16,338 research outputs found

    Making Business Predictions by Combining Human and Machine Intelligence in Prediction Markets

    Get PDF
    Computers can use vast amounts of data to make predictions that are often more accurate than those by human experts. Yet, humans are more adept at processing unstructured information and at recognizing unusual circumstances and their consequences. Can we combine predictions from humans and machines to get predictions that are better than either could do alone? We used prediction markets to combine predictions from groups of people and artificial intelligence agents. We found that the combined predictions were both more accurate and more robust than those made by groups of only people or only machines. This combined approach may be especially useful in situations where patterns are difficult to discern, where data are difficult to codify, or where sudden changes occur unexpectedly

    Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course. A proof-of-principle study

    Get PDF
    Background: Multiple sclerosis has an extremely variable natural course. In most patients, disease starts with a relapsing-remitting (RR) phase, which proceeds to a secondary progressive (SP) form. The duration of the RR phase is hard to predict, and to date predictions on the rate of disease progression remain suboptimal. This limits the opportunity to tailor therapy on an individual patient's prognosis, in spite of the choice of several therapeutic options. Approaches to improve clinical decisions, such as collective intelligence of human groups and machine learning algorithms are widely investigated. Methods: Medical students and a machine learning algorithm predicted the course of disease on the basis of randomly chosen clinical records of patients that attended at the Multiple Sclerosis service of Sant'Andrea hospital in Rome. Results: A significant improvement of predictive ability was obtained when predictions were combined with a weight that depends on the consistence of human (or algorithm) forecasts on a given clinical record. Conclusions: In this work we present proof-of-principle that human-machine hybrid predictions yield better prognoses than machine learning algorithms or groups of humans alone. To strengthen this preliminary result, we propose a crowdsourcing initiative to collect prognoses by physicians on an expanded set of patients

    Combining human and machine intelligence for making predictions

    Get PDF
    Thesis (S.M. in Management Research)--Massachusetts Institute of Technology, Sloan School of Management, June 2013."June 2012." Cataloged from PDF version of thesis.Includes bibliographical references (p. 28-32).An extensive literature in psychology, economics, statistics, operations research and management science has dealt with comparing forecasts based on human-expert judgment vs. (statistical) models in a variety of scenarios, mostly finding advantage of the latter, yet acknowledging the necessity of the former. Although computers can use vast amounts of data to make predictions that are often more accurate than those by human experts, humans are still more adept at processing unstructured information and at recognizing unusual circumstances and their consequences. Can we combine predictions from humans and machines to get predictions that are better than either could do alone? We used prediction markets to combine predictions from groups of people and artificial intelligence agents. We found that the combined predictions were both more accurate and more robust in comparison to those made by groups of only people, or only machines. This combined approach may be especially useful in situations where patterns are difficult to discern, where data are difficult to codify, or where sudden changes occur unexpectedly.by Yiftach Nagar.S.M.in Management Researc

    Machine learning and deep learning

    Full text link
    Today, intelligent systems that offer artificial intelligence capabilities often rely on machine learning. Machine learning describes the capacity of systems to learn from problem-specific training data to automate the process of analytical model building and solve associated tasks. Deep learning is a machine learning concept based on artificial neural networks. For many applications, deep learning models outperform shallow machine learning models and traditional data analysis approaches. In this article, we summarize the fundamentals of machine learning and deep learning to generate a broader understanding of the methodical underpinning of current intelligent systems. In particular, we provide a conceptual distinction between relevant terms and concepts, explain the process of automated analytical model building through machine learning and deep learning, and discuss the challenges that arise when implementing such intelligent systems in the field of electronic markets and networked business. These naturally go beyond technological aspects and highlight issues in human-machine interaction and artificial intelligence servitization.Comment: Published online first in Electronic Market

    Real-time Tactical and Strategic Sales Management for Intelligent Agents Guided By Economic Regimes

    Get PDF
    Many enterprises that participate in dynamic markets need to make product pricing and inventory resource utilization decisions in real-time. We describe a family of statistical models that address these needs by combining characterization of the economic environment with the ability to predict future economic conditions to make tactical (short-term) decisions, such as product pricing, and strategic (long-term) decisions, such as level of finished goods inventories. Our models characterize economic conditions, called economic regimes, in the form of recurrent statistical patterns that have clear qualitative interpretations. We show how these models can be used to predict prices, price trends, and the probability of receiving a customer order at a given price. These Ć¢ā‚¬Å“regimeĆ¢ā‚¬ models are developed using statistical analysis of historical data, and are used in real-time to characterize observed market conditions and predict the evolution of market conditions over multiple time scales. We evaluate our models using a testbed derived from the Trading Agent Competition for Supply Chain Management (TAC SCM), a supply chain environment characterized by competitive procurement and sales markets, and dynamic pricing. We show how regime models can be used to inform both short-term pricing decisions and longterm resource allocation decisions. Results show that our method outperforms more traditional shortand long-term predictive modeling approaches.dynamic pricing;trading agent competition;agent-mediated electronic commerce;dynamic markets;economic regimes;enabling technologies;price forecasting;supply-chain
    • ā€¦
    corecore