31,518 research outputs found

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201

    Do we really need to write documentation for a system? CASE tool add-ons: generator+editor for a precise documentation

    Full text link
    One of the common problems of system development projects is that the system documentation is often outdated and does not describe the latest version of the system. The situation is even more complicated if we are speaking not about a natural language description of the system, but about its formal specification. In this paper we discuss how the problem could be solved by updating the documentation automatically, by generating a new formal specification from the model if the model is frequently changed.Comment: In Proceedings International Conference on Model-Driven Engineering and Software Development (MODELSWARD'13

    Adaptive mobile web applications through fine-grained progressive enhancement

    Get PDF

    Context-driven progressive enhancement of mobile web applications: a multicriteria decision-making approach

    Get PDF
    Personal computing has become all about mobile and embedded devices. As a result, the adoption rate of smartphones is rapidly increasing and this trend has set a need for mobile applications to be available at anytime, anywhere and on any device. Despite the obvious advantages of such immersive mobile applications, software developers are increasingly facing the challenges related to device fragmentation. Current application development solutions are insufficiently prepared for handling the enormous variety of software platforms and hardware characteristics covering the mobile eco-system. As a result, maintaining a viable balance between development costs and market coverage has turned out to be a challenging issue when developing mobile applications. This article proposes a context-aware software platform for the development and delivery of self-adaptive mobile applications over the Web. An adaptive application composition approach is introduced, capable of autonomously bypassing context-related fragmentation issues. This goal is achieved by incorporating and validating the concept of fine-grained progressive application enhancements based on a multicriteria decision-making strategy

    Integrated Process Simulation and Die Design in Sheet Metal Forming

    Get PDF
    During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modelling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Therefore, in this paper, an integrated process simulation and die design system developed at the University of Miskolc, Department of Mechanical Engineering will be analysed. The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. The concept described in this paper may have specific value both for process planning and die design engineers

    Radio interferometric imaging of spatial structure that varies with time and frequency

    Full text link
    The spatial-frequency coverage of a radio interferometer is increased by combining samples acquired at different times and observing frequencies. However, astrophysical sources often contain complicated spatial structure that varies within the time-range of an observation, or the bandwidth of the receiver being used, or both. Image reconstruction algorithms can been designed to model time and frequency variability in addition to the average intensity distribution, and provide an improvement over traditional methods that ignore all variability. This paper describes an algorithm designed for such structures, and evaluates it in the context of reconstructing three-dimensional time-varying structures in the solar corona from radio interferometric measurements between 5 GHz and 15 GHz using existing telescopes such as the EVLA and at angular resolutions better than that allowed by traditional multi-frequency analysis algorithms.Comment: 12 pages, 4 figures. SPIE Proceedings, Optical Engineering+Applications; Image Reconstruction from Incomplete Dat

    Intelligent Energy Optimization for User Intelligible Goals in Smart Home Environments

    Get PDF
    Intelligent management of energy consumption is one of the key issues for future energy distribution systems, smart buildings, and consumer appliances. The problem can be tackled both from the point of view of the utility provider, with the intelligence embedded in the smart grid, or from the point of view of the consumer, thanks to suitable local energy management systems (EMS). Conserving energy, however, should respect the user requirements regarding the desired state of the environment, therefore an EMS should constantly and intelligently find the balance between user requirements and energy saving. The paper proposes a solution to this problem, based on explicit high-level modeling of user intentions and automatic control of device states through the solution and optimization of a constrained Boolean satisfiability problem. The proposed approach has been integrated into a smart environment framework, and promising preliminary results are reporte

    Recent Achievements in Numerical Simulation in Sheet Metal Forming Processes

    Get PDF
    Purpose of this paper: During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modelling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Design/methodology/approach: Concerning the CAE activities in sheet metal forming, there are two main approaches: one of them may be regarded as knowledge based process planning, whilst the other as simulation based process planning. The author attempts to integrate these two separate developments in knowledge and simulation based approach by linking commercial CAD and FEM systems. Findings: Applying the above approach a more powerful and efficient process planning and die design solution can be achieved radically reducing the time and cost of product development cycle and improving product quality. Research limitations: Due to the different modelling approaches in CAD and FEM systems, the biggest challenge is to enhance the robustness of data exchange capabilities between various systems to provide an even more streamlined information flow. Practical implications: The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. Originality/value: The concept described in this paper may have specific value both for process planning and die design engineers
    corecore