and the makespan are mini-
mized

U D MCBS-1 MCBS-2

Minimum Minimum Minimum Minimum

cost ($) makespan (time units) makespan (time units) cost ($)

25 25 4403.772 23 20 4430.028
50 10 4443.108 10 10 4443.108
50 15 4387.248 12 10 4443.108
50 20 4310.52 19 10 4443.108
50 25 4285.464 23 10 4443.108
75 25 4285.464 23 7 4587.564
100 25 4285.464 23 5 4387.248
125 25 4285.464 23 5 4387.248
150 25 4285.464 23 4 4597.92
175 25 4285.464 23 3 4622.976
200 25 4285.464 23 3 4622.976
225 25 4285.464 23 3 4622.976

Fig. 4  Cost ($) and makespan (time units) of efficient solutions for several values of U (limit on the num-
ber of VMs) and deadlines D (time units) obtained by solving models MCBS-1 and MCBS-2 
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time units is to increase the cost. The minimum cost required to perform BoTs in 20 
time units is 4430.028$.

The values of the cost and the makespan of the efficient solutions are displayed in 
the scatterplot displayed in Fig. 4. With a deadline D = 25 , increasing the resource 
limits above U = 175 does not provide better solutions neither in terms of the cost 
nor the makespan. Therefore the figure does not include the values corresponding 
to the U ∈ {200, 225} . Model MCBS-1 first optimize the cost, therefore the corre-
sponding efficient solutions provides lower values than the ones provided by model 
MCBS-2. On the contrary, the lower values of the makespan are obtained by solving 
model MCBS-2.

Notice that, for U = 50 and deadlines D ∈ {10, 15, 20, 25} , the minimum makes-
pan is 10 time units and the minimum cost with D = 10 is 4443.108$. For this rea-
son, model MCBS-2 provides the same values of both objectives for all deadlines. 
However, model MCBS-1 provides better cost values as the deadline increases, 
while the makespan gets worse. For deadline D = 25 , the efficient solution obtained 
by solving MCBS-2 with U = 100 is better than the one with U = 75 . In this case, 
increasing the upper resources limit allow to decrease the cost and the makespan 
simultaneously. However, the efficient solution obtained by solving MCBS-2 with 
U ∈ 100, 150, 175 are not comparable.

5.5  Analysis of the two approaches when introducing capacity constraints

The previous computational experience raises the question of the impact to con-
sider instantaneous or global capacity constraints. Notice that, given a deadline D, 
to make the best possible use of resources, the instances will be hired as long as pos-
sible in order to reduce the idle time in each time unit. When the instances are used 
until the deadline is met, like master VM in IP-NDS model, the instantaneous and 
global capacity constraints would coincide.

From the above results, it is clear that the MCBS-ins and MCBS-Mins models 
can provide better results than the MCBS and MCBS-M models, respectively. Note 
that the feasibility sets of MCBS and MCBS-M are included in the corresponding 
ones of MCBS-ins and MCBS-Mins. This is in line with the intuitive idea that a 
capacity constraint on each time unit offers more flexibility than a global capacity 
constraint.

For illustrative purpose, we set U = 50 and D = 17 and we solve both models. 
Table 12 shows from the second to the fourth columns the optimal solution ( S1 ) pro-
vided by model MCBS with a cost 4335.576. The best integer solution ( S2 ) provided 
by model MCBS-ins when interrupted after 300 s with a cost 4310.52 is displayed 
from the fifth to eighth columns. As both solutions are very similar, we have high-
lighted the differences in bold. Solution S1 uses 48 and 6 vCPUs from clouds C3 and 
C1 , respectively. For solution S2 the number of vCPUs from cloud C3 goes from 16 at 
the 17th time period to 48 vCPUs instantaneously used at 6 out of 17 times periods. 
Notice that S2 is not a feasible solution of MCBS since for cloud C3 the total number 
of vCPUs are 80. On the other hand, the instantaneous capacity constraint makes 
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possible to execute all the tasks in bag B23 paying for 80 time units of instances 
VM31 in solution S2 instead of 81 time units needed in solution S1.

