
Unions of Slices are not Slices

Andrea De Lucia
Research Centre on
Software Technology,

University of Sannio, Italy
delucia@unisannio.it

Mark Harman & Robert Hierons
Department of Information
Systems and Computing,
Brunel University, UK
mark.harman@brunel.ac.uk

Jens Krinke
Lehrstuhl Softwaresysteme,

Universität Passau,
Germany

krinke@fmi.uni-passau.de

Abstract

Many approaches to slicing rely upon the ‘fact’ that the
union of two static slices is a valid slice. It is known that
static slices constructed using program dependence graph
algorithms are valid slices [19]. However, this is not true
for other forms of slicing. For example, it has been estab-
lished that the union of two dynamic slices is not necessar-
ily a valid dynamic slice [8]. In this paper this result is
extended to show that the union of two static slices is not
necessarily a valid slice, based on Weiser’s definition of a
(static) slice. We also analyse the properties that make the
union of different forms of slices a valid slice.

1. Introduction

Many approaches to slicing rely upon the ability to union
the results of two or more slices to produce a slice which ag-
glomerates the results of each individual slice. For example,
in decomposition slicing [7], the decomposition slice (and
its complement) can be expressed as a union of static slices,
each of which shares the same variable, but differs upon the
point for which it is constructed. The parallel algorithm
of Danicic et al. [5] explicitly relies upon union of slic-
ing. Other, well-known algorithms for static slicing, such
as Weiser’s [23] and the HRB inter-procedural algorithm
[11] also, implicitly rely upon the ‘fact’1 that the union of
two slices on two different criteria is a slice on the union of
the two criteria (which we call the ‘distributive law’ in this
paper). This has only been proved for program dependence
graph based slicing of programs without procedures [19].
Also, in the application of slicing algorithms to software

engineering problems, the approaches often rely, either ex-
plicitly or implicitly upon the belief that the union of two
slices is a valid slice. For example, Canfora et al. [4] use
the union of slices to identify reusable functions and in the

1which this paper demonstrates is questionable.

work of Bieman and Ott [2] and Ott and Thuss [16, 17],
slicing is used to assess the functional cohesion in a func-
tion. The approach is essentially to define metrics which
derive their cohesion score from the level of overlap be-
tween the ‘important’ slices of the function. This overlap
represents the portion of the function which contributes to
all the important variables and thus can be thought of as
the cohesive part. Of course, this overlap is an intersection,
but other metrics, such as coverage [16] rely upon union,
as does work on coupling [9], which is derived from and
inspired by the original work on cohesion measurement.
The reason all these approaches safely use the union of

slices is due to the fact that the algorithm used to build a
slice preserves control and data flow dependences of the
original program (most of them are indeed based on the Pro-
gram Dependence Graph, PDG [6]). Indeed, according to
Horwitz et al., two PDG slices of the same program can be
seen as two non-interfering versions of the program which
can be safely integrated [10]. However, despite these im-
portant results, we show that the union of static slices is
not necessarily a valid slice, based on Weiser’s definition of
slice.
Unioning of slices is not merely relied upon in static slic-

ing, it is also used in the construction of dynamic slices and
in the approximation of the more precise ‘realizable’ static
slice, expressed as a union of dynamic slices [1]. However,
although PDG based algorithms enable the valid union of
two static slices of a program, unioning is not valid for other
forms of slicing. For example, it has been established that
the union of two dynamic slices is not necessarily a valid
dynamic slice [8]. In this paper we also identify further
conditions for the validity of unioning other forms of slices,
such as dynamic and conditioned slices.
The remainder of the paper is organized as follows. In

Section 2 we show that according to Weiser’s definition, the
union of static slices is not a valid slice, while Section 3
discusses the condition for the validity of unioning static
slices. Section 4 discusses validity conditions for unioning
other forms of slices, while concluding remarks and future

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

work directions are outlined in Section 5.

2. Unioning slices

Weiser has formally defined a slice as any subset of a
program, which preserves a specific behavior in respect to a
criterion. The criterion, also called the slicing criterion, is
a pair c = (s;V) consisting of a statement s and a subset V
of the variables of the analyzed program.

