770 research outputs found

    The cognitive neuroscience of visual working memory

    Get PDF
    Visual working memory allows us to temporarily maintain and manipulate visual information in order to solve a task. The study of the brain mechanisms underlying this function began more than half a century ago, with Scoville and Milner’s (1957) seminal discoveries with amnesic patients. This timely collection of papers brings together diverse perspectives on the cognitive neuroscience of visual working memory from multiple fields that have traditionally been fairly disjointed: human neuroimaging, electrophysiological, behavioural and animal lesion studies, investigating both the developing and the adult brain

    Brain rhythms: How control gets into working memory

    Get PDF
    New research suggests that frontal midline theta EEG activity in humans controls activity in parietal cortex associated with memory maintenance. In turn, the speed of this frontal theta is modulated by the number of items to be handled, potentially indicating strong bidirectional communication within a fronto-parietal network

    Coherence and recurrency: maintenance, control and integration in working memory

    Get PDF
    Working memory (WM), including a ‘central executive’, is used to guide behavior by internal goals or intentions. We suggest that WM is best described as a set of three interdependent functions which are implemented in the prefrontal cortex (PFC). These functions are maintenance, control of attention and integration. A model for the maintenance function is presented, and we will argue that this model can be extended to incorporate the other functions as well. Maintenance is the capacity to briefly maintain information in the absence of corresponding input, and even in the face of distracting information. We will argue that maintenance is based on recurrent loops between PFC and posterior parts of the brain, and probably within PFC as well. In these loops information can be held temporarily in an active form. We show that a model based on these structural ideas is capable of maintaining a limited number of neural patterns. Not the size, but the coherence of patterns (i.e., a chunking principle based on synchronous firing of interconnected cell assemblies) determines the maintenance capacity. A mechanism that optimizes coherent pattern segregation, also poses a limit to the number of assemblies (about four) that can concurrently reverberate. Top-down attentional control (in perception, action and memory retrieval) can be modelled by the modulation and re-entry of top-down information to posterior parts of the brain. Hierarchically organized modules in PFC create the possibility for information integration. We argue that large-scale multimodal integration of information creates an ‘episodic buffer’, and may even suffice for implementing a central executive

    Viewing ambiguous social interactions increases functional connectivity between frontal and temporal nodes of the social brain.

    Get PDF
    Social behaviour is coordinated by a network of brain regions, including those involved in the perception of social stimuli and those involved in complex functions like inferring perceptual and mental states and controlling social interactions. The properties and function of many of these regions in isolation is relatively well-understood, but less is known about how these regions interact whilst processing dynamic social interactions. To investigate whether the functional connectivity between brain regions is modulated by social context, we collected functional MRI (fMRI) data from male monkeys (Macaca mulatta) viewing videos of social interactions labelled as "affiliative", "aggressive", or "ambiguous". We show activation related to the perception of social interactions along both banks of the superior temporal sulcus, parietal cortex, medial and lateral frontal cortex, and the caudate nucleus. Within this network, we show that fronto-temporal functional connectivity is significantly modulated by social context. Crucially, we link the observation of specific behaviours to changes in functional connectivity within our network. Viewing aggressive behaviour was associated with a limited increase in temporo-temporal and a weak increase in cingulate-temporal connectivity. By contrast, viewing interactions where the outcome was uncertain was associated with a pronounced increase in temporo-temporal, and cingulate-temporal functional connectivity. We hypothesise that this widespread network synchronisation occurs when cingulate and temporal areas coordinate their activity when more difficult social inferences are being made.SIGNIFICANCE STATEMENT:Processing social information from our environment requires the activation of several brain regions, which are concentrated within the frontal and temporal lobes. However, little is known about how these areas interact to facilitate the processing of different social interactions. Here we show that functional connectivity within and between the frontal and temporal lobes is modulated by social context. Specifically, we demonstrate that viewing social interactions where the outcome was unclear is associated with increased synchrony within and between the cingulate cortex and temporal cortices. These findings suggest that the coordination between the cingulate and temporal cortices is enhanced when more difficult social inferences are being made

    Neurobehavioral Strategies of Skill Acquisition in Left and Right Hand Dominant Individuals

