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Abstract

An extensive literature in psychology, economics, statistics, operations research and
management science has dealt with comparing forecasts based on human-expert
judgment vs. (statistical) models in a variety of scenarios, mostly finding advantage of
the latter, yet acknowledging the necessity of the former. Although computers can use
vast amounts of data to make predictions that are often more accurate than those by
human experts, humans are still more adept at processing unstructured information and
at recognizing unusual circumstances and their consequences. Can we combine
predictions from humans and machines to get predictions that are better than either
could do alone? We used prediction markets to combine predictions from groups of
people and artificial intelligence agents. We found that the combined predictions were
both more accurate and more robust in comparison to those made by groups of only
people, or only machines. This combined approach may be especially useful in
situations where patterns are difficult to discern, where data are difficult to codify, or
where sudden changes occur unexpectedly.
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Introduction

The creation of accurate and reliable predictions' has been the subject of extensive research

in many fields and disciplines. Theoretical advancements and supporting empirical findings

from multiple domains suggest several conclusions.

First, substantial evidence from multiple domains supports the claim that models usually

yield better (and almost never worse) predictions than do individual human experts (e.g.

Dawes, Faust, & Meehl, 1989; Dawes & Kagan, 1988; Grove, Zald, Lebow, Snitz, & Nelson,

2000). Whereas models (or machines) are better at information processing and are consistent

(Einhorn, 1972), humans suffer cognitive and other biases that make them bad judges of

probabilities (c.f. Kahneman, Slovic, & Tversky, 1982; Kahneman & Tversky, 1973;

Lichtenstein, Baruch, & Phillips, 1982; Rabin, 1996). In addition, "Such factors as fatigue,

recent experience, or seemingly minor changes in the ordering of information or in the

conceptualization of the case or task can produce random fluctuations in judgment" (Dawes et

al., 1989), and it is therefore not surprising that models of judges often outperform the

judges themselves (Armstrong, 2001b; Goldberg, 1970; Stewart, 2001). When working in

groups, humans often exhibit effects such as Groupthink (Janis, 1972; Janis & Mann, 1977)

and group polarization (see Chapter 6 in Brown, 1986) that negatively affect their judgment.

Nevertheless, the role of humans is still recognized as valuable in real-life situations, for at

least two good reasons: humans are still better at retrieval and acquisition of many types of

information - especially unstructured types of information (Einhom, 1972; Kleinmuntz,

1990) and this advantage is not soon to disappear. In addition, humans' common-sense is

required to identify and respond to "broken-leg" situations (Meehl, 1954) in which the rules

normally characterizing the phenomenon of interest do not hold. Therefore, combining the

human and machine/model predictions may help in overcoming and mitigating human and

model respective flaws and yield better predictions (Blattberg & Hoch, 1990; Bunn &

Wright, 1991; Einhorn, 1972).

'In this paper, we use the terms predictions/forecasts (and predictor/forecaster) interchangeably.
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Second, a vast body of theoretical and empirical research suggests that combining forecasts

from multiple independent, uncorrelated forecasters that have relevant knowledge and

information leads to increased forecast accuracy2. This unanimous result holds whether the

forecasts are judgmental or statistical, econometric or extrapolation (Armstrong, 2001a;

Clemen, 1989). Combining forecasts is recommended not only for improving accuracy, but

also because it may be difficult or impossible to identify a single forecasting method that is

the best (Makridakis & Winkler, 1983) and "it is less risky in practice to combine forecasts than

to select an individual forecasting method" (Hibon & Evgeniou, 2005).

Weaving together the lessons learned from three threads of inquiry - the combination of

predictions from different models, the combination of predictions from people, and the

comparison of human predictions to model predictions - it is natural to hypothesize that

there may be ways to combine predictions from multiple human experts and models that

will emphasize their relative advantages and mitigate their respective flaws. Indeed, it is

surprising that this path has hardly been explored. Previous work by Blattberg & Hoch,

Bunn & Wright, and Einhorn, emphasizes the complementary nature of man and model, but

does not stress the potential of improving predictions by combining predictions from

multiple humans and multiple models. Interacting and/or combining human and model

predictions may be especially valuable in scenarios where patterns such as time-series are

either very difficult to identify, or where they do not exist at all. The literature explains why

mathematical/statistical models such as those that are widely discussed in the forecasting

literature, may outperform humans where relatively stable and predictable patterns, such as

seasonal sales trends, or weather change, exist. However, many phenomena of interest do

not behave in such smooth manner. For example, predicting the behavior of groups of

people such as business competitors, or - to use a different example - insurgent groups,

may be an important task for an organization.

