
http://wrap.warwick.ac.uk/   

 
 

 
 
 
 
 
 
 
Original citation: 
Li, Chang-Tsun and Wilson, Roland, 1949- (2007) Unsupervised learning and clustering 
using a random field approach. Coventry, UK: Department of Computer Science, 
University of Warwick. CS-RR-431 
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/61597            
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
A note on versions: 
The version presented in WRAP is the published version or, version of record, and may 
be cited as it appears here.For more information, please contact the WRAP Team at: 
publications@warwick.ac.uk 
 
 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61597
mailto:publications@warwick.ac.uk


 

Unsupervised Learning and Clustering 
Using a Random Field Approach 

 

Chang-Tsun Li and Roland Wilson 

Department of Computer Science 

University of Warwick 

Coventry CV4 7AL, UK 

{ctli, rgw}@dcs.warwick.ac.uk 
 
 

Abstract 
 

In this work we propose a random field approach to unsupervised machine 
learning, classifier training and pattern classification. The proposed method 
treats each sample as a random field and attempts to assign an optimal cluster 
label to it so as to partition the samples into clusters without a priori knowledge 
about the number of clusters and the initial centroids. To start with, the 
algorithm assigns each sample a unique cluster label, making it a singleton 
cluster. Subsequently, to update the cluster label, the similarity between the 
sample in question and the samples in a voting pool and their labels are 
involved. The clusters progressively form without the user specifying their 
initial centroids, as interaction among the samples continues. Due to its 
flexibility and adaptability, the proposed algorithm can be easily adjusted for 
on-line learning and is able to cope with the stability-plasticity dilemma. 
 

 
1 Introduction 

 
Clustering and machine learning algorithms are in widespread use in the areas of 
bioinformatics [2], pattern classification [10], data mining [7], image analysis [8], 
multimedia database indexing [6], etc. The main objective in clustering applications 
is to group samples / patterns into clusters of similar properties. In the context of 
supervised classifier training, the labels of the training samples / patterns are known 
beforehand, making the training or design easier. However, the properties, such as 
class labels, of the samples may not always be available. In such cases, unsupervised 
learning algorithms are required to train the classifier based on unlabeled samples.  

When the training samples are available before the training process starts, the 
learning can proceed in an ‘off-line’ manner. However in real-time environments, 



 

the learning goes on as the new samples are presented. Off-line learning is in no way 
capable of coping with such a challenge. This issue makes algorithms with the 
capability of incremental or on-line learning more desirable. A yet more challenging 
issue in clustering and learning is that the number of classes / clusters may be 
unknown throughout the learning process. 

Among a wide variety of methods, k-means [7, 10] and fuzzy c-means [1, 2, 9] 
have been intensively employed in various applications. However, classical k-means 
and fuzzy c-means clustering methods rely on the user to provide the number of 
clusters and initial centroid. These requirements impose limitations on the 
applicability of the methods because the number of clusters may not always be 
known beforehand and the clustering quality depends heavily on the appropriateness 
of the initial centroids. Although improved versions of these methods have been 
reported in some applications, the same inherent limitations still exist. Duda et al. [3] 
suggested two general ways of circumventing this problem. The first one is to repeat 
the same k-means or fuzzy c-means clustering method for many different values of k 
or c, and compare some criterion for each clustering. If a large difference in the 
criterion values is found between a specific clustering and others, the clustering's 
value of k or c suggests a good guess of the number of clusters. The second approach 
starts with treating the first pattern as the only cluster. If the similarity between the 
next pattern and the centroid of the closest cluster is greater than a pre-specified 
threshold, the new pattern is merged into that closest cluster and the new centroid of 
that cluster is re-calculated. Otherwise a new cluster, with the new pattern as the 
only member, is created. This approach is particularly popular in incremental or on-
line learning cases because of its plastic characteristic. Unfortunately, the pre-
specified threshold implicitly determines the number of clusters which the algorithm 
will form. A small threshold results in a great number of clusters, while a large 
threshold leads to a small number of clusters. The clustering of the second approach 
is also sensitive to the order of patterns entering the clustering processing. This is the 
so-called stability-plasticity dilemma [4] and needs addressing.  

To work without knowing the number of cluster beforehand, hierarchical 
clustering has been adopted in many bioinformatic applications [5]. However, its 
exhaustive way of searching for the closest cluster and requirement of complete 
sample availability make it unsuitable for on-line learning. 