    Get PDF
    The brain consists of vast networks of connected pathways communicating through synchronized electrochemical activity propagated along fiber tracts. The current understanding is that the brain has a modular organization where regions of specialized processes are dynamically coupled through long-range projections of dense axonal networks connecting spatially distinct regions enabling signal transfer necessary for all complex thought and behavior, including regulation of movement. The central objective of the dissertation was to understand how sensorimotor information is integrated, allowing for adaptable motor behavior and skill acquisition in the left-and right-hand dominant populations. To this end participants, of both left- and right-hand dominance, repeatedly completed a visually guided, force matching task while neurobiological and neurobehavioral outcome measurements were continuously recorded via EEG and EMG. Functional connectivity and graph theoretical measurements were derived from EEG. Cortico-cortical coherence patterns were used to infer neurostrategic discrepancies employed in the execution of a motor task for each population. EEG activity was also correlated with neuromuscular activity from EMG to calculate cortico-muscular connectivity. Neurological patterns and corresponding behavioral changes were used to express how hand dominance influenced the developing motor plan, thereby increasing understanding of the sensorimotor integration process. The cumulative findings indicated fundamental differences in how left- and right-hand dominant populations interact with the world. The right-hand dominant group was found to rely on visual information to inform motor behavior where the left-hand dominant group used visual information to update motor behavior. The left-hand group was found to have a more versatile motor plan, adaptable to both dominant, nondominant, and bimanual tasks. Compared to the right-hand group it might be said that they were more successful in encoding the task, however behaviorally they performed the same. The implications of the findings are relevant to both clinical and performance applications providing insight as to potential alternative methods of information integration. The inclusion of the left-hand dominant population in the growing conceptualization of the brain will generate a more complete, stable, and accurate understanding of our complex biology

    Interactions between the hippocampus and prefrontal cortex in context-dependent overlapping memory retrieval

    Get PDF
    Activation in the hippocampus (HC) and prefrontal cortex (PFC) is critical to accurately retrieve overlapping sequences. Experiments 1 and 2 tested the hypotheses that activation in and interaction between HC and PFC increases as overlap between sequences increases in a non-spatial task. Experiment 3 tested the hypothesis that theta oscillations are involved in orchestrating interactions between HC and PFC in a spatial task with overlapping elements. In the first two studies, 17 participants (aged 18-34; 11 female) learned sequences consisting of a picture frame, face, and scene. Conditions varied by degree of overlap. Using fMRI, Experiment 1 tested how degree of overlap affected HC and PFC activation. In overlapping sequences, middle and posterior HC were active when predictability of the correct response increased, dorsolateral PFC was active when participants were able to ascertain the correct set of sequences, and ventrolateral PFC was active when inhibition of interfering associations was required. Experiment 2 examined functional connectivity of HC and PFC during disambiguation. Low- and high-overlap conditions were associated with increased connectivity in separate regions at different times indicating that retrieval under the two conditions used different neural networks and strategies. Low-overlap trials were associated with increased connectivity between HC and prefrontal and parietal regions. High-overlap trials showed increased connectivity between lateral PFC and visual areas, indicating that imagery may be necessary for accurate performance. Using EEG recording, Experiment 3 examined theta activity during retrieval of well-learned, overlapping and non-overlapping mazes in 17 participants (aged 18-34, 11 female). Theta activity increased in overlapping mazes during the first of four hallways, suggesting participants were looking ahead to upcoming turns in the maze. Theta activity increased at the beginning and choice point of the third overlapping hallway, possibly in response to interference from the paired, overlapping maze. These studies provide evidence that (1) overlapping associations in non-spatial sequences elicit interactions between hippocampus and lateral prefrontal cortex, (2) increasing the degree of overlap changes the neural processes required to perform the task, and (3) theta power increases in response to increased cognitive demand and maintenance of sequence information needed to differentiate between overlapping spatial routes

    Role of Anterior Cingulate Cortex in Saccade Control

    Get PDF
    Cognitive control is referred to the guidance of behavior based on internal goals rather than external stimuli. It has been postulated that prefrontal cortex is mainly involved in higher order cognitive functions. Specifically, anterior cingulate cortex (ACC), which is part of the prefrontal cortex, is suggested to be involved in performance monitoring and conflict monitoring that are considered to be cognitive control functions. Saccades are the fast eye movements that align the fovea on the objects of interest in the environment. In this thesis, I have explored the role of ACC in control of saccadic eye movements. First, I performed a resting-state fMRI study to identify areas within the ACC that are functionally connected to the frontal eye fields (FEF). It has been shown that FEF is involved in saccade generation. Therefore, the ACC areas that are functionally connected to FEF could be hypothesized to have a role in saccade control. Then, I performed simultaneous electrophysiological recordings in the ACC and FEF. Furthermore, I explored whether ACC exerts control over FEF. My results show that ACC is involved in cognitive control of saccades. Furthermore, the ACC and FEF neurons communicate through synchronized theta and beta band activity in these areas. The results of this thesis shine light on the mechanisms by which these brain areas communicate. Moreover, my findings support the notion that ACC and FEF have a unique oscillatory property, and more specifically ACC has a prominent theta band, and to a lesser extent beta band activity