2 (For discussion of the philosophical and the mathematical principles underlying the logic of
combining forecasts, see Armstrong, 2001a; Larrick & Soll, 2006; Makridakis, 1989; Sunstein, 2005, pp.
972-974; Winkler, R. L., 1989).
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How can these be predicted? Resulting from the interaction of extrinsic causal forces,

purposeful intrinsic goal-oriented action, and local context, the patterns and rules governing

such behaviors (to the extent they exist) are complex, and may prove difficult, or even

practically impossible to detect or to model. Recent advancements in artificial-intelligence

enable artificial-neural-network agents to relatively successfully identify patterns even in

complex scenarios (e.g. Jain, Duin, & Mao, 2000; Mannes et al., 2008; Pao, 1989). But while

artificial neural networks offer advantages over "static" statistical models, machines are still

limited in access to unstructured information, and while the implementation can be

adaptive to new data, humans can still probably be better judges of whether unorthodox

patterns are due to a real change in the environment, or just plain noise.

We conjecture therefore that when it comes to predicting events under complex situations,

where rules that may be fuzzy or difficult to discern, and where some data may not be

easily codifiable, combining predictions made by humans with those made by artificial-

intelligence agents is a strategy that can prove robust and, in the long-run, outperform both

relying solely on human experts (working alone or in groups, but without the aid of the

model), or relying solely on artificial-intelligence (or statistical models) with no human

intervention.

To test this hypothesis, we performed a study in which humans and artificial intelligent

agents made predictions of the moves of teams playing football. We used prediction

markets3 to combine predictions from human subjects and artificial-intelligence agents, and

compared 3 conditions: markets with human participants, markets of artificial-intelligence

agents, and markets where humans and artificial-intelligence agents participate

simultaneously.

3 Also known as information markets, decision markets, electronic markets, virtual markets, idea
futures, event futures and idea markets (Tziralis & Tatsiopoulos, 2007; Wolfers & Zitzewitz, 2004).
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Study Description

Our goal in this study was to compare the quality of predictions made by 3 different types

of predictors: groups of humans, groups of artificial-intelligence agents, and 'hybrid' groups

of humans and agents. We used prediction markets to combine the predictions made by

humans and artificial-neural-network agents, of the moves of football teams to during a

football game. This enabled us to emulate a realistic situation where humans and agents

would have access to different information (specifically, humans had access to video

information that is difficult or costly to codify for the agents, and in addition, their

familiarity with the game may lead them to devise more sophisticated heuristics, which may

be right or wrong). We hypothesized that 'hybrid' markets of humans and computers would

do better than both markets of computer-agents with no humans and markets of humans

with no computer (we discuss what 'better' means in more detail before presenting the

results).

Lab Experiments

We conducted 20 laboratory sessions, lasting about 3 hours each, in which human subjects

participated in prediction markets, with and without computer agents, as well as 10 more

computer-only sessions, totaling 30 experimental sessions. In each of the 20 lab sessions we

had a group of 15 to 19 participants (median group size was 18; mean 17.55; mode 19) who

participated in the entire session (though they could choose not to 'play' in the markets),

totaling 351 subjects overall. For every experimental session we recruited a new group of

people, from the general public, mainly through web advertisements. We encouraged the

participation of football fans by stressing the fun part and by clearly stating that knowledge

of football could help make higher profits, however domain expertise was not a mandatory

requirement. Compensation to participants included a base payment and an additional

performance-based bonus that was proportional to the ending balance in each participant's

account and could reach up to 75% of the base pay.
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The Al agents were artificial neural-net agents developed by graduate students from our

computer science department, using the JOONE open-source package4. The information

they had for each play included 3 parameters: the down number, the number of yards to

first down, and the previous play's move (i.e. whether it was a pass). In addition, the agents

considered the market price and would trade only if they were confident about their

prediction. The agents were trained on a dataset of plays from a previous game.

After initial explanation5 and training rounds, each experimental session included 20 plays.

