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Abstract. Multi-stage processing of automated breast ultrasound lesions recognition is dependent on the performance11

of prior stages. To improve the current state of the art, we propose the use of end-to-end deep learning approaches12

using Fully Convolutional Networks (FCNs), namely FCN-AlexNet, FCN-32s, FCN-16s and FCN-8s for semantic13

segmentation of breast lesions. We use pre-trained models based on ImageNet and transfer learning to overcome the14

issue of data deficiency. We evaluate our results on two datasets, which consist of a total of 113 malignant and 35615

benign lesions. To assess the performance, we conduct 5-fold cross validation using the following split: 70% for16

training data, 10% for validation data, and 20% testing data. The results showed that our proposed method performed17

better on benign lesions, with a top Mean Dice score of 0.7626 with FCN-16s, when compared to the malignant18

lesions with a top Mean Dice score of 0.5484 with FCN-8s. When considering the number of images with Dice19

score > 0.5, 89.6% of the benign lesions were successfully segmented and correctly recognised, while 60.6% of the20

malignant lesions were successfully segmented and correctly recognised. We conclude the paper by addressing the21

future challenges of the work.22

Keywords: breast ultrasound, breast lesions recognition, fully convolutional network, semantic segmentation.23

*Moi Hoon Yap, m.yap@mmu.ac.uk24

1 Introduction25

Breast cancer is the most common cancer in the UK [1], where one in eight women will be di-26

agnosed with breast cancer in their lifetime and one person is diagnosed every 10 minutes [1].27

Over recent years, there has been significant research into using different image modalities [2] and28

technical methods have been developed [3, 4] to aid early detection and diagnosis of the disease.29

These efforts have led to further research challenge and demand for robust computerised methods30

for cancer detection.31

Two view mammography is known as the gold standard for breast cancer diagnosis [2]. How-32

ever, ultrasound is the standard complementary modality to increase the accuracy of diagnosis.33
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Other alternatives include tomography and magnetic resonance, however, ultrasound is the most34

widely available option and widely used in clinical practice [5].35

Conventional computerised methods in breast ultrasound cancer diagnosis comprised multi-36

ple stages, including pre-processing, detection of the region of interest (ROI), segmentation and37

classification [6–8]. These processes rely on hand-crafted features including descriptions in the38

spatial domain (texture information, shape and edge descriptors) and frequency domain. With the39

advancement of deep learning methods, we can detect and recognise objects without the need for40

hand-crafted features. This paper presents the limitation of the state of the art and conducts a fea-41

sibility study on the use of a deep learning approach as an end-to-end solution for fully automated42

breast lesion recognition in ultrasound images.43

Two-Dimensional (2D) breast ultrasound lesion segmentation is a challenging task due to the44

speckle noise and being operator dependent. So far, image processing and conventional machine45

learning methods are deemed as preferable methods to segment the breast ultrasound lesions [9].46

These are dependent on the human designed features such as texture descriptors [10,11] and shape47

descriptors [7]. With the help of these extracted features, image processing algorithms [12] are48

used to locate and segment the lesions. Some of the state-of-the-art segmentation solutions consist49

of multiple stages [13,14] - preprocessing or denoising stage, initial lesion detection stage to iden-50

tify a region of interest [15] and segmentation [16]. Recently, Huang et al. [9] reviewed the breast51

ultrasound image segmentation solutions proposed in the past decade. In their study, they found52

that due to the ultrasound artifacts and to the lack of publicly available datasets for assessing the53

performance of the state-of-the-art algorithms, the breast ultrasound segmentation is still an open54

and challenging problem.55
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2 Related Work56

This section summarises the state-of-the-art segmentation and classification approaches for breast57

ultrasound cancer analysis.58

2.1 BUS Segmentation Approaches59

Achieving an accurate segmentation in BUS images is considered to be a big challenge [17], be-60

cause of the appearance of sonographic tumors [18,19], the speckle noise, the low image contrast,61

and the local changes of image intensity [20]. Considering radiologist interaction within the seg-62

mentation process, it could have semi-automatic or fully automatic segmentation approaches [21].63

