5,459 research outputs found

    Amorphous slicing of extended finite state machines

    Get PDF
    Slicing is useful for many Software Engineering applications and has been widely studied for three decades, but there has been comparatively little work on slicing Extended Finite State Machines (EFSMs). This paper introduces a set of dependency based EFSM slicing algorithms and an accompanying tool. We demonstrate that our algorithms are suitable for dependence based slicing. We use our tool to conduct experiments on ten EFSMs, including benchmarks and industrial EFSMs. Ours is the first empirical study of dependence based program slicing for EFSMs. Compared to the only previously published dependence based algorithm, our average slice is smaller 40% of the time and larger only 10% of the time, with an average slice size of 35% for termination insensitive slicing

    On the computational complexity of dynamic slicing problems for program schemas

    Get PDF
    This is the preprint version of the Article - Copyright @ 2011 Cambridge University PressGiven a program, a quotient can be obtained from it by deleting zero or more statements. The field of program slicing is concerned with computing a quotient of a program that preserves part of the behaviour of the original program. All program slicing algorithms take account of the structural properties of a program, such as control dependence and data dependence, rather than the semantics of its functions and predicates, and thus work, in effect, with program schemas. The dynamic slicing criterion of Korel and Laski requires only that program behaviour is preserved in cases where the original program follows a particular path, and that the slice/quotient follows this path. In this paper we formalise Korel and Laski's definition of a dynamic slice as applied to linear schemas, and also formulate a less restrictive definition in which the path through the original program need not be preserved by the slice. The less restrictive definition has the benefit of leading to smaller slices. For both definitions, we compute complexity bounds for the problems of establishing whether a given slice of a linear schema is a dynamic slice and whether a linear schema has a non-trivial dynamic slice, and prove that the latter problem is NP-hard in both cases. We also give an example to prove that minimal dynamic slices (whether or not they preserve the original path) need not be unique.This work was partly supported by the Engineering and Physical Sciences Research Council, UK, under grant EP/E002919/1

    Unions of slices are not slices

    Get PDF
    Many approaches to slicing rely upon the 'fact' that the union of two static slices is a valid slice. It is known that static slices constructed using program dependence graph algorithms are valid slices (Reps and Yang, 1988). However, this is not true for other forms of slicing. For example, it has been established that the union of two dynamic slices is not necessarily a valid dynamic slice (Hall, 1995). In this paper this result is extended to show that the union of two static slices is not necessarily a valid slice, based on Weiser's definition of a (static) slice. We also analyse the properties that make the union of different forms of slices a valid slice

    An Extended Stable Marriage Problem Algorithm for Clone Detection

    Full text link
    Code cloning negatively affects industrial software and threatens intellectual property. This paper presents a novel approach to detecting cloned software by using a bijective matching technique. The proposed approach focuses on increasing the range of similarity measures and thus enhancing the precision of the detection. This is achieved by extending a well-known stable-marriage problem (SMP) and demonstrating how matches between code fragments of different files can be expressed. A prototype of the proposed approach is provided using a proper scenario, which shows a noticeable improvement in several features of clone detection such as scalability and accuracy.Comment: 20 pages, 10 figures, 6 table
    corecore