104,671 research outputs found

    Introduction of Mechatronic Technology into Cross-Department Product Design Curricula

    Full text link
    This paper presents the work that is currently engaged by faculty in the departments of mechanical engineering technology and computer engineering technology to introduce mechatronic technology into product design curricula of both departments. This work is funded by the National Science Foundation (Award No. DUE-1003721) recently awarded to New York City College of Technology. Advances in computer technology and semiconductor electronics have created a new product design field called mechatronics. Mechatronics treats product design as system design that requires the tight integration of mechanical components, electrical/electronic systems, industrial design ideas, computer-control systems, embedded systems, and intelligent software into the product design and development processes. It requires engineers, technicians, and designers from various disciplines to possess broader knowledge beyond their specialized fields and to work together concurrently. This concurrent engineering and mechatronic design approach, which emphasizes team collaboration, has become the new industry standard in product design and development. Mechatronic technology has been identified as one of the top10 highly influential emerging technologies of the 21st century by MIT’s Technology Review and by the International Center for Leadership in Education. Students were given mechatronic/robotic design projects that required them to use actual mechanical, electrical/electronic hardware and software that are currently been used by the industry. This enabled the instructor to simulate actual product design activities occurred in the industry. Not only students were exposed to the latest mechatronic technology, they also learned the concurrent engineering design approach. Students were given a framework of fundamental design knowledge with hands-on cross-disciplinary activities that allows them to develop an interdisciplinary understanding and integrated approach to product design. Through these hands-on activities, students will also learn the concept of product lifecycle management and sharpened their teamwork skills.The curricula of the three programs will be modified to create cross-departmental design projects. Students will learn how to design, construct, evaluate, operate, and test mechatronic products. Activities include: 3D design and modeling, materials and manufacturing process selection, mechanical and structural design, electrical/electronic design, computer control with embedded systems, interfacing, programming, and project management. These simulated product design activities will give our students a better understanding of product design processes and provide them with much needed hands-on experience

    Identifying and evaluating parallel design activities using the design structure matrix

    Get PDF
    This paper describes an approach based upon the Design Structure Matrix (DSM) for identifying, evaluating and optimising one aspect of CE: activity parallelism. Concurrent Engineering (CE) has placed emphasis on the management of the product development process and one of its major benefits is the reduction in lead-time and product cost [1]. One approach that CE promotes for the reduction of lead-time is the simultaneous enactment of activities otherwise known as Simultaneous Engineering. Whilst activity parallelism may contribute to the reduction in lead-time and product cost, the effect of iteration is also recognised as a contributing factor on lead-time, and hence was also combined within the investigation. The paper describes how parallel activities may be identified within the DSM, before detailing how a process may be evaluated with respect to parallelism and iteration using the DSM. An optimisation algorithm is then utilised to establish a near-optimal sequence for the activities with respect to parallelism and iteration. DSM-based processes from previously published research are used to describe the development of the approach

    Knowledge creation and visualisation by using trade-off curves to enable set-based concurrent engineering

    Get PDF
    The increased international competition forces companies to sustain and improve market share through the production of a high quality product in a cost effective manner and in a shorter time. Set‑based concurrent engineering (SBCE), which is a core element of lean product development approach, has got the potential to decrease time‑to‑market as well as enhance product innovation to be produced in good quality and cost effective manner. A knowledge‑based environment is one of the important requ irements for a successful SBCE implementation. One way to provide this environment is the use of trade‑off curves (ToC). ToC is a tool to create and visualise knowledge in the way to understand the relationships between various conflicting design parame ters to each other. This paper presents an overview of different types of ToCs and the role of knowledge‑based ToCs in SBCE by employing an extensive literature review and industrial field study. It then proposes a process of generating and using knowledg e‑based ToCs in order to create and visualise knowledge to enable the following key SBCE activities: (1) Identify the feasible design space, (2) Generate set of conceptual design solutions, (3) Compare design solutions, (4) Narrow down the design sets, (5) Achieve final optimal design solution. Finally a hypothetical example of a car seat structure is presented in order to provide a better understanding of using ToCs. This example shows that ToCs are effective tools to be used as a knowledge sou rce at the early stages of product development process