From a mathematical point of view, a global capacity constraint only relies on 
the duration of each machine, which reduces the number of integer variables in the 
MCBS and MCBS-M models. However, to consider instantaneous capacity con-
straint requires to define the starting time of each instance to be able to evaluate at 
each time period then number of instances used from each cloud. Propositions 4.2 
and 4.3 allow to reduce the number of integer variables. For illustrative purposes, 
we consider a capacity U = 50 for all the clouds and compute the number of binary 
and integer variables for each model. Table 13 displays these numbers for D varying 

Table 12  Description of the 
solutions provided by models 
MCBS and MCBS-ins with 
D = 17 time units

BoT MCBS MCBS-ins

Instance d N Instance t0 d N

B11 VM31 5 1 VM31 2 6 1
VM

��
16 1 VM

��
3 13 1

VM
��

6 1 1
B12 VM31 16 1 VM31 11 2 1

VM31 13 3 1
VM31 7 11 1

B13 VM31 17 1 VM31 2 1 1
VM31 2 16 1

B21 VM31 2 1 VM31 1 1 1
VM31 2 1 1

B22 VM31 17 2 VM31 1 17 2
B23 VM

��
15 2 VM

��
7 5 1

VM
��

17 3 VM
��

12 5 1
VM

��
1 14 5

B31 VM11 1 1 VM11 1 1 1
B32 VM11 3 1 VM11 8 1 1

VM11 9 2 1
B33 VM11 1 1 VM11 2 1 1

Table 13  Number of binary and integer variables in the models

IP-NDS MCBS MCBS-M MCBS MCBS-ins MCBS-ins
MCBS-ins MCBS-Mins MCBS-M MCBS-Mins MCBS-Mins

D Binary Binary Binary Integer Integer Reduced

10 144 9 19 1350 13500 700
15 144 9 24 2025 30375 1015
20 144 9 29 2700 54000 1342
25 144 9 34 3375 84375 1654
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from 10 to 25. The seventh column shows the number of integer variables different 
from 0 after applying both Propositions. Even if the number of integer variables is 
sharply reduced by up to 5%, the computational time is not decreased.

Bearing in mind previous results, it may occur that the improvements achieved 
are not large enough to justify the computational effort required to solve the MCBS-
Mins and MCBS-ins models. Notice that the instantaneous capacity constraints rely 
on estimation of the execution time required for a task. Pham et al. (2020) introduce 
an efficient method to estimate the required execution time with only a few real exe-
cutions, obtaining estimation errors below 10% and show that alternative methods 
display similar or worse results. We next illustrate these estimation errors impacts 
on the optimal value of MCBS and MCBS-ins models.

The running times displayed in Table 8 are considered as the Set 0. We define 
a uniform random distribution with a lower (respectively an upper bound) equal 
to 90% (respectively 110% ) of the Set 0 running times. Thus, the average times 
of the uniform distribution are exactly the running times of the Set 0. The lower 
and upper bounds of the associated uniform distribution are shown in Table 14. 
From these distributions we generate 10 sets of running times for the nine BoTs. 

Table 14  Parameters of the 
uniform random distribution for 
each BoT

BoT Lower bound Average Upper bound

B11 254.13 282.37 310.61
B12 1.56 1.73 1.90
B13 0.59 0.66 0.73
B21 2.75 3.06 3.37
B22 76.43 84.92 93.41
B23 176.76 196.40 216.04
B31 50.36 55.95 61.54
B32 30.89 34.32 37.75
B33 9.91 11.01 12.11

Table 15  Generated running times (time units) for each BoT and each Set

BoT Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10

B11 309.5 260.6 259.0 273.9 306.9 261.8 296.1 266.2 268.4 304.5
B12 1.7 1.8 1.6 1.9 1.7 1.6 1.8 1.6 1.8 1.8
B13 0.7 0.6 0.6 0.7 0.7 0.6 0.7 0.6 0.6 0.7
B21 3.2 3.0 3.2 3.3 3.2 3.2 2.8 3.1 3.3 2.9
B22 88.2 83.3 84.9 76.7 77.6 85.8 80.8 78.3 89.3 90.3
B23 211.1 200.0 194.5 203.7 203.5 214.0 187.1 186.3 192.5 199.1
B31 55.5 55.5 55.2 53.0 52.7 54.0 57.4 58.8 58.5 60.1
B32 35.4 34.2 32.1 36.2 36.0 33.7 34.2 36.6 33.1 35.7
B33 9.9 11.1 10.3 11.5 10.1 11.1 11.0 10.4 11.6 10.7
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Table 15 displays for each BoT the value of the generated running time for each 
set.

MCBS and MCBS-ins models with U = 50 and D = 15 are solved for each set 
of running times.

Figure 5 shows the minimum cost obtained for both models for each set. The 
Set 0 consists in the running times defined in Table 8. The difference between the 
minimum costs for each set ranges from 0.285% (Set 9) to 2.1% (Set 5). We also 
compare the minimum cost for each set with the cost of Set 0. For MCBS-ins 
model, the difference ranges from −6.93% (Set 8) to 5.08% (Set 1). Similar values 
for MCBS model, from −6.96% (Set 8) to 5.22% (Set 1).