For each play, a short video excerpt from a football game was shown to all participants. The

video was automatically stopped just before the team possessing the ball was about to make

a move. At that stage, a new online prediction market was opened and the group of

participants (be it human participants only, or human participants along with Al agents6 )

started trading contracts of RUN and PASS 7. We ran the experiments using custom-tailored

version of the ZOCALO open-source prediction markets platform 8 , and employed its

automated market maker to simplify trading and ensure liquidity in the markets. The

market was then closed after 3.5 minutes9 , and the video continued, revealing what had

actually happened, and stopping before the next play. The same set of 20 plays (taken from

one game) was shown in all the sessions. The Al agents participated either in the first half

(first 10 plays) or the second half (last 10 plays) of the experiment (according to a random

4 Available at http:/Isourceforge.net/projects/oone/
5 Subjects were given an elaborate verbal explanation on the goal of the experiment, and on trading in
the prediction market. In addition, subjects were prompted to read a short manual the day before
coming to the lab, doing which - as they were truthfully told, would raise their chance to succeed in
the markets and make a higher bonus. We regularly checked by vote of hands how many of them
actually read the manual and the overwhelming majority did. The manual was also available on
subjects' screens, though they rarely, if ever, referred to it during the sessions.
6We ran 10 neural-net agents. They used the same code and same training dataset, but their logic of
trading was also based on the market price, and they were started in a staggered manner so that they
encountered different market conditions.
7RUN and PASS were two exhaustive options in this case (we eliminated other moves from the
video).
8 Available at http://zocalo.sourceforge.net/
9 We decided on 3.5 minutes after several pilot sessions in which we monitored participation and
noted when trading had stopped. We alerted participants 30 seconds prior to closing each market.
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draw previously performed). Human participants were told that Al agents would trade in

some of the markets but were not told in which, and could not generally tell. Thus in each

lab session we collected data from 10 'human only' markets and 10 'hybrid' (humans and

agents) markets. In addition we ran 10 "computer-only" experimental sessions with no

human participants, where the agents traded in all 20 markets, predicting the same plays.

Those were conducted in a similar manner, other than the relevant technical adjustments

(e.g. agents read the play parameters through an API as in the lab experiments but we did

not need to project the video, etc.). We thus got a total of 600 observations (10 observations

of each of our 3 conditions for each play).

In our analysis, we took the market closing price as representing the collective group

estimation of the probability of the football team to either RUN or PASS the ball. While the

exact degree of accuracy to which the market closing price genuinely represents the mean

belief of market participants may not be fully known (Manski, 2006), it is widely

acknowledged de-facto as the best estimator of it (see Wolfers & Zitzewitz, 2004, 2006).

Results

Assessing the outcome: What makes a better predictor

Prediction quality is a multidimensional concept that aims to capture the degree of

correspondence between predictions and observations. There are many measures by which

predictions can be assessed, but no single measure is sufficient for judging and comparing

forecast quality (Jolliffe & Stephenson, 2003). Thus, assessment of prediction quality is a

matter of analyzing and understanding trade-offs. To compare the three groups of

predictors, we therefore look at three criteria common in the forecasting literature:

Accuracy, Reliability (a.k.a Calibration) and Discrimination which, combined, help

understand those trade-offs. We augment our analysis with a comparison of accuracy vs.

variability, using the Sharpe ratio (Sharpe, 1966, 1994), commonly used in economics to

compare reward-vs.-risk performance, and then also present an analysis based on the

Receiver-Operating-Characteristic (ROC) approach (Swets, 1988; Swets & Pickett, 1982;
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Zweig & Campbell, 1993) that has been established and widely accepted in many domains

as a method of assessing and comparing predictors who make predictions about binary

events. The ROC analysis is in itself a trade-off analysis, which sheds more light on our

findings.

Accuracy

Accuracy is a measure or function of the average distance/error between forecasts and

observations. A common way to assess the accuracy of predictions and to compare the skill

of the people or methods that created them is to use a scoring rule. TABLE 1 summarizes the

evaluations of accuracy for the human-only markets, agent-only markets, and hybrid

markets, over the experimental play set, according to three popular scoring rules: the Mean

Absolute Error (MAE), the Mean Square Error (MSE10) - also known as the Brier Score

(Brier, 1950), and the Log Scoring Rule (LSR, introduced by Good, 1952).