Semi-automated segmentation approaches require an interaction with the user such as setting64

seeds, specifying an initial boundary or a region of interest (ROI). For instance, in [22], a com-65

puterized segmentation method for breast lesions on ultrasound images was proposed. First, a66

contrast-limited adaptive histogram equalization was applied. Then, in order to enhance lesion67

boundary and remove speckle noise, an anisotropic diffusion filter was applied, guided by texture68

descriptors derived from a set of Gabor filters. Further, the derived filtered image was multiplied by69

a constraint Gaussian function, to eliminate the distant pixels that do not belong to the lesion. To70

create potential lesion boundaries, a marker-controlled watershed transformation algorithm was71

applied. Finally, the lesion contour was determined by evaluating the average radial derivative72

function.73

In order to segment ultrasonic breast lesions, Gao et.al. [18] proposed a variant of a normal-74

ized cut (NCut) algorithm that was based on homogeneous patches (HP-NCut) in 2012. Further,75

HPs were spread within the same tissue region, which is more reliable to distinguish the different76

tissues for better segmentation. Finally in the segmentation stage, they used the NCut framework77

3



by considering the fuzzy distribution of textons within HPs as final image features. More recently,78

Prabhakar et.al. [23] developed algorithm for an automatic segmentation and classification of79

breast lesions from ultrasound images. s a pre-processing step, speckle noise was removed us-80

ing the Tetrolet filter and, subsequently, active contour models based on statistical features were81

applied to obtain an automatic segmentation. For the classification of breast lesions, a total of82

40 features were extracted from the images, such as textural, morphological and fractal features.83

Support Vector Machines (SVM) with a polynomial kernel for the combination of texture, optimal84

features were used to classify the lesions from BUS images.85

Fully automatic segmentation needs no user intervention at all. In [24], instead of using a86

term-by-term translation of diagnostic rules on intensity and texture, a novel algorithm to achieve87

a comprehensive decision upon these rules was proposed. This was achieved by incorporating im-88

age over-segmentation and lesion detection in a pairwise conditional random field (CRF) model.89

In order to propagate object-level cues to segments, multiple detection hypotheses were used. Fur-90

ther, a unified classifier was trained based on the concatenated features. This algorithm could avoid91

the limitations of bottom-up segmentation, and capable to handle very complicated cases. In the92

same year, a novel algorithm was proposed [19], making no assumptions about lesions, in which93

a hierarchical over-segmentation framework was used for collecting heterogeneous features. Con-94

sidering multiscale property, the superpixels were classified with their confidences nested into the95

bottom layer. An efficient CRF model was used for making the ultimate segmentation. Compared96

with other two different approaches, Hao et.al [19] algorithm was superior in performance, and97

was able to handle all kinds of tumors (benign and malignant).98

In [25], two new concepts of neutrosophic subset and neutrosophic connectedness (neutro-99

connectedness) were defined to generalize the fuzzy subset and fuzzy connectedness. The newly100
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proposed neutro-connectedness models the inherent uncertainty and indeterminacy of the spatial101

topological properties of the image. The proposed method was applied to a BUS dataset with 131102

cases, and its performance was evaluated using the similarity ratio, false positive ratio and average103

Hausdroff error. In comparison with the fuzzy connectedness segmentation method, the proposed104

method was more accurate and robust in segmenting tumors in BUS images.105

2.2 BUS Classification Approaches106

The majority of state-of-the-art methods are multi-stage. First to detect a lesion, i.e. where a lesion107

is localised on the image [26]. The localisation of a lesion can be done by manual annotation or108

using automated lesion detection approaches [6, 15]. Subsequently, next step is to identify the le-109

sion type using feature descriptors. Amongst different proposed approaches considering solid mass110

classification, there are two main feature descriptors [27], i.e. echo texture [28] [11] and shape and111

margin features [29]. We present a couple of works on multi-stage machine learning methods. For112

a full review, please refer to Cheng et al. [26]. Liu et al. [30] proposed a novel breast classification113

system for Color Doppler flow imaging and B-Mode ultrasound. In order to obtain features from114

