2,453 research outputs found

    Seen and unseen tidal caustics in the Andromeda galaxy

    Full text link
    Indirect detection of high-energy particles from dark matter interactions is a promising avenue for learning more about dark matter, but is hampered by the frequent coincidence of high-energy astrophysical sources of such particles with putative high-density regions of dark matter. We calculate the boost factor and gamma-ray flux from dark matter associated with two shell-like caustics of luminous tidal debris recently discovered around the Andromeda galaxy, under the assumption that dark matter is its own supersymmetric antiparticle. These shell features could be a good candidate for indirect detection of dark matter via gamma rays because they are located far from the primary confusion sources at the galaxy's center, and because the shapes of the shells indicate that most of the mass has piled up near apocenter. Using a numerical estimator specifically calibrated to estimate densities in N-body representations with sharp features and a previously determined N-body model of the shells, we find that the largest boost factors do occur in the shells but are only a few percent. We also find that the gamma-ray flux is an order of magnitude too low to be detected with Fermi for likely dark matter parameters, and about 2 orders of magnitude less than the signal that would have come from the dwarf galaxy that produces the shells in the N-body model. We further show that the radial density profiles and relative radial spacing of the shells, in either dark or luminous matter, is relatively insensitive to the details of the potential of the host galaxy but depends in a predictable way on the velocity dispersion of the progenitor galaxy.Comment: ApJ accepte

    Sequential nonparametric estimation via Hermite series estimators

    Get PDF
    Algorithms for estimating the statistical properties of streams of data in real time, as well as for the efficient analysis of massive data sets, are becoming particularly pertinent given the increasing ubiquity of such data. In this thesis we introduce novel approaches to sequential (online) estimation in both stationary and non-stationary settings based on Hermite series density estimators. In the univariate context we apply Hermite series based distribution function estimators to sequential cumulative distribution function estimation. These distribution function estimators are particularly useful because they allow the sequential estimation of the full cumulative distribution function. This is in contrast to the empirical distribution function estimator and smooth kernel distribution function estimator which only allow sequential cumulative probability estimation at predefined values on the support of the associated density function. We explore the asymptotic consistency and robustness properties of the Hermite series based cumulative distribution function estimator thereby redressing a gap in the literature. Given the sequential Hermite series based distribution function estimator, we obtain sequential quantile estimates numerically. Our algorithms go beyond existing sequential quantile estimation algorithms in that they allow arbitrary quantiles (as opposed to pre-specified quantiles) to be estimated at any point in time, in both the static and dynamic quantile estimation settings. In the bivariate context we introduce a Hermite series based sequential estimator for the Spearman's rank correlation coefficient and provide algorithms applicable in both the stationary and non-stationary settings. To treat the the non-stationary setting, we introduce a novel, exponentially weighted estimator for the Spearman's rank correlation, which allows the local nonparametric correlation of a bivariate data stream to be tracked. To the best of our knowledge this is the first algorithm to be proposed for estimating a time-varying Spearman's rank correlation that does not rely on a moving window approach. We explore the practical effectiveness of the Hermite series based estimators through real data and simulation studies, demonstrating competitive performance compared to leading existing algorithms. The potential applications of this work are manifold. Our sequential distribution function and quantile estimation algorithms can be applied to real time anomaly and outlier detection, real time provisioning for future demand as well as real time risk estimation for example. The Hermite series based Spearman's rank correlation estimator can be applied to fast and robust online calculation of correlation which may vary over time. Possible machine learning applications include fast feature selection and hierarchical clustering on massive data sets amongst others

    Statistical Aggregation: Theory and Applications

    Get PDF
    Due to their size and complexity, massive data sets bring many computational challenges for statistical analysis, such as overcoming the memory limitation and improving computational efficiency of traditional statistical methods. In the dissertation, I propose the statistical aggregation strategy to conquer such challenges posed by massive data sets. Statistical aggregation partitions the entire data set into smaller subsets, compresses each subset into certain low-dimensional summary statistics and aggregates the summary statistics to approximate the desired computation based on the entire data. Results from statistical aggregation are required to be asymptotically equivalent. Statistical aggregation processes the entire data set part by part, and hence overcomes memory limitation. Moreover, statistical aggregation can also improve the computational efficiency of statistical algorithms with computational complexity at the order of O(Nm): m \u3e 1) or even higher, where N is the size of the data. Statistical aggregation is particularly useful for online analytical processing: OLAP) in data cubes and stream data, where fast response to queries is the top priority. The &ldquo partition-compression-aggregation&rdquo strategy in statistical aggregation actually has been considered previously for OLAP computing in data cubes. But existing research in this area tends to overlook the statistical property of the analysis and aims to obtain identical results from aggregation, which has limited the application of this strategy to very simple analyses. Statistical aggregation instead can support OLAP in more sophisticated statistical analyses. In this dissertation, I apply statistical aggregation to two large families of statistical methods, estimating equation: EE) estimation and U-statistics, develop proper compression-aggregation schemes and show that the statistical aggregation tremendously reduces their computational burden while maintaining their efficiency. I further apply statistical aggregation to U-statistic based estimating equations and propose new estimating equations that need much less computational time but give asymptotically equivalent estimators

    Detection of fast radio transients with multiple stations: a case study using the Very Long Baseline Array

    Full text link
    Recent investigations reveal an important new class of transient radio phenomena that occur on sub-millisecond timescales. Often transient surveys' data volumes are too large to archive exhaustively. Instead, an on-line automatic system must excise impulsive interference and detect candidate events in real-time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array (VLBA). We test the system using observations of pulsar B0329+54. The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.Comment: 12 pages, 14 figures. Accepted for Ap
    • …
    corecore