190 research outputs found

    Conformal prediction under ambiguous ground truth

    Full text link
    In safety-critical classification tasks, conformal prediction allows to perform rigorous uncertainty quantification by providing confidence sets including the true class with a user-specified probability. This generally assumes the availability of a held-out calibration set with access to ground truth labels. Unfortunately, in many domains, such labels are difficult to obtain and usually approximated by aggregating expert opinions. In fact, this holds true for almost all datasets, including well-known ones such as CIFAR and ImageNet. Applying conformal prediction using such labels underestimates uncertainty. Indeed, when expert opinions are not resolvable, there is inherent ambiguity present in the labels. That is, we do not have ``crisp'', definitive ground truth labels and this uncertainty should be taken into account during calibration. In this paper, we develop a conformal prediction framework for such ambiguous ground truth settings which relies on an approximation of the underlying posterior distribution of labels given inputs. We demonstrate our methodology on synthetic and real datasets, including a case study of skin condition classification in dermatology

    A NEW METHODOLOGY FOR IDENTIFYING INTERFACE RESIDUES INVOLVED IN BINDING PROTEIN COMPLEXES

    Get PDF
    Genome-sequencing projects with advanced technologies have rapidly increased the amount of protein sequences, and demands for identifying protein interaction sites are significantly increased due to its impact on understanding cellular process, biochemical events and drug design studies. However, the capacity of current wet laboratory techniques is not enough to handle the exponentially growing protein sequence data; therefore, sequence based predictive methods identifying protein interaction sites have drawn increasing interest. In this article, a new predictive model which can be valuable as a first approach for guiding experimental methods investigating protein-protein interactions and localizing the specific interface residues is proposed. The proposed method extracts a wide range of features from protein sequences. Random forests framework is newly redesigned to effectively utilize these features and the problems of imbalanced data classification commonly encountered in binding site predictions. The method is evaluated with 2,829 interface residues and 24,616 non-interface residues extracted from 99 polypeptide chains in the Protein Data Bank. The experimental results show that the proposed method performs significantly better than two other conventional predictive methods and can reliably predict residues involved in protein interaction sites. As blind tests, the proposed method predicts interaction sites and constructs three protein complexes: the DnaK molecular chaperone system, 1YUW and 1DKG, which provide new insight into the sequence-function relationship. Finally, the robustness of the proposed method is assessed by evaluating the performances obtained from four different ensemble methods

    Investigating Labelless Drift Adaptation for Malware Detection

    Get PDF
    The evolution of malware has long plagued machine learning-based detection systems, as malware authors develop innovative strategies to evade detection and chase profits. This induces concept drift as the test distribution diverges from the training, causing performance decay that requires constant monitoring and adaptation. In this work, we analyze the adaptation strategy used by DroidEvolver, a state-of-the-art learning system that self-updates using pseudo-labels to avoid the high overhead associated with obtaining a new ground truth. After removing sources of experimental bias present in the original evaluation, we identify a number of flaws in the generation and integration of these pseudo-labels, leading to a rapid onset of performance degradation as the model poisons itself. We propose DroidEvolver++, a more robust variant of DroidEvolver, to address these issues and highlight the role of pseudo-labels in addressing concept drift. We test the tolerance of the adaptation strategy versus different degrees of pseudo-label noise and propose the adoption of methods to ensure only high-quality pseudo-labels are used for updates. Ultimately, we conclude that the use of pseudo-labeling remains a promising solution to limitations on labeling capacity, but great care must be taken when designing update mechanisms to avoid negative feedback loops and self-poisoning which have catastrophic effects on performance

    Ensemble Support Vector Machine Models of Radiation-Induced Lung Injury Risk

    Get PDF
    Patients undergoing radiation therapy can develop a potentially fatal inflammation of the lungs known as radiation pneumonitis: RP). In practice, modeling RP factors is difficult because existing data are under-sampled and imbalanced. Support vector machines: SVMs), a class of statistical learning methods that implicitly maps data into a higher dimensional space, is one machine learning method that recently has been applied to the RP problem with encouraging results. In this thesis, we present and evaluate an ensemble SVM method of modeling radiation pneumonitis. The method internalizes kernel/model parameter selection into model building and enables feature scaling via Olivier Chapelle\u27s method. We show that the ensemble method provides statistically significant increases to the cross-folded area under the receiver operating characteristic curve while maintaining model parsimony. Finally, we extend our model with John C. Platt\u27s method to support non-binary outcomes in order to augment clinical relevancy

    Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods

    Full text link
    The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often referred to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular.Comment: 59 page

    Statistical Data Modeling and Machine Learning with Applications

    Get PDF
    The modeling and processing of empirical data is one of the main subjects and goals of statistics. Nowadays, with the development of computer science, the extraction of useful and often hidden information and patterns from data sets of different volumes and complex data sets in warehouses has been added to these goals. New and powerful statistical techniques with machine learning (ML) and data mining paradigms have been developed. To one degree or another, all of these techniques and algorithms originate from a rigorous mathematical basis, including probability theory and mathematical statistics, operational research, mathematical analysis, numerical methods, etc. Popular ML methods, such as artificial neural networks (ANN), support vector machines (SVM), decision trees, random forest (RF), among others, have generated models that can be considered as straightforward applications of optimization theory and statistical estimation. The wide arsenal of classical statistical approaches combined with powerful ML techniques allows many challenging and practical problems to be solved. This Special Issue belongs to the section “Mathematics and Computer Science”. Its aim is to establish a brief collection of carefully selected papers presenting new and original methods, data analyses, case studies, comparative studies, and other research on the topic of statistical data modeling and ML as well as their applications. Particular attention is given, but is not limited, to theories and applications in diverse areas such as computer science, medicine, engineering, banking, education, sociology, economics, among others. The resulting palette of methods, algorithms, and applications for statistical modeling and ML presented in this Special Issue is expected to contribute to the further development of research in this area. We also believe that the new knowledge acquired here as well as the applied results are attractive and useful for young scientists, doctoral students, and researchers from various scientific specialties

    Ensemble Modeling for Time Series Forecasting: an Adaptive Robust Optimization Approach

    Full text link
    Accurate time series forecasting is critical for a wide range of problems with temporal data. Ensemble modeling is a well-established technique for leveraging multiple predictive models to increase accuracy and robustness, as the performance of a single predictor can be highly variable due to shifts in the underlying data distribution. This paper proposes a new methodology for building robust ensembles of time series forecasting models. Our approach utilizes Adaptive Robust Optimization (ARO) to construct a linear regression ensemble in which the models' weights can adapt over time. We demonstrate the effectiveness of our method through a series of synthetic experiments and real-world applications, including air pollution management, energy consumption forecasting, and tropical cyclone intensity forecasting. Our results show that our adaptive ensembles outperform the best ensemble member in hindsight by 16-26% in root mean square error and 14-28% in conditional value at risk and improve over competitive ensemble techniques
    corecore