97 research outputs found

    Mass segmentation using a combined method for cancer detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is one of the leading causes of cancer death for women all over the world and mammography is thought of as one of the main tools for early detection of breast cancer. In order to detect the breast cancer, computer aided technology has been introduced. In computer aided cancer detection, the detection and segmentation of mass are very important. The shape of mass can be used as one of the factors to determine whether the mass is malignant or benign. However, many of the current methods are semi-automatic. In this paper, we investigate fully automatic segmentation method.</p> <p>Results</p> <p>In this paper, a new mass segmentation algorithm is proposed. In the proposed algorithm, a fully automatic marker-controlled watershed transform is proposed to segment the mass region roughly, and then a level set is used to refine the segmentation. For over-segmentation caused by watershed, we also investigated different noise reduction technologies. Images from DDSM were used in the experiments and the results show that the new algorithm can improve the accuracy of mass segmentation.</p> <p>Conclusions</p> <p>The new algorithm combines the advantages of both methods. The combination of the watershed based segmentation and level set method can improve the efficiency of the segmentation. Besides, the introduction of noise reduction technologies can reduce over-segmentation.</p

    A New Approach to the Detection of Mammogram Boundary

    Get PDF
    Mammography is a method used for the detection of breast cancer. computer-aided diagnostic (CAD) systems help the radiologist in the detection and interpretation of mass in breast mammography. One of the important information of a mass is its contour and its form because it provides valuable information about the abnormality of a mass. The accuracy in the recognition of the shape of a mass is related to the accuracy of the detected mass contours. In this work we propose a new approach for detecting the boundaries of lesion in mammography images based on region growing algorithm without using the threshold, the proposed method requires an initial rectangle surrounding the lesion selected manually by the radiologist (Region Of Interest), where the region growing algorithm applies on lines segments that attach each pixel of this rectangle with the seed point, such as the ends (seeds) of each line segment grow in a direction towards one another. The proposed approach is evaluated on a set of data with 20 masses of the MIAS base whose contours are annotated manually by expert radiologists. The performance of the method is evaluated in terms of specificity, sensitivity, accuracy and overlap. All the findings and details of approach are presented in detail

    Automatic application watershed in early detection and classification masses in mammography image using machine learning methods

    Get PDF
    Mammogram images are used by radiologists for the diagnosis of breast cancer. However, the interpretation of these images remains difficult depending on the type of breast, especially those of dense breasts, which are difficult to read, as they may contain abnormal structures similar to normal breast tissue and could lead to a high rate of false positives and false negatives. In this paper, we present an efficient computer-aided diagnostic system for the detection and classification of breast masses. After removing noise and artefacts from the images using 2D median filtering, mathematical morphology and pectoral muscle removal by Hough's algorithm, the resulting image is used for breast mass segmentation using the watershed algorithm. Thus, after the segmentation, the help system extracts several data by the wavelet transform and the co-occurrence matrix (GLCM) to finally lead to a classification in terms of malignant and benign mass via the Support Vector Machine (SVM) classifier. This method was applied on 48 MLO images from the image base (mini-MIAS) and the results obtained from this proposed system is 93,75% in terms of classification rate, 88% in terms of sensitivity and a specificity of 94%

    Computer Aided Diagnosis - Medical Image Analysis Techniques

    Get PDF
    Breast cancer is the second leading cause of death among women worldwide. Mammography is the basic tool available for screening to find the abnormality at the earliest. It is shown to be effective in reducing mortality rates caused by breast cancer. Mammograms produced by low radiation X-ray are difficult to interpret, especially in screening context. The sensitivity of screening depends on image quality and unclear evidence available in the image. The radiologists find it difficult to interpret the digital mammography; hence, computer-aided diagnosis (CAD) technology helps to improve the performance of radiologists by increasing sensitivity rate in a cost-effective way. Current research is focused toward the designing and development of medical imaging and analysis system by using digital image processing tools and the techniques of artificial intelligence, which can detect the abnormality features, classify them, and provide visual proofs to the radiologists. The computer-based techniques are more suitable for detection of mass in mammography, feature extraction, and classification. The proposed CAD system addresses the several steps such as preprocessing, segmentation, feature extraction, and classification. Though commercial CAD systems are available, identification of subtle signs for breast cancer detection and classification remains difficult. The proposed system presents some advanced techniques in medical imaging to overcome these difficulties

    Enhanced algorithms for lesion detection and recognition in ultrasound breast images

    Get PDF
    Mammography is the gold standard for breast cancer detection. However, it has very high false positive rates and is based on ionizing radiation. This has led to interest in using multi-modal approaches. One modality is diagnostic ultrasound, which is based on non-ionizing radiation and picks up many of the cancers that are generally missed by mammography. However, the presence of speckle noise in ultrasound images has a negative effect on image interpretation. Noise reduction, inconsistencies in capture and segmentation of lesions still remain challenging open research problems in ultrasound images. The target of the proposed research is to enhance the state-of-art computer vision algorithms used in ultrasound imaging and to investigate the role of computer processed images in human diagnostic performance. [Continues.

    Breast ultrasound lesions recognition::end-to-end deep learning approaches

    Get PDF
    Multistage processing of automated breast ultrasound lesions recognition is dependent on the performance of prior stages. To improve the current state of the art, we propose the use of end-to-end deep learning approaches using fully convolutional networks (FCNs), namely FCN-AlexNet, FCN-32s, FCN-16s, and FCN-8s for semantic segmentation of breast lesions. We use pretrained models based on ImageNet and transfer learning to overcome the issue of data deficiency. We evaluate our results on two datasets, which consist of a total of 113 malignant and 356 benign lesions. To assess the performance, we conduct fivefold cross validation using the following split: 70% for training data, 10% for validation data, and 20% testing data. The results showed that our proposed method performed better on benign lesions, with a top "mean Dice" score of 0.7626 with FCN-16s, when compared with the malignant lesions with a top mean Dice score of 0.5484 with FCN-8s. When considering the number of images with Dice score >0.5 , 89.6% of the benign lesions were successfully segmented and correctly recognised, whereas 60.6% of the malignant lesions were successfully segmented and correctly recognized. We conclude the paper by addressing the future challenges of the work
    • …
    corecore