B-Mode ultrasound, many feature extraction methods were used to provide both the texture and115

geometric features. The first stage was an extraction of color Doppler features, which was achieved116

by applying blood flow velocity analysis to Doppler signals to extract several spectrum features.117

In addition, the authors proposed a velocity coherent vector method. Furthermore, using a sup-118

port vector machine classifier, selected features were used to classify breast lesions into benign or119

malignant classes. They achieved an area under the ROC curve of 0.9455 when validated on 105120

cases with 50 benign and 55 malignant. In the same year, Yap et al. [31] carried out a compre-121

hensive analysis of the best feature descriptors and classifiers for breast ultrasound classification.122
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They experimented with 19 features (texture, shape and edge), 22 feature selection methods and123

ten classifiers. From their findings, the best combination was the feature set of 4 shape descrip-124

tors, 1 edge descriptor and 3 texture descriptors using a Radial Basis Function Network, with an125

area under the ROC curve of 0.948. In 2016, Yap and Yap [32] conducted study to evaluate the126

performance of machine learning on human delineation and computer method. They found that127

there were no significant differences for benign lesions but computer segmentation showed better128

accuracy for malignant lesion classification.129

There is increasing interest in deep learning for medical imaging [33] and two research groups130

have been successful in using this in breast ultrasound. In 2016, Huynh et al. [34] proposed the use131

of a transfer learning approach for ultrasound breast images classification. The authors used 1125132

cases and 2393 regions of interest for their experiment, where the ROIs were selected and labeled133

by the experts. To compare with the hand-crafted features, CNN was used to extract the features.134

When classify the CNN-extracted features with support vector machine on the recognition task of135

benign and malignant, they achieved an area under the ROC curve of 0.88. However, their solution136

was multi-stage and they did not share their dataset. In 2017, Yap et al. [35] demonstrated the137

use of deep learning for breast lesions detection, which outperformed the previous state-of-the-art138

image processing and conventional machine learning methods. They achieved an F-measure of139

0.92 on breast lesions detection and made one of the dataset available for research purposes.140

Recently, Yap et al. [36] demonstrated the practicality and feasibility of using a deep learning141

approach for automated semantic segmentation for BUS lesion recognition. However, they only142

performed one fold validation using one type of FCNs, i.e. FCN-AlexNet. This paper extends143

Yap et al. [36] to 5-fold cross validation on four types of FCNs, namely, FCN-AlexNet, FCN-32s,144

FCN-16s and FCN-8s. We are the first to implement semantic segmentation on BUS images.145
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3 Methodology146

This section provides an overview of the breast ultrasound datasets, the preparation of the ground147

truth labeling, the proposed method and the type of performance metrics used to validate our148

results.149

3.1 Datasets150

To date, data deficiency in medical imaging analysis is a common problem. To form a larger151

dataset, we combined two datasets, which were the only two datasets made available for re-152

searchers. We provide a summary for each dataset and the details can be found in [35].153

In 2001, a professional didactic media file for breast imaging specialists [37] was made avail-154

able. It was obtained with B&K Medical Panther 2002 and B&K Medical Hawk 2102 US systems155

with an 8-12 MHz linear array transducer. Dataset A consists of 306 images from different cases156

with a mean image size of 377×396 pixels. From these images, 306 contained one or more lesions.157

Within the lesion images, 60 images presented malignant masses (as in Fig. 1 first row (a)) and158

246 were benign lesions (as in Fig. 1 first row (b)). To obtain Dataset A, the user needs to purchase159

the didactic media file from Prapavesis et al. [37]. Yap et al. [35] named it as Dataset A in their160

description.161

In 2012, the UDIAT Diagnostic Centre of the Parc Taulı́ Corporation, Sabadell (Spain) has col-162

lected Dataset B with a Siemens ACUSON Sequoia C512 system 17L5 HD linear array transducer163