    Improving CE with PDM

    Get PDF
    The concept of Concurrent Engineering (CE) centers around the management of information so that the right information will be at the right place at the right time and in the right format. Product Data Management (PDM) aims to support a CE way of working in product development processes. In specific situations, however, it is hard to estimate the contribution of a particular PDM package to CE. This paper presents a method to assess the contribution to CE of a PDM package in a specific situation. The method uses the concept of information quality to identify the gap with CE information quality requirements. The contribution of PDM to bridge this gap is estimated. Decisions on improvement actions are supported to improve readiness for PDM as well as to improve CE. The method has been tested in a real-life situation

    Principles for aerospace manufacturing engineering in integrated new product introduction

    Get PDF
    This article investigates the value-adding practices of Manufacturing Engineering for integrated New Product Introduction. A model representing how current practices align to support lean integration in Manufacturing Engineering has been defined. The results are used to identify a novel set of guiding principles for integrated Manufacturing Engineering. These are as follows: (1) use a data-driven process, (2) build from core capabilities, (3) develop the standard, (4) deliver through responsive processes and (5) align cross-functional and customer requirements. The investigation used a mixed-method approach. This comprises case studies to identify current practice and a survey to understand implementation in a sample of component development projects within a major aerospace manufacturer. The research contribution is an illustration of aerospace Manufacturing Engineering practices for New Product Introduction. The conclusions will be used to indicate new priorities for New Product Introduction and the cross-functional interactions to support flawless and innovative New Product Introduction. The final principles have been validated through a series of consultations with experts in the sponsoring company to ensure that correct and relevant content has been defined

    Facilitators and barriers to the integration of healthcare service and building design

    Get PDF
    Service design research recognises the importance of infrastructure design in the achievement of streamlined service delivery. Although research about service design and building design is abundant, very little is known about the integration of these processes. Therefore, this research aimed at identifying facilitators and barriers to the integration of service and building design processes. To this end, the initial results from a historical investigation of the redevelopment of a hospital in Salford, UK were used to identify facilitators and barriers to the integration of service and building design. Data was collected through interviews, document analysis and a workshop. Initial results present internal and external factors related to the design process generating barriers to integration of service and building design

    Concurrent collaboration in research and development

    Get PDF
    Integration is the essence of current research and development (R&D) activity in many organizations. Integration can be established in various ways depending on the type, size and intricacy in organizational functions and products. Nevertheless, research and development (R&D) has become an inevitable function in most manufacturing companies in order to develop their own product niches for their survival in the prevailing highly completion market environment. Research and development functions are fundamental drivers of value creation in technology based enterprises. Of creating and maintaining a vibrant R&D environment, organizations individually or collectively need to incorporate virtual R&D team. A virtual R\&D team can introduce new product in less lead time than by conventional R\&D working. Therefore, how to increase the possibility of having more successful R\&D is a critical issue for enterprises. This paper examines the current approach of collaboration in R\&D issues from the perspective of their impact on virtual R\&D team in enterprises and compares the findings with the other concepts of concurrent collaboration. By reviewing literature and theories, the paper firstly presents the definition and characteristics of virtual R&D teams. A comparison of different types of virtual R&D teams along with the strengths and limitations of the preceding studies in this area are also presented. It is observed that most of the research activities encourage and support virtual R\&D teams applicable to enterprises. Distinctive benefits of establishing virtual R&D team have been enumerated and demand future attention has been indicated in the paper

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    Value Chain: From iDMU to Shopfloor Documentation of Aeronautical Assemblies

    Get PDF
    Competition in the aerospace manufacturing companies has led them to continuously improve the efficiency of their processes from the conceptual phase to the start of production and during operation phase, providing services to clients. PLM (Product Lifecycle Management) is an end-to-end business solution which aims to provide an environment of information about the product and related processes available to the whole enterprise throughout the product’s lifecycle. Airbus designs and industrializes aircrafts using Concurrent Engineering methods since decades. The introduction of new PLM methods, procedures and tools, and the need to improve processes efficiency and reduce time-to-market, led Airbus to pursue the Collaborative Engineering method. Processes efficiency is also impacted by the variety of systems existing within Airbus. Interoperability rises as a solution to eliminate inefficiencies due to information exchange and transformations and it also provides a way to discover and reuse existing information. The ARIADNE project (Value chain: from iDMU to shopfloor documentation of aeronautical assemblies) was launched to support the industrialization process of an aerostructure by implementing the industrial Digital Mock-Up (iDMU) concept in a Collaborative Engineering framework. Interoperability becomes an important research workpackage in ARIADNE to exploit and reuse the information contained in the iDMU and to create the shop floor documentation. This paper presents the context, the conceptual approach, the methodology adopted and preliminary results of the project
    corecore