We have performed a paired sample t-test to evaluate whether MCBS-ins 
model provides better solutions than MCBS in terms of cost. In this statisti-
cal test, each set of running times gives a pair of observations, one for each 
model. As Fig. 6 displays a p-value equals to 0, the minimum cost obtained by 
MCBS model is significantly greater than the one obtained by MCBS-ins. In 
fact, with a confidence level of 95% the mean of the differences will be at least 

4000

4100

4200

4300

4400

4500

4600

Set 0 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10

MCBS-Ins MCBS

Fig. 5  Minimum cost ($) vs set of running times ( U = 50 VMs, D = 15 time units)

Fig. 6  Paired T-Test of the 
minimum costs ($) obtained by 
MCBS and MCBS-ins models
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equal to 35.49. As expected, the mean of the differences between the minimum 
cost obtained with each set of running times is not significantly different from 
the corresponding minimum cost obtained with Set 0 since these differences are 
positive and negative. All of these differences are shown in Fig. 7. In conclusion 
the range of the difference to the minimum cost corresponding to Set 0 due to 
the estimation error associated with the running times is much larger than the 
differences between solutions obtained by MCBS and MCBS-ins models. The 
results suggest that it is not worth the computational effort of solving model 
MCBS-ins compared to model MCBS in terms of cost improvement.

6  Conclusions and future research

The paper defines new optimization models integrating the VM type selection, resource 
scaling and workload allocation in a multi-cloud environment. These models only deal 
with one objective, the minimization of cost considering a deadline and the minimi-
zation of the makespan to run all the BoTs, respectively. In addition, we propose two 
models which involve jointly the costs and makespan objective functions. Two efficient 
solutions of the biobjective problem are computed by using a lexicographic approach. 
A first efficient solution is computed by prioritizing cost over makespan and the second 
one takes the reverse order. Capacity constraints with respect to the number of allowed 
resources imposed by the cloud providers in the case of public clouds or the cloud sys-
tem itself in the case of private clouds are also considered.

The limits in the number of VM instances are defined according to two differ-
ent paradigms. First, a global upper bound is considered, regardless of the time the 
instances are used. This approach is in accordance with those models assuming that 
VMs work as long as possible to complete the deadline. In the literature, most of 
the mathematical models looking for exact solutions assume this constraint. In con-
trast, we consider in this work the time VMs are working for executing the BoTs, 

Fig. 7  Differences among the minimum costs obtained by MCBS and MCBS-ins models for each set of 
running times
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extending the models and increasing the feasibility space. A second approach estab-
lishes an instantaneous bound on the number of VMs. This approach increases the 
number of feasible solutions, leading to better solutions in terms of cost, but increas-
ing significantly the computation time as shown in the computational experience.

Finally, experiments carried out on synthetic realistic data put into highlight the 
cost improvements of the proposed solutions compared to the solutions of previous 
models and the effect of the model parameters in the cost and the makespan. A first 
analysis shows how the minimum makespan required to execute all BoTs decreases 
as the number of available resources increases, and stabilizes when a certain value is 
reached. Secondly, we consider fixed the resource limit in order to compute the min-
imum cost. The minimum values obtained by solving the proposed models are non-
increasing monotone functions of the deadline. In addition to the individual analy-
sis of cost and makespan, efficient solutions have been calculated for a bi-objective 
problem using a lexicographic approach for several values of resource limits and 
deadline. There is a great impact on the computational time for solving the model 
when instantaneous capacity constraints are considered, which is not accompanied 
by a noticeable improvement in the values of the cost or the makespan. In fact, we 
have seen that the range of the differences in the minimum cost due to the estimation 
error associated with the running times is much larger than the differences between 
solutions obtained with instantaneous or global capacity constraints.

As future work we aim at extending the mathematical models to consider more 
general applications, such as acyclic graphs of BoTs or even more general work-
flow structures that besides the parallel execution of tasks in a BoT must also con-
sider some precedence relations among the different BoTs. In addition, the proposed 
models only consider on–demand instances and it is also assumed that the execu-
tion time of each task of a BoT remains constant. Interesting future work will be to 
see how to include reserved VMs and how to remove the assumption on the run-
ning times. Finally, we also aim at reducing the computational cost of the considered 
solutions by strengthening the formulations and defining specific solution methods 
that could take advantage of the specific structure of the problem formulation. The 
use of fine grained time units may result in decreased savings and raises the question 
of whether the computation time required is justified. As a result, reducing computa-
tion time by utilizing the model’s specific properties, similar to those examined in 
Propositions 4.2, 4.4 and Lemma 4.3, is considered a crucial future task.

