288 research outputs found

    Boundary Extraction in Images Using Hierarchical Clustering-based Segmentation

    Get PDF
    Hierarchical organization is one of the main characteristics of human segmentation. A human subject segments a natural image by identifying physical objects and marking their boundaries up to a certain level of detail [1]. Hierarchical clustering based segmentation (HCS) process mimics this capability of the human vision. The HCS process automatically generates a hierarchy of segmented images. The hierarchy represents the continuous merging of similar, spatially adjacent or disjoint, regions as the allowable threshold value of dissimilarity between regions, for merging, is gradually increased. HCS process is unsupervised and is completely data driven. This ensures that the segmentation process can be applied to any image, without any prior information about the image data and without any need for prior training of the segmentation process with the relevant image data. The implementation details of HCS process have been described elsewhere in the author's work [2]. The purpose of the current study is to demonstrate the performance of the HCS process in outlining boundaries in images and its possible application in processing medical images. [1] P. Arbelaez. Boundary Extraction in Natural Images Using Ultrametric Contour Maps. Proceedings 5th IEEE Workshop on Perceptual Organization in Computer Vision (POCV'06). June 2006. New York, USA. [2] A. N. Selvan. Highlighting Dissimilarity in Medical Images Using Hierarchical Clustering Based Segmentation (HCS). M. Phil. dissertation, Faculty of Arts Computing Engineering and Sciences Sheffield Hallam Univ., Sheffield, UK, 2007.</p

    Unsupervised learning and clustering using a random field approach

    Get PDF
    In this work we propose a random field approach to unsupervised machine learning, classifier training and pattern classification. The proposed method treats each sample as a random field and attempts to assign an optimal cluster label to it so as to partition the samples into clusters without a priori knowledge about the number of clusters and the initial centroids. To start with, the algorithm assigns each sample a unique cluster label, making it a singleton cluster. Subsequently, to update the cluster label, the similarity between the sample in question and the samples in a voting pool and their labels are involved. The clusters progressively form without the user specifying their initial centroids, as interaction among the samples continues. Due to its flexibility and adaptability, the proposed algorithm can be easily adjusted for on-line learning and is able to cope with the stability-plasticity dilemma

    Similarity Classification and Retrieval in Cancer Images and Informatics

    Get PDF
    Techniques in image similarity, classification, and retrieval of breast cancer images and informatics are presented in this thesis. Breast cancer images in the mammogram modality have a lot of non-cancerous structures that are similar to cancer, which makes them especially difficult to work with. Only the cancerous part of the image is relevant, so the techniques must learn to recognize cancer in noisy mammograms and extract features from that cancer to classify or retrieve similar images. There are also many types or classes of cancer with different characteristics over which the system must work. Mammograms come in sets of four, two images of each breast, which enables comparison of the left and right breast images to help determine relevant features and remove irrelevant features. Image feature comparisons are used to create a similarity function that works well in the high-dimensional space of image features. The similarity function is learned on an underlying clustering and then integrated to produce an agglomeration that is relevant to the images. This technique diagnoses breast cancer more accurately than commercial systems and other published results. In order to collect new data and capture the medical diagnosis used to create and improve these methods, as well as develop relevant feedback, an innovative image retrieval, diagnosis capture, and multiple image viewing tool is presented to fulfill the needs of radiologists. Additionally, retrieval and classification of prostate cancer data is improved using new high-dimensional techniques like dimensionally-limited distance functions and dimensional choice

    Intelligent Image Retrieval Techniques: A Survey

    Get PDF
    AbstractIn the current era of digital communication, the use of digital images has increased for expressing, sharing and interpreting information. While working with digital images, quite often it is necessary to search for a specific image for a particular situation based on the visual contents of the image. This task looks easy if you are dealing with tens of images but it gets more difficult when the number of images goes from tens to hundreds and thousands, and the same content-based searching task becomes extremely complex when the number of images is in the millions. To deal with the situation, some intelligent way of content-based searching is required to fulfill the searching request with right visual contents in a reasonable amount of time. There are some really smart techniques proposed by researchers for efficient and robust content-based image retrieval. In this research, the aim is to highlight the efforts of researchers who conducted some brilliant work and to provide a proof of concept for intelligent content-based image retrieval techniques

    Breast cancer diagnosis: a survey of pre-processing, segmentation, feature extraction and classification

    Get PDF
    Machine learning methods have been an interesting method in the field of medical for many years, and they have achieved successful results in various fields of medical science. This paper examines the effects of using machine learning algorithms in the diagnosis and classification of breast cancer from mammography imaging data. Cancer diagnosis is the identification of images as cancer or non-cancer, and this involves image preprocessing, feature extraction, classification, and performance analysis. This article studied 93 different references mentioned in the previous years in the field of processing and tries to find an effective way to diagnose and classify breast cancer. Based on the results of this research, it can be concluded that most of today’s successful methods focus on the use of deep learning methods. Finding a new method requires an overview of existing methods in the field of deep learning methods in order to make a comparison and case study
    • …
    corecore