    Dynamic Oscillatory Interactions Between Neural Attention and Sensorimotor Systems

    Get PDF
    The adaptive and flexible ability of the human brain to preference the processing of salient environmental features in the visual space is essential to normative cognitive function, and various neurologically afflicted patient groups report negative impacts on visual attention. While the brain-bases of human attentional processing have begun to be unraveled, very little is known regarding the interactions between attention systems and systems supporting sensory and motor processing. This is essential, as these interactions are dynamic; evolving rapidly in time and across a wide range of functionally defined rhythmic frequencies. Using magnetoencephalography (MEG) and a range of novel cognitive paradigms and analytical techniques, this work attempts to fill critical gaps in this knowledge. Specifically, we unravel the role of dynamic oscillatory interactions between attention and three sensorimotor systems. First, we establish the importance of sub-second occipital alpha (8 – 14 Hz) oscillatory responses in visual distractor suppression during selective attention (Chapter 1) and their essential role in fronto-parietal attention networks during visual orienting (Chapter 2). Next, we examine the divergent effects of directed attention on multi-frequency primary somatosensory neural oscillations in the theta (4 – 8 Hz), alpha, and beta (18 – 26 Hz) bands (Chapter 3). Finally, we extend these findings to the motor system (Chapter 4), and find that the frontal and parietal beta-frequency oscillations known to support motor planning and execution are modulated equivalently by differing subtypes of attentional interference, whereas frontal gamma (64 – 84 Hz) oscillations specifically index the superadditive effect of this interference. These findings provide new insight into the dynamic nature of attention-sensorimotor interactions in the human brain, and will be the foundation for groundbreaking new studies of attentional deficits in patients with common neurological disorders (e.g., Alzheimer’s disease, HIV-associated neurocognitive disorders, Parkinson’s disease). With an enhanced knowledge of the temporal and spectral definitions of these impairments, new therapeutic interventions utilizing frequency-targeted neural stimulation can be developed

    Neural representation of movement tau

    Get PDF
    A fundamental aspect of goal‐directed behaviour concerns the closure of motion‐gaps in a timely fashion. An influential theory about how this can be achieved is provided by the tautheory (Lee, 1998). Tau is defined as the ratio of the current distance‐to‐goal gap over the current instantaneous speed towards the goal. In this work we investigated the neural representation of tau in two sets of experiments. In one study we recorded neuromagnetic fluxes (using magnetoencephalography, MEG) from the whole brain of human subjects performing discrete hand movements aimed to targets in space, whereas the other study involved recordings of single cell activity from prefrontal and posterior parietal areas of a behaving monkey during geometrical shape‐copying tasks. These two studies provided complementary information, for the former covered the whole brain (at the cost of weak localization), whereas the latter used the finest neural grain (at the expense of limited brain regions). However, the two studies together yielded valuable information concerning the dynamic, time‐varying neural representation of tau, with respect to both integrated synaptic events in neuronal ensembles (recorded by MEG) and neural spike outputs (recorded by microelectrodes). The relations between neural signals and tau were analyzed using a linear regression model where the time‐varying neural signal (magnetic field strength in fT or spike density function) was the dependent variable and the corresponding value of movement tau and speed were the independent variables. In addition, the model included an autoregressive term to account for the expected correlated errors, given the time series nature of the data. The neurophysiological study revealed a statistically significant (p < 0.05) relation of spike density function to tau (in the presence or absence of a significant speed effect) in 17% of cells in the posterior parietal cortex (N = 399) and 8% of cells in the prefrontal cortex (N = 163). These results are in accord with previous findings in an interception task. The MEG study revealed that a mean of 21.98 (± 6.08) % of sensor signals had a statistically significant (p < 0.05) relation to tau across all subjects. These effects were distributed predominantly over the left parietal‐temporo‐occipital sensor space, with additional foci over the frontal sensorimotor regions. Altogether, these findings demonstrate a specific involvement of neurons and neuronal ensembles with the tau variable and pave the way for further studies on predictive tau control

    The cognitive neuroscience of prehension: recent developments

    Get PDF
    Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions
    corecore