(8.5 MHz). The dataset consists of 163 images from different women with a mean image size of164

760×570 pixels, where the images presented one or more lesions. Within the 163 lesion images,165

53 were malignant lesions (as in Fig. 1 first row (c)) and 110 with benign lesions (as in Fig. 1166
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Fig 1 Illustration of some images from the datasets and its ground truth labeling in PASCAL-VOC format.(a) and (b)
are images from Dataset A; (c) and (d) are images from Dataset B; and index 1 (RED) indicates malignant lesion and
index 2 (GREEN) indicates benign lesion.

first row (d)). Dataset B and the respective delineation of the breast lesions are available online for167

research purposes, please refer to [35], where they named it as Dataset B in their description.168

3.2 Ground Truth169

Since deep learning models for semantic segmentation are widely evaluated for the PASCAL-170

VOC 2012 training and validation dataset, these trained models are tested for various performance171

metrics on the PASCAL-VOC 2012 test set [38, 39]. In the PASCAL-VOC 2012 dataset, the RGB172

images are used as input images. The dimensions of both input images and label images should be173

the same size [40]. Although the images used in training are not required to be the same size for174

deep learning models in segmentation tasks, all the images are required to be of same size due to175

the use of fully connected layers in these models. In the labelled image, every pixel value for each176

class is an index ranging from 0 to 255. In the PASCAL-VOC 2012 dataset, there are a total of177

21 classes used so far, hence, 21 indexes are used for labelling the images. For breast ultrasound178

images, the format in digital media is generally grayscale. Hence, to make this compatible with the179
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Fig 2 Overview of the semantic segmentation architecture.

pre-trained models and networks that are trained for PASCAL-VOC 2012 dataset (RGB images),180

we converted the grayscale images to RGB images with the help of channel conversion. The181

ground truths in binary masks format are converted into the 8-bit paletted label images. Fig. 1182

illustrates the breast ultrasound images with the corresponding ground truth labeling in PASCAL-183

VOC format, where index 1 (RED) indicates malignant lesion and index 2 (GREEN) indicates184

benign lesion.185

3.3 Deep Learning Framework186

The deep learning methods proved its superiority over image processing methods and traditional187

machine learning in the detection of abnormalities in medical imaging of various modalities [35,188

41]. There are two main types of tasks associated with medical imaging i.e. classification and189

semantic segmentation [42,43]. However, a known limitation of the classification is its inability to190

locate the abnormalities in medical imaging. Hence, semantic segmentation deep learning methods191

address this issues by classifying each pixel of the medical images rather than single prediction per192

image in the classification task. A popular group of deep learning methods for end-to-end semantic193

segmentation are fully convolutional networks (FCNs) [44].194

FCN-AlexNet is a FCN version of the original AlexNet classification model with a few ad-195

justments in the network layers for the segmentation task [44]. This network was originally used196

9



for the classification of 1000 different objects of classes on the ImageNet dataset [45]. FCN-32s,197

FCN-16s, and FCN-8s are three models inspired by the VGG-16 based net which is a 16-layer198

CNN architecture that participated in the ImageNet Challenge 2014 and secured the first position199

in localization and second place in classification competition. All deep learning frameworks rely200

on feature extraction through the convolution layers, but classification networks throw away the201

spatial information in the fully connected layers. In contrast with classification network which202

ignores spatial information using fully connnected layers, FCN incorporates this information by203

replacing fully connected layers with convolution layers. Feature maps from those convolution204

layers are later used for classifying each pixel to get the semantic segmentation.205

Transfer Learning is a procedure where a CNN is trained to learn features for a broad domain206

after which layers of the CNN are fine-tuned to learn features of a more specific domain. Under207

this setting, the features and the network parameters are transferred from the broad domain to208

the specific one depending on several factors such as size of the new dataset and similarity to209

the original dataset. The use of deep learning methods for semantic segmentation in medical210

imaging suffer from the problem of data deficiency, which can be overcome with the help of211

transfer learning approaches [41,42]. In this work, the pre-trained models on the ImageNet dataset212

which contains more than 1.5 millions images of 1000 classes was used for transfer learning [45].213