Definition 1 (Weiser-style Slice) A slice Slice(c) of a pro-
gram P on a slicing criterion c is any executable program
P0, where

1. P0 is obtained by deleting zero or more statements from
P,

2. whenever P halts on a given input I, P0 will halt for
that input, and

3. P0 will compute the same values as P for the variables
of V on input I.

The most trivial (but irrelevant) slice of a program P is
always the program P itself. Slices of interest are as small
as possible, hopefully minimal.
In this section we show that the union of two static slices

is not a static slice. This is the case, both for two slices con-
structed for different criteria and also for two different valid
slices, constructed for the same criterion, each of which sat-
isfies Weiser’s definition. For the sake of simplicity, we use
the end of the program as the statement part of slicing crite-
ria. This does not affect the validity of our considerations.
Consider the example in Figure 1. In this example, two

slices are constructed for the final value of the variable x.
That is, each slice is constructed by statement deletion and
each must preserve the final value of the variable x. Of
course, a particular algorithm for slicing would only pro-
duce a single (unique) slice for a single criterion. However,
Weiser’s definition allows for many possible valid slices. In
this example, both slices are minimal (minimal slices are
not unique [22]). Observe that the union of the two slices is
not a slice on x.
This result is interesting from a theoretical point of view,

but is less important practically speaking, because, any de-
terministic algorithm2 would only construct a single slice
for a single criterion and therefore there would be no prac-
tical ramifications from this observation.
However, by a similar argument, it can be shown that the

union of two static slices for two different criteria is also not
a static slice for the union of the two criteria; slicing is not
distributive. More formally, the law

Slice(P;V [W) = Slice(P;V)[Slice(P;W)
2All the currently published algorithms for static slicing [20] are deter-

ministic.

P P1 P2 P3 = P1[P2
1 x = 2; x = 2; x = 2; x = 2;
2 x = x + 1; x = x + 1; x = x + 1;
3 y = x;
4 x = 2;
5 x = x + 1; x = x + 1; x = x + 1;
6 y = x; y = x; y = x; y = x;

Figure 1. Two slices with the same criterion.

P P1 P2 P3 = P1[P2
1 x = 2; x = 2; x = 2; x = 2;
2 x = x + 1; x = x + 1; x = x + 1;
3 y = x; y = x; y = x;
4 x = 2;
5 x = x + 1; x = x + 1; x = x + 1;
6 z = x; z = x; z = x;

Figure 2. Two slices with two criteria.

does not hold, according to Weiser’s definition. This is sur-
prising, because this law is widely believed in the ‘folk-
lore’ of slicing and is implicitly and explicitly relied upon
in many approaches to slicing.
Consider the example in Figure 2. In this example, two

minimal slices are constructed for two different variables,
y and z, but the union of these two slices is not a slice on
fy;zg.

3. Unioning static slices

The problem embodied by these examples is that the
constructed slices do not take into account the data depen-
dences. That is, in both examples, statement 5 is data de-
pendent on statement 4 and not on statement 2. The data
flow from statement 2 is killed before it reaches statement
5, but the killing statement is not included in either slice.
Therefore a dependence is inserted into the unioned code,
which is not present in the original program.
Fortunately, all the approaches that make use of union

of static slices rely on slicing algorithms that do preserve a
subset of the direct data and control dependence relations of
the original program. For example, in Figure 3 both slices
on variables y and z are dependence preserving and the re-
sulting union is a valid slice.
Reps and Yang have proved that a slice in a procedure-

less program computed by a dependence graph based algo-
rithm is a valid slice [19]. Also, according to Horwitz et
al. two program dependence graph based slices of the same
program can be seen as two non-interfering versions of the
program and then can be safely integrated [10]. Kumar and

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

P P1 P2 P3 = P1[P2
1 x = 2; x = 2; x = 2;
2 x = x + 1; x = x + 1; x = x + 1;
3 y = x; y = x; y = x;
4 x = 2; x = 2; x = 2;
5 x = x + 1; x = x + 1; x = x + 1;
6 z = x; z = x; z = x;

Figure 3. Preserving slices for two criteria.

Horwitz [14] present a modified definition of a slice based
on semantic effects (similar to the semantic dependence of
[18]), which basically inverts the definition of a slice: A
statement x of program P has a semantic effect on a state-
ment y, iff a program P0 exists, created by modifying or
removing x from P, and some input I exists such that P and
P0 halt on I and produce different values for some variables
used at y. This definition does not allow ‘problematic’ slices
like in Figure 1 or 2. However, such a slice may be a super-
set of a Weiser’s slice because a statement like “x = x;”
has a semantic effect according to their definition.