Appendix

Abdi et al. (2017) propose a binary formulation for solving the resource allocation 
problem for the execution of BoTs in intercloud systems. The execution time of each 
task of BoT b ∈ Bi , i ∈ I with an instance type j in cloud k, k ∈ K, j ∈ Jk is com-
puted as follows:
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Once it is known, the maximum number of tasks of BoT b ∈ Bi solved by one VM 
of instance type j in cloud k for a given deadline D is:

where ⌊⋅⌋ denotes the floor function. Notice that, �ibkj = 0 states that the assignment 
of a VM of instance type j in cloud k to BoT b ∈ Bi is infeasible because it cannot 
meet specified deadline D. Otherwise, the number of required VMs of instance type 
j for executing tasks of BoT b ∈ Bi is:

These VMs are used until the deadline D is met and are called master VMs. Notice 
that, the running time ot the master VMs is computed as follows:

and it is supposed to be approximately the deadline D. It is possible that 
𝜏ibkj𝜂ibkj < 𝛿ib . That means that the master VMs of the instance type j in cloud k can-
not carry out the computation of all tasks of BoT b ∈ Bi . In this case, an extra VM 
of the same instance type is required during the following time in hours:

If TRibkj > 0 , then an extra VM should be used and XRibkj is set to 1. Otherwise, 
XRibkj = 0 . The makespan of BoT b ∈ Bi on instance type j in cloud k is computed 
as:

When �ibkj = 0 and the allocation of instance type j in cloud k to tasks of BoT b ∈ Bi 
is not feasible, the coefficients Tibkj and TRibkj are set to ∞.

The decision variables are:

The allocation model, denoted by IP-NDS, is written as follows: 

�ibkj =
ETib

ccukj

�ibkj = min

(
�ib,

⌊
D

�ibkj

⌋)
, k ∈ K, j ∈ Jk, i ∈ I, b ∈ Bi

�ibkj =

⌊
�ib

�ibkj

⌋
, k ∈ K, j ∈ Jk, i ∈ I, b ∈ Bi

Tibkj =
⌈
�ibkj�ibkj

⌉
, k ∈ K, j ∈ Jk, i ∈ I, b ∈ Bi

TRibkj =
⌈
(�ib − (�ibkj�ibkj))�ibkj

⌉
, k ∈ K, j ∈ Jk, i ∈ I, b ∈ Bi

Mibkj = max{Tibkj, TRibkj}, k ∈ K, j ∈ Jk, i ∈ I, b ∈ Bi

yik =
{

1 if application i is submitted to cloud k,
0 otherwise, i ∈ I, k ∈ K

xibkj =
{

1 if instance type j in cloud k is selected for BoT b ∈ i,
0 otherwise,

k ∈ K, j ∈ Jk, i ∈ I, b ∈ i
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 The objective function (6a) includes two terms, the cost of the master VMs and the 
cost of an extra VM. Constraints (6b) guarantee that each application is submitted 
to only one cloud in the federation. Constraints (6c) and (6e) ensures that for each 
application and each cloud only one instance type of the chosen cloud is selected. 
Constraints on the resource limits of each cloud are imposed in (6g). Moreover, the 
number of instances of each instance type at each cloud cannot exceed the maximum 
given by constraints (6f). Finally, constraints (6i) are the binary constraints. We will 
denote by y and x the variables {yik}i∈I, k∈K and {xibjk}i∈I, b∈Bi, k∈K, j∈Jk

 , respectively.
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(6a)min
y,x

∑

k∈K

∑

j∈Jk

Pkj

∑

i∈I

∑

b∈Bi

xibkj(�ibkjTibkj + TRibkj)

(6b)s.t.:
∑

k∈K

yik = 1, i ∈ I

(6c)
∑

b∈Bi

∑

j∈Jk

xibkj = yik|Bi|, i ∈ I, k ∈ K

(6d)xibkj ⩽ yik, i ∈ I, b ∈ Bi k ∈ K, j ∈ Jk

(6e)
∑

k∈K

∑

j∈Jk

xibkj = 1, i ∈ I, b ∈ Bi

(6f)
∑

i∈I

∑

b∈Bi

xibkj(�ibkj + XRibkj) ≤ Ukj, k ∈ K, j ∈ Jk

(6g)
∑

j∈Jk

∑

i∈I

∑

b∈Bi

xibkj(�ibkj + XRibkj) ≤ Uk, k ∈ K

(6h)
∑

k∈K

∑

j∈Jk

xibkjMibkj ≤ D, i ∈ I, b ∈ Bi

(6i)yik, xibkj ∈ {0, 1}i ∈ I, b ∈ Bi, k ∈ K, j ∈ Jk
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