The weights trained on ImageNet dataset are transferred for semantic segmentation of BUS with214

minor adjustments in the convolutionized fully connected layers [44]. We initialised the weights215

of convolutional layers from these pre-trained models rather than setting up the random weights216

for the limited medical datasets such as BUS dataset. Otherwise, it is very hard to converge the217

models based on the limited medical datasets. Hence, we fine-tuned these models by using pre-218

trained models and training on two classes i.e. benign and malignant in the BUS dataset as shown219
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Fig 3 Transfer learning procedure of deep CNNs to obtain optimized weights initializations. Three fully connected
layers of CNN were removed and replaced by three convolutional layers, making the pre-trained model fully convolu-
tional.

in the Fig. 3.220

The combination of Dataset A and Dataset B forms a larger dataset with a total of 113 malignant221

lesions and 356 benign lesions. We used the combined dataset to form better training and transfer222

learning to overcome the problem of data deficiency. We used DIGITS V5 which acts as a wrapper223

for the deep learning Caffe framework on the GPU machine of the following configuration: (1)224

Hardware: CPU - Intel i7-6700 @ 4.00Ghz, GPU - NVIDIA TITAN X 12Gb, RAM - 32Gb DDR5225

(2) Deep Learning Framework: Caffe [46].226

We assessed the performance of the model using 5-fold cross validation using the following227

split: 70% for training data, 10% for validation data, and 20% testing data. We trained the model228

using stochastic gradient descent with a learning rate of 0.0001, 60 epochs with a dropout rate of229

33%. The number of epochs was kept at 60 as in [47] where convergence has already happened230

when we performed the empirical experiments. Fig. 2 illustrates the process of the end-to-end231

solution using semantic segmentation.232

11



Table 1 Summary of the performances for different lesion types for four semantic segmentation methods in Mean. SD
is standard deviation.

Lesion Type Method Sensitivity Precision Dice MCC
Mean±SD Mean±SD Mean±SD Mean±SD

Benign
FCN-AlexNet 0.8000±0.2404 0.7282±0.2191 0.7199±0.1964 0.7304±0.1762

FCN-32s 0.8271±0.2250 0.7471±0.1923 0.7473±0.1896 0.7554±0.1689
FCN-16s 0.8374±0.2392 0.7674±0.1953 0.7626±0.2095 0.7733±0.1857
FCN-8s 0.8092±0.2683 0.7940±0.1960 0.7564±0.2373 0.7659±0.2172

Malignant
FCN-AlexNet 0.4708±0.3078 0.7599±0.2364 0.4894±0.2757 0.5080±0.2488

FCN-32s 0.4492±0.2983 0.7737±0.2925 0.3267±0.2870 0.4001±0.2577
FCN-16s 0.3790±0.2978 0.7481±0.2718 0.4212±0.2804 0.4616±0.2527
FCN-8s 0.5696±0.3350 0.7044±0.2528 0.5484±0.2785 0.5842±0.2358

3.4 Evaluation criteria233

Even though the method is an end-to-end solution, we evaluated the results using standard perfor-234

mance metrics from the literature. To measure the accuracy of the segmentation results, the Dice235

Similarity Coefficient (Dice) (henceforth Dice) [48, 49] was used. We report our findings in Dice,236

Sensitivity, Precision and Matthew Correlation Coefficient (MCC) [50] as our evaluation metrics.237

4 Results and Discussion238

Table 1 summarises the performance of our proposed methods on benign and malignant lesions.239