Scoring Rule
Mean Absolute Error Mean Squared Error LSR

Humans-only Markets 0.415 0.197 0.250 1
Agents-only Markets 0.349 0.172 0.225
Hybrid Markets 0.350 - 0.150 0.205

The lines to the right of the MAE and the LSR scores indicate where the differences between

the scores of the different predictors were found statistically significant" (p<0.05). Under all

10 Some authors offer that comparing forecasts/forecasters accuracy based on the Mean Square
Forecasting Error (Brier score) has some limitations - (cf. Clements & Hendry, 1993; Ferro, 2007;
Jewson, 2004), and have suggested other measures such as the likelihood function (Clements &
Hendry, 1993; Jewson, 2004), and many other (Diebold & Mariano, 1995). Another point that is all-
too-often ignored is that since the mean square error is not normally distributed, it also has the
drawback of not yielding to ordinary parametric tests of statistical significance without violating
assumptions underlying the statistical analysis.
" To compare the conditions we built a mixed model to account for nesting, and used SAS's PROC
MIXED (Littell, Milliken, Stroup, & Wolfinger, 2006) with the first-order autoregressive AR(1) error-
covariance-matrix structure (ibid., pp. 175-176). The squared errors are not normally distributed,

Page 13 of 32



of these scoring rules, a score that is closer to zero is better, and under all of them a perfect

predictor who assigns a probability estimation of 100% to actual events and a probability of

zero to all other potential options will score zero.

Albeit popular, this comparison should be interpreted with care that is too often lacking in

analyses. Scoring rules (to be exact: proper scoring rules") are useful in eliciting honest

probability estimations. But, as Winkler (1969) cleverly points out, using them to evaluate

and rank predictors ex post may be misleading, as it confounds the measurement of

accuracy with the cost function of errors. Different scoring rules punish small and large

errors to different extents, and can yield contradicting results when used to rank predictors.

Indeed in our table, the Hybrid markets are more accurate, on average, than the Agent-only

markets according to the MSE and the LSR, but not according to the MAE where they tie. It

is up to the decision maker therefore to select the rule to be used for evaluation, and this

would be done according to the nature of the setting and the corresponding cost functions.

For example, in weather forecasting, small errors are tolerable on a daily basis (say, ±1

degree in temperature predictions), but big errors (predicting a very hot day which turns

out to be very cold, or failing to predict a tornado) are not. In a production setting, on the

other hand, it may be OK to throw away a unit due to a large prediction error on rare

occasions, but precision is very important on a regular basis. While there may be some

ambiguity in selecting a scoring rule when the cost of errors is unknown, in our case it

appears that the number of large errors matters more than the average accuracy (e.g. it is

likely that a prediction of 90% and prediction of 95% for a PASS attempt by the offense team

would both translate to the same decision by the defense team) and hence, the MSE and the

LSR seem more appropriate than the MAE.

which hinders a parametric statistical comparison of the MSE scores. Distributions of the absolute
errors and of the log-predictions are quasi-normal.
12 A scoring rule is proper if the forecaster maximizes the expected score for an observation drawn
from the distribution F if he or she issues the probabilistic forecast F, rather than G * F. In prediction
problems, proper scoring rules encourage the forecaster to make careful assessments and to be honest
(Gneiting & Raftery, 2007)
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Taken together, these results suggest that the hybrid markets were the most accurate -

beating both human-only and agent-only markets under the MSE and LSR, and yielding a

tie with the agents under the MAE. We also note that although the agents were very simple,

on average the agent-only markets were more accurate, than the human-only markets, as

one could expect based on previous evidence. We later turn to use the ROC method to make

a comparison that is agnostic to the cost of errors, but first we explore how well our

predictors predicted each play and consider a few other criteria.

A deeper look at the play level

A deeper look at the play level provides better understanding of the behavior of the

predictors and reveals several interesting patterns. FIGURE 1 depicts the mean absolute

prediction error (average of 10 observations from 10 markets) of each condition, per play.

0.9

0.8

0.7

0.6

0.5 ALLAGENTS

.- U- HUMANSONLY
0.3

-- HYBRID
0.2

0.1

0
4 5 6 8 9 101112131416171821222326272930

Play

We note a strong interaction between condition and play. As could be expected, humans

and agents predicted differently on different plays. While on average agents were more

13 (The play numbers are actual numbers of plays from the game, by order. The plays that are not

included in the graph were not included in the experiment as they were not clearly defined as

RUN/PASS). There is a total of 20 plays.
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accurate than humans (i.e. had smaller errors), in several cases they made severe errors

while humans predicted correctly (notably: plays 4, 12, 16, 29). But why? Informal

interviews with subjects suggested that they incorporated more information into their

decision-making than did the agents. Notably, they gleaned from the video the formation of

the offensive and the defensive teams. For example: before both play 4 and play 29, the

offense team formed a "Shotgun" formation14, with a running-back standing next to the

quarterback, which to football savvy fans implies a higher probability for a pass attempt. In

both those plays, the 'human-only' markets clearly indicated a pass (70% and 77% on

average) whereas the 'all-agents' markets indicated a RUN (69% and 85.5% on average,

corresponding to 31%, 14.5% predictions for PASS). A few subjects also reported that

commentary by anchors was helpful, and several others mentioned that the body language

of players was revealing.