 
  

2 Proposed Algorithm 
 

The design of our algorithm is based on the following postulates: 

 Coping with the stability-plasticity dilemma and the problem of an unknown 
number of clusters by not using cluster centroids in the learning process but the 
relative similarity between each sample and the member samples in a randomly 



 

formed voting pool. By random we mean, for each sample, the member 
samples in its voting pool of are different at different stages. 
 Coping with the problem of unknown number of clusters by allowing each 
individual sample to be a singleton cluster and interact with the samples in the 
voting pool to find its own identity progressively. 

The rationale supporting our postulates is that the randomness of the voting pool 
facilitates global interactions (plasticity) while remaining insensitive to the variable 
and unreliable centroids. 

In our work each n-dimensional sample s is treated as a random variable Xs. The 
objective of the learning is to assign an optimal class label xs depending on the 
observed data Ys, of s (i.e the sample’s position in the n-dimensional Euclidean 
space) and observed data Yr and class labels Xr, for all r in a voting pool Ns 
(i.e.

sNr∈∀ ). This can be formulated as a random field (RF) model 
 

)|(),|,(     

),,,|(

rrrsrrssrrss

srrrrssss

xXxXPxXxXyYyYP

NrxXyYyYxXP

======

∝∈====
              (1) 

 

For the sake of conciseness, we will sometimes use )(
ss NN yY  and )(

ss NN xX to 
represent the observed data and class labels of all the samples in Ns, respectively. 

 
 

2.1. Voting Pool 
 

During each iteration when a sample s is being visited, its voting pool Ns comprising 
k samples, including the sample (called most-similar or MS) closest to s in the 
Euclidean space and the sample (called most-different or MD) farthest from s and k – 
2 samples selected at random, is formed. Both the most-similar and the most-
different samples are the ones encountered in the voting pool since the entire 
learning process starts. That is, in any iteration, if a voting sample selected at 
random is more similar to (or more different from) s than the current most-similar 
(or most-different) sample, the most-similar (or most-different) sample is replaced by 
that voting sample. 
 
 
2.2. Cost Function 

 
The random field model of Eq (1) can also be expressed in a Gibbs form in terms of 
cost functions ),|,(

ss NsNs
c
s xxyyU and )|(

sNs
p
s xxU , which are associated with the 

conditional probability and prior of Eq. (1), respectively. Since the two cost 



 

functions are dependent on the same set of ‘variables’, by properly integrating the 
two, we obtain a new model as 

 
),,,(),,|( sNssNss

ss

yyxxU
NNss exyyxP −∝                     (2) 

 
The cost function Us(⋅) is defined in this work as the sum of the pair-wise 

potentials between site s and the voting members in Ns: 
 

),,,(),,,( ,∑ ∈
=

sss Nr rsrsrsNsNss yyxxVyyxxU                   (3) 

 
where the potential Vs,r is defined, based on the sample distance between samples s 
and r as  

 





≠−
=−−

=
rsrs

rsrs
rsrsrs xxdD

xxdD
yyxxV

 if        
 if          )(

),,,(
,

,
,                (4) 

 
where ds,r = |ys - yr| is the Euclidean distance between samples s and r. D is the 
estimated threshold dividing the set of Euclidean distances into intra- and inter-
class distances. To estimate D, for each sample, we calculate its distances to m other 
randomly picked samples and find the minimum and maximum distances (We let m 
equal 3 in our experiments). Then two values dw and do are calculated by taking the 
average of all the minimum and ⋅ m/2th distances, respectively. Finally, D is 
defined as 

 
)(2

1
ow ddD +=                            (5) 

 
 

2.3. Finding the optimal labels 
 

The optimal label 
sx̂  for a sample s can be stochastically or deterministically 

selected according to Eq. (2). In our work we adopt deterministic selection, as such 
picking a label corresponding to a large value of P(⋅)is equivalent to picking a label 
corresponding to a small value of Us(⋅). Therefore, the optimal label sx̂   is selected 
according to Eq. (6).  

 
)),,,(( min argˆ

ss
s

NsNssxs yyxxUx =                   (6) 

 



 

Before the first iteration of the labelling process starts, each sample is assigned a 
label randomly picked from the integer range [1, N], where N is the number of 
samples (not the number of clusters). Therefore, the algorithm starts with a set of N 
singleton clusters without user specifying the number of clusters.  

 
 

3 On-line Learning 
 

Since the proposed algorithm is not dictated by the pre-specified number of clusters 
and the current centroids of the clusters, it can be easily adjusted for on-line learning 
as described below. The new samples are all given unique labels that have not been 
assigned to any existing samples. That is to say that the new samples are treated as 
singleton clusters. D in Eq. (5) is updated according to the distances between each 
new sample and m others as described in Section 2.2. Then the labelling continues 
based on the new clustering and D. 