Overall, all the methods performed better on benign lesions, with a top Dice score of 0.7626,240

compared to the malignant lesions with a top Dice score of 0.5484. The results showed that the241

performance of the proposed method was dependent on the size of the dataset. In our datasets,242

we have more benign images (356) than malignant images (113). Overall, FCN-16s has the best243

performance in benign lesions recognition that achieved 0.8374 in Sensitivity, 0.7626 in Dice Score244

and 0.7733 in MCC. FCN-8s has the best Precision of 0.7940. For Malignant lesions, FCN-8s is245

the best method with 0.5696 in Sensitivity, 0.5484 in Dice and 0.5842 in MCC.246

According to Everingham et al. [51], the results with Dice score > 0.5 is considered correct de-247

tection. Fig. 4 compares the performances of the proposed methods when considering the number248
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Fig 4 The accuracy of the proposed methods when considering the number of images with Dice score > 0.5.

of images with Dice score > 0.5. Overall, benign lesions had higher Dice score, with top accuracy249

of 0.8960 for FCN-16s. This implies that 89.6% of the benign lesions were successfully segmented250

and correctly recognised. The results were comparable across four different methods. For malig-251

nant lesions, the top accuracy is 0.6060 with FCN-8s, where only 60.6% of the malignant lesions252

were successfully segmented and correctly recognised. The worst performance in malignant le-253

sions recognition was FCN-32s, where only 33.3% of the lesions was successfully segmented and254

recognised. The poor performances were due to data deficiency in malignant class, which is a255

common issue for deep learning approaches.256

To further illustrate the results, we visually compared the segmented regions for the proposed257

methods. Four examples of the successful and failed cases for our experiment are illustrated in Fig.258

5. The first row is a benign lesion, where the lesion is well-defined with clear boundaries. All the259

methods achieved high Dice score. Fig. 5 second row illustrates a malignant lesion with irregular260

boundaries and ill-defined shape. We observed that all the methods had classified the lesion to the261
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correct class. However, only FCN-16s managed to produce the closest segment when compared to262

the ground truth. The third row of Fig. 5 shows a benign lesion where all the methods failed to263

segment the lesion. This is due to the appearance of fibroadenoma are less hypo-echoic and poor264

image quality. The final row illustrates that even though the methods are able to segment the lesion,265

misclassification is an issue where FCN-AlexNet and FCN-32s have classified the hypo-echoic266

region as benign. FCN-8s are able to classify the lesion correctly however it also detected some267

benign regions within the lesion. Overall, the lesions with small area, ambiguity in the boundary268

and irregular shape are harder for semantic segmentation due to the lack of data to represent these269

categories.270

5 Conclusion271

The common problem in conventional machine learning are: 1) It is based on hand-crafted features;272

2) In some cases, it requires human intervention where the radiologists has to select the ROI; and 3)273

It is multi-stage and there is dependency from one stage to the next. In this paper, the problem was274

solved by using a deep learning approach where we have shown four types of FCNs in designing a275

robust end-to-end solution for breast ultrasound lesions recognition.276

Conventional methods classified the lesion into single type, but using semantic segmentation,277

we observed that it is not necessarily the case. In one lesion, as illustrated in Fig. 5 row 3 and row278

4, it may have malignant tissue and benign tissue. This is an interesting finding for future research279

in understanding the tumour from both the computer vision and clinical perspectives.280

This paper has provided a new insight for future research to by investigating four types of deep281

learning techniques. However, proposing an accurate end-to-end solution for breast ultrasound282

lesions recognition remains a challenge due to the lack of datasets to provide sufficient data repre-283

14



Fig 5 Visual comparison of the lesions segmentation and recognition with FCNs. The first column is the ground
truth delineation, the second column is the proposed transfer learning FCN-AlexNet, the third column is the proposed
transfer learning FCN-32s and the fourth column is the proposed transfer learning FCN-16s and the last column is
the proposed transfer learning FCN-8s. The first and second rows showed the best case scenarios where the lesions
were correctly segmented and classified. The third and fourth rows showed difficult cases where FCNs failed in those
cases.
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sentation. In the future, with the growth of big data and data sharing efforts, an end-to-end solution284

based on deep learning approach may find wide applications in breast ultrasound computer aided285

diagnosis.286
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