Beyond mean errors: considering prediction-error variability

Measures of accuracy alone do not provide sufficient information to convey the complexity

of the data, as they are essentially comparisons of single numbers representing entire

distributions. Two predictors can yield the same mean F (Prediction Error), where F is some

scoring rule, and yet offer very different predictions and risk profiles. Therefore, it is

important to consider the variability of prediction errors of the different predictors being

compared. After assigning economic values to the predictions using scoring rules, the ex

post Sharpe ratio (Sharpe, 1966, 1994), originally developed to compare reward-to-risk

performance of mutual funds, enables us to consider accuracy against variability of

prediction errors, making the comparison more informative.

Too keep with the familiar logic of the Sharpe ratio that assumes a higher positive financial

return is better, we adjust our scoring rules such that the adjusted MAE score (AMAE)

equals 1-MAE and the adjusted MSE score (AMSE) equals 1-MSE. The adjusted Log score is

14 (Mallory & Nehlen, 2006 ch.7-8)
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logio(Absolute Prediction Error)-1. We calculated the Sharpe ratio according to equations 3-6

in Sharpe (1994, p. 50). As a simple and straightforward benchmark, we use an "ignorant"

predictor who bets 50% PASS all the time (and whose error variance is therefore zero). The

corresponding AMAE, AMSE and ALSR for the benchmark predictor are therefore 0.5, 0.75

and 0.699, correspondingly. The results are summarized in TABLE 2.

Scoring Rule
AMAE AMSE ALSR

(Benchmark = 0.5) (Benchmark = 0.75) (Benchmark = 0.699)
Humans-only Markets 0.54 0.41 0.41
Agents-only Markets 0.67 0.39 0.37
Hybrid Markets 0.91 0.74 0.72

Clearly, the hybrid markets yield the highest Sharpe ratio and outperform both the human-

only and agent-only markets. This result holds under three different scoring rules.

According to the Sharpe ratio index criterion, therefore, the Hybrid markets are more

robust, offering a better trade-off between prediction accuracy and variability.

Calibration and Discrimination

Reliability (Murphy & Winkler, 1977), (also: Calibration, e.g. Lichtenstein et al., 1982), refers

to the degree of correspondence between forecast probabilities and actual (observed)

relative event frequencies. For a predictor to be perfectly calibrated, assessed probability

should equal percentage correct where repetitive assessments are being used (ibid.).

Calibration diagrams, built by binning predicted probabilities into 10% bins, are commonly

used to portray observed event frequencies against predicted probabilities (e.g. see Murphy

& Winkler, 1977). In the left panel of Figure 2 we depict the calibration diagram for our 3

conditions. The dotted straight diagonal line stretching from (0,0) to (100,100) represents the

ideal reference of a hypothetical perfectly-calibrated predictor. Evidently, both the human

and hybrid markets were reasonably calibrated, while the agents were not. We complement

this with the plot on the right panel of Figure 2, which depicts the distribution of predictions
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made by the 3 conditions. Humans' risk-aversion is evident, as 75% of their predictions are

between 30-70% (50% of the predictions are between 40-60%). For binary events like the

ones in our case, whose estimated base rate is near 50%, predictions in the range near 50%

are not very informative, and their value for a decision-maker is questionable, as they do not

provide much discrimination. For the agents, about 70% of the predictions were in the

ranges of 0-30% or 70-100%.

Calibration of Markets
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Discrimination (a.k.a Resolution) taps forecasters' ability to do better than a simple predict-

the-base-rate strategy. Observers get perfect discrimination scores when they infallibly

assign probabilities of 1.0 to things that happen and probabilities of zero to things that do

not (Tetlock, 2005, pp. 47-48, 274 ). It is important to note that calibration skill and

discrimination skill are two separate skills. For example, a predictor that always predicts the

base-rate of the event will score high on calibration but low on discrimination (for such

predictor, the calibration plot will only include a single point, on the diagonal reference
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line). It has been offered that the MSE can be decomposed as VI+CI-DI where VI is the

variability index representing the uncertainty of the phenomena, CI is the calibration index

of the forecasts and DI is the discrimination index of the forecasts (Murphy, 1973; Murphy &