4. Unioning other forms of slices

In static slicing, the union of two dependence-preserving
slices constructed for different criteria can only augment the
slice of either. That is, the union of the two slices is simply
an unnecessarily large slice of each of the contributing slic-
ing criteria. By contrast, the union of two dynamic slices
[13], even where they are dependence-preserving, can in-
terfere, to alter the semantics of one of the two slices. Con-
sider the example in Figure 4: the slice P1 is constructed
with respect to variable x and input n = 1, while slice P2
is constructed with respect to variable x and input n = 2.
The union of the two slice P3 fails to preserve the semantics
of the program with respect to input n= 1 and then cannot
be considered a valid dynamic slice for this input. Hall [8]
noticed this3 and proposed a method called simultaneous
dynamic slicing to compute dynamic slices that simultane-
ously preserve the semantics of the original program for all
the different input of the contributing slices.
Indeed, the problem with the union of dynamic slices is

that they belong to different execution traces (one for each
input) and definitions on an execution trace might kill defi-
nitions of a different execution trace. For example, in Fig-
ure 4 the definition of x at statement 7 in the union slice kills
the definition of x at statement 2 on any input, while in the
original program this does not happen for input n= 1.
It is worth noting that the problem derives from the fact

3The contribution of our example, is that it is a much simpler demon-
stration of the problem than the example used by Hall.

P P1 P2 P3 = P1[P2
1 read (n);
2 x = 1; x = 1; x = 1;
3 y = 2; y = 2; y = 2;
4 if (n == 1)
5 y = 1;
6 if (y == 2) if (y == 2) if (y == 2)
7 x = 2; x = 2; x = 2;

Figure 4. Dynamic slices for two criteria.

that there is a dynamic dependence between statement 5 and
statement 6 on the execution trace for input n = 1 and not
on the execution trace for input n= 2. As statement 6 only
affects the computation of x on the execution trace for input
n= 2, neither slice P1, nor slice P2 include statement 5. In
this way, in the union slice the data dependence between
statements 5 and 6 on the execution trace for input n= 1 is
lost, thus resulting in an erroneous result for the variable x.
It is also important to remark that statement 5 transitively
depends on statement 1 that defines the value of the input
variable n. Such dependences are lost in current dynamic
slicing algorithms whenever the dependent statement does
not affect the computation of the variable of interest and
then is lost in the union of the dynamic slices too.
The same problem is likely to affect other forms of slic-

ing, such as quasi-static slicing [21] and conditioned slicing
[3], where slices are constructed with respect to a subset of
the execution traces4.
Therefore, to build valid unions for forms of slices com-

puted with respect to subsets of execution traces, we need
to consider other properties than just preserving program
dependences. It is likely that the union is a valid slice if
the two slices are constructed with respect to the same sub-
set of execution traces. For example, we should get valid
union slices of two dependence preserving dynamic slices
constructed with respect to two different variables but the
same input, or of two conditioned slices constructed with
respect to the same condition on the input variables.

5. Conclusions/future work

This short paper raises some questions about set oper-
ations on slicing, in particular various forms of union of
slices. It has shown that the union of two static slices is
not (necessarily) a valid static slice. This complements the
work by Hall [8], on simultaneous slicing which shows that
the union of dynamic slices is not a dynamic slice.

4In quasi-static slicing the subset of execution traces is identified by
assigning a value to a subset of the input variables, while in conditioned
slicing a condition on the input variables is used.

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

Despite our results showing that the union of static slices
is not necessarily a valid static slice, current PDG based
static slicing algorithms (which rely upon the union of
slices) are correct. It is not the same for other forms of
slices computed with respect to a subset of the execution
traces. For example, the union of two dynamic slices is
not necessarily a valid dynamic slice, even if the slices pre-
serve the program dependences. An approach to get valid
union slices is to propose algorithms that take into account
simultaneously the execution traces of the slicing criteria,
as in the simultaneous dynamic slicing algorithm proposed
by Hall [8].
It is worth noting that the goal of some authors [1] is

to union dynamic slices to achieve an approximation of a
static slice, rather than a slice that preserves the semantics
of the original program on the different program input used
to build the single dynamic slices. Although, the proposed
approach is interesting from a performance point of view
(the union slice can be constructed in a much faster and
cheaper way than a static slice), more experimental work is
required to see the effects of using union slices that do not
preserve the semantics of the original program in software
maintenance tasks, such as program comprehension.
The considerations expressed for the union of dynamic

slices also applies to other forms of slices, such as con-
ditioned slices and quasi-static slices. For example, it is
likely that a conditioned slice computed on the disjunction
of the conditions of two conditioned slicing criteria is a
valid slices, but the union of the corresponding conditioned
slices is not necessarily a valid one. Therefore, it remains
a problem for future work to demonstrate that the particu-
lar algorithmic manner in which existing slicing algorithms
union slices, leads to unions which turn out always to be
valid slices, themselves.
The paper also suggests some other questions about set

operations on slices, which the authors would like to en-
courage the slicing community to consider, for example:

1. Is the union of two dataflow minimal slices [15, 22] a
dataflow minimal slice and, if not, is it even a slice?

2. Do results for backward slicing also apply to forward
[11] slicing?

3. Is the union of chops [12] defined by Chop(s1; t1)[
Chop(s2; t1)[Chop(s1; t2)[Chop(s2; t2) a valid chop
on the union of the chopping criteria Chop(s1[s2; t1[
t2)?