.  
4 Experiments 

 
We have applied the proposed algorithm to various sets of 3-dimensional samples 
consisting of 5 clusters, each having 30 members. The algorithm is tested with the 
size k of the voting pool set to 4, 6, 10 and 18. In order to get objective statistics 
during each run of the algorithm, a new sample set is used. For each sample set, the 
five clusters Ci, i = 1, 2, 3, 4, 5, are randomly created with the 5 centroids fixed at µ1 
= (40, 45, 100), µ2 = (85, 60, 100), µ3 =(65, 100, 80), µ4 = (55, 120, 120), µ5 = (120, 
50, 120) respectively and the same variance of 64. Figure 1 shows one of the sample 
set used in our experiments. The clustering performance after repeating the algorithm 
for 100 times is listed in Table 1. Three cases have been investigated: 

1) MS & MD included: This is the case where both most-similar (MS) and most-
different (MD) samples are included in the voting pool. 

2) MD excluded: This is the case where MS is included while MD is not. An 
additional random sample is included in place of the MD.  

3) MS excluded: This is the case where MS is not included while MD is. An 
additional random sample is included in place of the MS. 

Average iterations and Clustering error rate (%) in Table 1 indicate the average 
iterations the algorithm have to repeat and percentage of misclassification in one of 
the 100 runs.  

For the first case (MS & MD included), when the number of samples k in the 
voting pool is 4, which is less than the cluster number 5, the average iteration is as 
high as 34.50 and the clustering error rate is over 20%. When k is increased to 6, 
performance improved significantly, but the error rate is still as high as 5.1%. With k 
= 10 and 18, interaction between each sample and the rest of the sample set is better 



 

facilitated, as a result, the performance improved even further. One interesting point 
is that by increasing the number of voting samples from 10 to 18 does not improve 
the error rate significantly. This suggest that an error rate around 0.4% to 0.8% is the 
best the algorithm can do given the nature of the sample sets and when such as 
reasonable error rate is achieved including more voting sample is no longer 
beneficial because the overall computational load is increased even though the 
average iteration goes down. For example, apart from other overhead, the 
computational cost can be measured according to the formula: k × Average iteration. 
From Table 1 we can see that the computation costs when k equals 10 and 18 are 168 
and 193.5, respectively. Such a 0.26 % (= 0.73% – 0.47%) improvement on error rate 
is not a reasonable trade-off for the 15.18% (= (193.5 – 168) / 168) computational 
cost in most applications. The optimal size of the voting pool depends on the actual 
number of clusters and the total number of samples in the data set. Unfortunately, 
when the proposed algorithm is used in the applications where one or both of the two 
pieces of information is not unknown, no optimal value of k can be found 
beforehand. 

The second case (MD excluded) is intended to evaluate the performance of the 
proposed algorithm when the most-different sample is not involved in the voting 
process. When the size of the voting pool is not big enough (k = 4 and 6 in Table 1) 
to yield reasonable clustering in terms of clustering error rate, excluding the most-
different sample from the voting pool tends to have better performance in terms of 
average iteration and error rate. That is because the most-different sample is only 
updated when a more distant sample is found while the additional sample in place of 
the MD (when the MD is excluded) is picked at random, therefore providing more 
chances for interaction. However, when the size of the voting pool is big enough (k = 
10 and 18 in Table 1) to yield reasonable clustering in terms of clustering error rate, 
including the most-different sample in the voting pool becomes beneficial in terms of 
computational cost (average iteration). 

The third case (MS excluded) is to demonstrate the importance of the most–
similar sample. Note that the most-different sample can only tell the algorithm which 
particular label not to assign to the sample in question while the most-similar point 
out which label to assign. Even with the assistance of the MD, without the MS, the 
algorithm tends to ‘guess’ which label is the correct one. As indicated in Table 1, 
when k equals 4 and 6 the algorithm never converges. When k is increased to either 
10 or 18, successful clustering become possible, however, the computational cost is 
unacceptably higher than the cases when the MS is included. 

Performance of the proposed algorithm with the MS and MD included in an on-
line learning situation is listed in Table 2. Since the learning continues as the new 
data are presented, when evaluating the algorithm’s performance it is meaningless to 
take into account the iteration while the new samples are still arriving. Therefore the 
average iterations in Table 2 are the computational cost after the all the samples have 
become available. Because the learning starts before all the samples are available, by 
comparing Table 2 and the MS & MD included case in Table 1, we can see that the 



 

average iteration is significantly reduced. This indicates that learning before all the 
samples are available does occur and it provides the algorithm a point closer to the 
optimal point in the Euclidean space. 