Winkler, 1987; see also Tetlock, 2005, pp. 274-275). While the MSE may have drawbacks as a

criterion by which to judge the quality of predictions, this decomposition seems

nevertheless useful in orienting our understanding of the trade-off between calibration and

discrimination of our predictors. Given that the variability of the events in our case is

identical for the 3 conditions we want to compare (since they made predictions about the

same events) we can draw a plot of (Variability - Discrimination) vs. Calibration for each

predictor. For a given variability, we can also draw "efficient front" isopleths of MSE. We

present such a plot depicting the performance of our 3 conditions in Figure 3. VI in this

study was 0.24. In this plot, the more calibrated a predictor is, the more to the left it would

appear (CI closer to zero is better). The more discriminating a predictor is, the lower it

would appear. It is evident in this plot that the Hybrid markets were about as

discriminating as the agent markets, but more calibrated. It is also clear that compared to

human markets, the hybrid markets were slightly less calibrated, but more discriminating.

Overall, the hybrid markets are on a more efficient front compared to both agents markets

and human markets - as reflected in the MSE scores.
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While the agents were more accurate than the humans on average, their predictions were less

calibrated, and they made more severe errors. For any practical matter, they were utterly

wrong about 4 out of 20 plays (with errors ranging 60-85%; and wrong to a lesser degree on

one other play), potentially rendering them untrustworthy for a decision maker (though, of

course that depends on the cost of the errors to the decision maker). Humans, on the other

hand, had only 3 plays where their prediction (average of 10 markets) was in the wrong

direction - but in 2 out of those, their average error was less than 0.55 (and in the third, less

than 0.58), conveying their uncertainty to the decision maker by a prediction that was very

close to the base rate. Then again, they were also very hesitant (non-discriminating) in most

other cases, even when predicting the correct outcome, raising doubt about their value as

predictors. The 'hybrid' combination of humans and agents proved to be useful in

mitigating both those problems. In terms of accuracy or discrimination, it did not fall far

from the agents (in fact, according to the MSE and the LSR criteria, the hybrid markets were

more accurate than the agents). In addition, it provides better calibration than the agents,

and better discrimination than that of the humans. Importantly, the hybrid groups were on

average wrong only about a single play (12), yet their prediction for that play (53.5%

Run/46.5% Pass) clearly indicates their lack of confidence in this case to the decision maker.

ROC Analysis

Our comparisons of accuracy, and of the Sharpe ratio, both rely on attaching values to

prediction errors using scoring rules. While we used common rules, they may not represent

the actual economic value of predictions (or corresponding errors), and in reality, it is not

always possible to determine those values. A way of comparing the predictions which does

not rely on their unknown economic value can provide additional support for our

conclusions.

The Receiver-Operating-Characteristic (also: Relative-Operating-Characteristic; ROC) is an

established methodology for evaluating and comparing the performance of diagnostic and

prediction systems that has been widely used in many different domains including signal
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detection, radiology, weather forecasting, psychology, information retrieval etc. (Swets,

1973, 1988; Swets & Pickett, 1982; Zweig & Campbell, 1993). An ROC curve is obtained by

plotting the hit rate (i.e. correctly identified events) versus the false alarm rate (incorrect

event predictions) over a range of different thresholds that are used to convert probabilistic

forecasts of binary events into deterministic binary forecasts (Jolliffe & Stephenson, 2003, p.

211). For example, a decision maker may set a decision threshold, T. In that case, every

prediction that an event is going to occur with a probability estimation P>T is considered a

positive prediction leading to action, whereas any prediction that the probability of the

event to occur is less than T is considered a negative prediction leading to inaction (or, to

different action). Under that scenario, small differences in probability estimation may be of

low importance. Thus for example, if we set the decision threshold at 50%, we get the result

depicted in Table 3.

Humans Agents Hybrid
Number of Cases 200 200 200
Times Correct 139 142 166
Accuracy 69.50% 71.00% 83.00%
Percent of PASS events correctly predicted 76.70% 65.80% 80.00%
Percent of RUN events correctly predicted 58.80% 78.80% 87.50%
Cases of PASS predicted to be a RUN 28 41 24
Cases of RUN predicted to be a PASS 33 17 10

From this table, it appears that the hybrid markets outperformed both other types of

markets. But how would this result change if we changed the decision threshold? The ROC,

plotted for a range of different thresholds15, offers a more credible view of the entire

spectrum of accuracy of the different predictors (Zweig & Campbell, 1993, pp. 563-564), and

15 For more details on constructing ROC curves, see Swets (1988, pp. 1286, 1287 and see also endnote 4
on pp. 1291-1292) and others (e.g. Harvey, Hammond, Lusk, & Mross, 1992, pp. 864, 865; Stephenson,
2003)

Page 21 of 32



serves to highlight the tradeoff between sensitivity and specificity of each predictor. The

ROC curves16 of our conditions are presented in Figure 4.