References

[1] Á. Beszédes, C. Faragó, Z. M. Szabó, J. Csirik, and
T. Gyimóthy. Union slices for program maintenance.
In International Conference on Software Maintenance
(ICSM’02), pages 12–21, 2002.

[2] J. M. Bieman and L. M. Ott. Measuring functional cohesion.
IEEE Transactions on Software Engineering, 20(8):644–
657, Aug. 1994.

[3] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned pro-
gram slicing. In M. Harman and K. Gallagher, editors, Infor-
mation and Software Technology Special Issue on Program
Slicing, volume 40, pages 595–607. Elsevier Science B. V.,
1998.

[4] G. Canfora, A. Cimitile, A. D. Lucia, and G. A. D. Lucca.
Slicing large programs to isolate reusable functions. In EU-
ROMICRO Conference, pages 140–147, 1994.

[5] S. Danicic, M. Harman, and Y. Sivagurunathan. A parallel
algorithm for static program slicing. Information Processing
Letters, 56(6):307–313, Dec. 1995.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans-
actions on Programming Languages and Systems, 9(3):319–
349, July 1987.

[7] K. B. Gallagher and J. R. Lyle. Using program slicing in
software maintenance. IEEE Transactions on Software En-
gineering, 17(8):751–761, Aug. 1991.

[8] R. J. Hall. Automatic extraction of executable program sub-
sets by simultaneous dynamic program slicing. Automated
Software Engineering, 2(1):33–53, Mar. 1995.

[9] M. Harman, M. Okunlawon, B. Sivagurunathan, and
S. Danicic. Slice-based measurement of coupling. In R. Har-
rison, editor, 19th ICSE, Workshop on Process Modelling
and Empirical Studies of Software Evolution, Boston, Mas-
sachusetts, USA, May 1997.

[10] S. Horwitz, J. Prins, and T. Reps. Integrating non–interfering
versions of programs. ACM Transactions on Programming
Languages and Systems, 11(3):345–387, July 1989.

[11] S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions on Pro-
gramming Languages and Systems, 12(1):26–61, 1990.

[12] D. Jackson and E. J. Rollins. A new model of program de-
pendences for reverse engineering. In Proceedings of the
ACM SIGSOFT ’94 Symposium on the Foundations of Soft-
ware Engineering, pages 2–10, Dec. 1994.

[13] B. Korel and J. Laski. Dynamic program slicing. Informa-
tion Processing Letters, 29(3):155–163, Oct. 1988.

[14] S. Kumar and S. Horwitz. Better slicing of programs with
jumps and switches. In Proceedings of FASE 2002: Funda-
mental Approaches to Software Engineering, volume 2306
of LNCS, pages 96–112. Springer, 2002.

[15] M. R. Laurence, S. Danicic, M. Harman, R. M. Hierons, and
J. Howroyd. Equivalence of conservative, linear, free pro-
gram schemas is decidable. Theoretical Computer Science.
to appear.

[16] L. M. Ott and J. J. Thuss. The relationship between slices
and module cohesion. In Proceedings of the 11th ACM
conference on Software Engineering, pages 198–204, May
1989.

[17] L. M. Ott and J. J. Thuss. Slice based metrics for estimating
cohesion. In Proceedings of the IEEE-CS International Met-
rics Symposium, pages 71–81, Baltimore, Maryland, USA,
May 1993. IEEE Computer Society Press, Los Alamitos,
California, USA.

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

[18] A. Podgurski and L. A. Clarke. A formal model of pro-
gram dependences and its implications for software test-
ing, debugging and maintenance. IEEE Trans. Softw. Eng.,
16(9):965–979, Sept. 1990.

[19] T. Reps and W. Yang. The semantics of program slicing.
Technical Report Technical Report 777, University of Wis-
consin, 1988.

[20] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, Sept. 1995.

[21] G. A. Venkatesh. The semantic approach to program slic-
ing. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 26–28, Toronto,
Canada, June 1991. Proceedings in SIGPLAN Notices,
26(6), pp.107–119, 1991.

[22] M. Weiser. Program slices: Formal, psychological, and
practical investigations of an automatic program abstrac-
tion method. PhD thesis, University of Michigan, Ann Ar-
bor, MI, 1979.

[23] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, 1984.

Proceedings of the Seventh European Conference On Software Maintenance And Reengineering (CSMR’03)
0-7695-1902-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