We also tested our algorithm on the well-known Iris dataset. There are three 
classes of 4 dimensional patterns in the dataset, each having 50 patterns. Since it not 
possible to visualise 4-D patterns in 2-D media, we have shown the four 3-D plots of 
the dataset in Figure 2. From Figure 2 we can see that boundaries dividing the three 
classes do not exist. Consequently, we can expect that clustering error rate will 
higher when the same algorithm is applied to this dataset. After running the proposed 
algorithm with the voting pool size k = 10, and the MS and MD included, the average 
iteration is 23.67 and the average clustering error rate is 6.83%. The best 
performance in terms of average clustering error rate is 3%. 

 
 

5. Conclusions 
 

In this work, we pointed out that learning algorithms may be sensitive to the prior 
information such as the initial centroids and the number of the clusters and proposed 
an unsupervised learning algorithm which does not require such prior information 
and labels of the samples and is capable of on-line learning. The stability-plasticity 
dilemma and the problem of unknown number of clusters are circumvented through 
the use of relative similarity between each sample and the member samples in a 
randomly formed voting pool.  The randomness of the voting pool facilitates global 
interactions (plasticity) while remaining insensitive 
 

 

References 
 

[1] J. Cui, J. Loewy and E. J. Kendall, “Automated search for arthritic patterns in 
infrared spectra of synovial fluid using adaptive wavelets and fuzzy c-means 
analysis, IEEE Transactions on Biomedical Engineering, Vol. 53, No. 5, pp. 800 - 
809, May 2006. 

[2] D. Dembele and P. Kastner, “Fuzzy c-means method for clustering microarray data,” 
Bioinformatics, Vol. 19, No. 8, pp. 973–980, August 2003. 

[3] R. Duda, P. Hart and D. Stork, Pattern Classification (second ed.), Wiley, New 
York, NY, 2000. 

[4] S. Grossberg, “Adaptive pattern classification and universal recoding: I. Parallel 
development and coding if neural feature detectors,” Biological Cybernetics, Vol. 
23, pp. 121-134, 1976. 

[5] N. A. Heard, C. C. Holmes and D. A. Stephens, “A quantitative study of gene 
regulation involved in the immune response of Anopheline mosquitoes: an 
application of Bayesian Hierarchical clustering of curves,” Journal of American 



 

Statistical Association, Vol. 101, No. 473, Applications and Case Studies, pp. 18-29, 
March 2006. 

[6] K. -M. Lee and W. N. Street, “Cluster-driven refinement for content-based digital 
image retrieval,” IEEE Transactions on Multimedia, Vol. 6, No. 6, pp. 817 – 827, 
December 2004. 

[7] P. Lingras and C. West, “Interval set clustering of web users with rough k-means,” 
Journal of Intelligent Information Systems, Vol. 23, No. 1, pp. 5–16, July 2004. 

[8] K. L. McLoughlin, P. J. Bones and N. Karssemeijer, “Noise equalization for 
detection of microcalcification clusters in direct digital mammogram images,” IEEE 
Transactions on Medical Imaging, Vol. 23, No. 3, pp. 313 – 320, March 2004. 

[9] N.R. Pal, K. Pal, J.M. Kellerand J.C. Bezdek, “A possibilistic fuzzy c-means 
clustering algorithm,” IEEE Transactions on Fuzzy Systems, Vol. 13, No. 4, pp. 
517 – 530, August 2005. 

[10] A. Tarsitano, “A computational study of several relocation methods for k-means 
algorithms,” Pattern Recognition, Vol. 36, No. 12, pp.2955-2966, December 2003. 

 
 
 

 
 

Figure 1. One of the sample set used to test the proposed method. There are 5 
clusters, each highlighted with different colour and having 30 samples. 
 

 

 



 

 

 

 
Table 1. Performance of the proposed algorithm 

Average iterations Clustering error rate (%) 

k MS & 
MD 

included 

MD 
excluded 

MS 
excluded 

MS & 
MD 

included 

MD 
excluded 

MS 
excluded 

4 34.50 32.56 ∞ 20.27 13.66 N/A 

6 31.05 26.30 ∞ 5.10 4.24 N/A 
10 16.80 21.62 483.78 0.73 0.91 0.52 
18 10.75 14.60 371.33 0.47 0.40 0.33 

 

 

 

 

 

Table 2. Performance of the proposed algorithm in an on-line learning situation. 

k Average 
iteration Clustering error rate 

4 31.77 15.267 
6 26.70 4.356 
10 12.27 0.711 
18 4.57 0.43 

 
 

 

 

 

 

 

 
 

 
 
 



 

 
 
 

 
Figure 2. The four 3-D plots of the 4-D patterns in the Iris dataset. 

 