ROC Curves for predictions of football plays by Human-only, Agent-only and Hybrid Prediction Markets
(20 plays, 10 observations of each play by each condition)

10 0.2 0.4 0.6 0.8

Rate of False PASS Predictions

Agents
Humans
Hybrid

The most common and preferred way to compare the accuracy of predictors using ROC

curves is to calculate and compare the area under the curve (usually denoted Az or simply

A). The better a predictor is at discriminating events, the closer its curve would be to the

(0,1) point. An ideal predictor would be characterized by a curve that goes through that

16The construction of ROC curves assumes a reference category. In this case we took "PASS" to be the
event of interest and thus, a hit is the correct prediction of a PASS, and a false positive is the
prediction of a PASS that turns out to be a RUN. Had we used RUN as the event of interest we would
have gotten transformed curves, but they would be equivalent, and the area under the curves would

be the same as in the plot we display.
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point and the area under its curve would be 1. A non-discriminating predictor would be

characterized by a curve laid on the diagonal and an the area A=0.5 (Hanley & McNeil, 1982;

Swets, 1988). Calculation of the area A are usually done using software (Swets, 1988, p.

1287). We used MedCalc softwarel7 to calculate the area under the three curves and the

results are summarized in Table 4.

Area under ROC Curve SE8, '

Humans 0.763 0.0334

Agents 0.813 0.0305
Hybrid 0.895 0.0224

This result suggests that the hybrid prediction markets may provide a better trade-off

between sensitivity and specificity when compared to either human-only or agent-only

prediction markets. In that, it echoes our previous analyses.

Discussion

We compared predictions created by combining individual predictions from multiple

humans and artificial-neural-net agents, to those created by collectives of either humans, or

agents. We used prediction markets to aggregate the predictions of individuals (humans

and/or agents) in all three conditions. We used several different measures and criteria to

assess and compare the quality of the predictions, including accuracy (measured using 3

common scoring rules), Sharpe ratios, calibration, discrimination and receiver-operating

characteristic plots.

17 (Schoonjans, Zalata, Depuydt, & Comhaire, 1995). MedCalc is available from
http://www.medcalc.bc/
18 Standard errors were calculated using the method offered by DeLong, DeLong, & Clarke-Pearson
(1988). However they may be inaccurate as we used repeated measurements.
19 Currently, there is no widely accepted way to test the statistical significance of differences of areas
under the ROC curve for repeated measurements of the same events.
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The combination of humans and agents proved to be more accurate than either humans or

agents according to 2 scoring rules (MSE and LSR). This result holds regardless of the

combination mechanism. Under the MAE scoring rule, the accuracy of the hybrid prediction

markets was indistinguishable from that of the agent markets, but the agents-only markets

were more accurate on average than markets of humans and agents.

The combination of humans and agents provided predictions that were more calibrated

than those of the agents, more discriminating than those of the humans and overall

providing a better tradeoff of calibration and discrimination compared to the humans or the

agents. It also provided the best Sharpe ratios, i.e. the best tradeoff of accuracy and

variability of prediction errors. Similar results showing the best tradeoff are also reflected in

the ROC analysis, which does not rely on any assumptions about the cost of errors. Overall,

therefore, the combination of human and agent predictions in our setting proved more

robust, and arguably, superior to either the agents only predictions or the humans only

predictions in our setting.

What do these results imply about combining predictions of humans and models or agents

in general? Granted, this study, by design, has many limitations that constrain our ability to

generalize its conclusions. We use a limited set of events with binary outcomes, from a

single domain. Our implementation of the neural-net agents was simplistic, and,

admittedly, their trading in the prediction markets was naive and void of any

sophistication. In addition, since cash balance of subjects was carried from one market to the

next, success early-on could significantly increase the endowment of the player, giving

him/her more choice in strategy, and more influence of the group outcome. Similarly, early

failures in predicting could significantly diminish a player's endowment, posing a limit on

that player's ability to play, and to influence the group's prediction. And of course, 'regular'

limitations of generalizing from lab studies apply. But, as mentioned above, our goal in this

study was not to prove or claim in a definitive way that one method is superior. Rather, it

was to test a proof of concept of the existence of scenarios where combining predictions

from humans and artificial-intelligence agents, in various ways, can outperform those of
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either group alone. To that end, our results have supported the hypothesis and provide an

existence proof of a situation in which the hypothesis holds true.

