1,625 research outputs found

    Multiple multimodal mobile devices: Lessons learned from engineering lifelog solutions

    Get PDF
    For lifelogging, or the recording of one’s life history through digital means, to be successful, a range of separate multimodal mobile devices must be employed. These include smartphones such as the N95, the Microsoft SenseCam – a wearable passive photo capture device, or wearable biometric devices. Each collects a facet of the bigger picture, through, for example, personal digital photos, mobile messages and documents access history, but unfortunately, they operate independently and unaware of each other. This creates significant challenges for the practical application of these devices, the use and integration of their data and their operation by a user. In this chapter we discuss the software engineering challenges and their implications for individuals working on integration of data from multiple ubiquitous mobile devices drawing on our experiences working with such technology over the past several years for the development of integrated personal lifelogs. The chapter serves as an engineering guide to those considering working in the domain of lifelogging and more generally to those working with multiple multimodal devices and integration of their data

    THE INTERNET OF THINGS (IOT) IN DISASTER RESPONSE

    Get PDF
    Disaster management is a complex practice that relies on access to and the usability of critical information to develop strategies for effective decision-making. The emergence of wearable internet of things (IoT) technology has attracted the interests of several major industries, making it one of the fastest-growing technologies to date. This thesis asks, How can disaster management incorporate wearable IoT technology in operations and decision-making practices in disaster response? How IoT is applied in other prominent industries, including construction, manufacturing and distribution, the Department of Defense, and public safety, provides a basis for furthering its application to challenges affecting agency coordination. The critical needs of disaster intelligence in the context of hurricanes, structural collapses, and wildfires are scrutinized to identify gaps that wearable technology could address in terms of information-sharing in multi-agency coordination and the decision-making practices that routinely occur in disaster response. Last, the specifics of wearable technology from the perspective of the private consumer and commercial industry illustrate its potential to improve disaster response but also acknowledge certain limitations including technical capabilities and information privacy and security.Civilian, Virginia Beach Fire Department / FEMA - USAR VATF-2Approved for public release. Distribution is unlimited

    Emergency Services Workforce 2030: Changing landscape literature review

    Get PDF
    The Changing Landscape Literature Review collates a high-level evidence base around seven major themes in the changing landscape (i.e., the external environment) that fire, emergency service, and rural land management agencies operate in, and which will shape workforce planning and capability requirements over the next decade. It is an output of the Workforce 2030 project and is one of two literature reviews that summarise the research base underpinning a high-level integrative report of emerging workforce challenges and opportunities, Emergency Services Workforce 2030. Workforce 2030 aimed to highlight major trends and developments likely to impact the future workforces of emergency service organisations, and their potential implications. The starting point for the project was a question: What can research from outside the sphere of emergency management add to our knowledge of wider trends and developments likely to shape the future emergency services workforce, and their implications? The seven themes included in the Changing Landscape Literature Review are: 1) demographic changes, 2) changing nature of work, 3) changes in volunteering, 4) physical technology, 5) digital technology, 6) shifting expectations, and changing risk. A second, accompanying literature review, the Changing Work Literature Review, focuses on another nine themes related to emergency service organisation’s internal workforce management approaches and working environments

    Review on the Use of ICT Driven Solutions Towards Managing Global Pandemics

    Get PDF
    A pandemic is a contagious disease outbreak that happens over a large geographic area and affects a great portion of the population while new pathogens appear for which people have less immunity and no vaccines are available. The disease can spread from person to person in a very short time. Health workers are at greater risk of infection because of patients who are carriers. In the 21st century, where everyone is connected through digital technologies, information and communication technology (ICT) plays a critical role in improving healthcare for individuals and larger communities. ICT can be divided into a wide variety of application domains that signify its importance as a major technological paradigm. It is currently drawing large attention because of its potential to alleviate the burden on healthcare systems caused by the rise in chronic diseases, aging populations and pandemic situations. This study surveyed substantial knowledge on how effective ICT healthcare solutions can be used towards managing global pandemics. In order to make it more comprehensive, we also present a four-phase strategic framework that can be deployed to alleviate the strain on healthcare resources during a pandemic, which was derived from the reviewed literature. Further, we also discuss how ICT technologies can be used towards managing pandemic situations chronographically during the transformation from a simple disease outbreak into a global pandemic

    Patient-centric Handling of Diverse Signals in the mHealth Environment

    Get PDF

    Research Opportunities and Visions for Smart and Pervasive Health

    Get PDF
    Improving the health of the nation's population and increasing the capabilities of the US healthcare system to support diagnosis, treatment, and prevention of disease is a critical national and societal priority. In the past decade, tremendous advances in expanding computing capabilities--sensors, data analytics, networks, advanced imaging, and cyber-physical systems--have, and will continue to, enhance healthcare and health research, with resulting improvements in health and wellness. However, the cost and complexity of healthcare continues to rise alongside the impact of poor health on productivity and quality of life. What is lacking are transformative capabilities that address significant health and healthcare trends: the growing demands and costs of chronic disease, the greater responsibility placed on patients and informal caregivers, and the increasing complexity of health challenges in the US, including mental health, that are deeply rooted in a person's social and environmental context.Comment: A Computing Community Consortium (CCC) white paper, 12 page
    corecore