This thesis thus contributes to the growing body of knowledge about predictions in the

following ways. First, we offer explicitly that multiple models and multiple human

predictions be mechanically combined. Previous work (Blattberg & Hoch, 1990; Bunn &

Wright, 1991; Einhorn, 1972; Kleinmuntz, 1990) offering to combine human and model

predictions focused more on the differences between humans and models, devoting

attention to analyzing their respective strength and weakness points. However, even though

some of these works refer to the work on combining forecasts that has developed in parallel,

none of them is explicit about the option of combining multiple humans with multiple

models. For example, Blattberg & Hoch (ibid.) write: "Most research has focused on

combinations of multiple models or multiple experts, but not model and expert" (sic!). Thus,

although the idea of combining predictions from multiple humans and multiple models can

implicitly be deduced from previous literature, to the best of our knowledge it has not been

previously explicated, nor has it been empirically tried, and our study therefore should be

but a first example (although, admittedly, our agents were too correlated, and our study

would have benefitted from the incorporation of additional types of agents).

Second, we propose that using artificial intelligence (e.g. artificial-neural-nets) in such

combinations may be beneficial. Artificial-neural-nets offer some advantages over

"traditional" statistical models, such as the ability to dynamically adapt the model as new

data becomes available (Tam & Kiang, 1992). Empirical examples elsewhere (ibid.)

demonstrate the power of artificial-intelligence in inferring rules from large datasets and

supporting the case for use of artificial-intelligence to make better predictions than those of

traditional methods.

Finally, we offer, and empirically demonstrate, that prediction markets could be an

interesting way to mechanically combine predictions from humans and models, providing

what we believe to be the first attempt at using them for this purpose. Previous literature
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(e.g. Armstrong, 2001a; Bates & Granger, 1969; Blattberg & Hoch, 1990) offers that the

simple average should be taken as the default mechanism of combining predictions to

increase accuracy, unless another way is found to be better suited in some case. However,

these studies did not consider prediction markets. We are not sure whether prediction

markets would prove better than a simple average in any case (one recent study from Goel,

Reeves, Watts, & Pennock, 2010 suggests that prediction markets may only offer minute

improvements over other methods), and it seems reasonable to assume that they are usually

more costly to implement. However, prediction markets may be appealing in some settings

for reasons other than improvement of the quality of predictions themselves. First, they

incentivize participation, of the mindful kind. Second, by increasing attentive participation

and by tying compensation to performance while giving participants a sense of both fun

and challenge, they serve to increase both extrinsic and intrinsic motivation. They also

induce a sense of participation which supports the legitimacy and acceptance of the

predictions made. Markets can also be open for people to run their own 'pet' agents, thus

potentially incorporating an open innovation pattern into the forecasting process, which

may in the long term improve it.

Additional work is required to identify and compare other ways of combining human and

machine predictions, and understand their respective advantages and disadvantages in

different contexts. For example, in line with recommendations to use computers to

aggregate predictions (Einhom, 1972; Sawyer, 1966), one way of combining human and

agent predictions which seems promising is using Adaboost (Freund & Schapire, 1996).

Attention should also be given to additional modes of eliciting and expressing human

predictions, such as confidence intervals, odds or odds-ratios, as these may have an

'unsuspected role' in forming the collective prediction (Genest & Zidek, 1986). Future work

should also examine our approach in more complex domains, and with more sophisticated,

domain-specific agents.
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Conclusion

We believe that combining predictions from humans and agents may be particularly

beneficial in complex scenarios, such as the prediction of actions of human groups, where

the rules governing the predicted phenomena are difficult to discern or formulate. In such

domains, machine learning can be useful in building sophisticated and adaptive models

(for recent examples, see Bohorquez, Gourley, Dixon, Spagat, & Johnson, 2009; Mannes et

al., 2008), whereas humans' tacit knowledge, ability to acquire unstructured information,

and intuition can help in both information retrieval, and preventing catastrophic prediction

errors. Beyond the realm of making predictions, exploring new ways of connecting the

knowledge, skill and intelligence residing people's minds with the power of artificial-

intelligence may also prove beneficial in other types of tasks performed by individuals,

groups and organizations. We hope this initial work will encourage others to further

investigate this promising direction.
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