
Keskustelualoitteita #46 
Joensuun yliopisto, Taloustieteet 

 
 
 
 
 
 
 
 
 

Stochastic Nonparametric Envelopment of Data: 
Cross-sectional frontier estimation  

subject to shape constraints 
  

  
 
 
 

Timo Kuosmanen  
and  

Mika Kortelainen  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

ISBN 978-952-458-957-4 
ISSN 1795-7885 

no 46 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEF Electronic Publications

https://core.ac.uk/display/15166958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Stochastic Nonparametric Envelopment of Data: 
Cross-sectional frontier estimation subject to shape constraints 

 
Timo Kuosmanen1 and Mika Kortelainen2 

 

1) Economic Research Unit, MTT Agrifood Research Finland, Luutnantintie 13, 00410 Helsinki, Finland. 
Tel. +358 9 5608 6309. Fax: + 358 9 5608 6264. E-mail. Timo.Kuosmanen@mtt.fi. 
 
2) Department of Economics and Business Administration, University of Joensuu, P.O.B. 111, 80101 
Joensuu, Finland; Tel. +358 13 251 4534; Fax. +358 13 251 3290; E-mail. mika.kortelainen@joensuu.fi

 
Abstract 
 

The field of production frontier estimation is divided between the parametric Stochastic Frontier Analysis 
(SFA) and the deterministic, nonparametric Data Envelopment Analysis (DEA). This paper explores an 
amalgam of DEA and SFA that melds a nonparametric frontier with a stochastic composite error. Our 
model imposes the standard SFA assumptions for the inefficiency and noise terms. The frontier is 
estimated nonparametrically, imposing monotonicity and convexity as in DEA. For estimation, we 
propose two alternative methods based on shape constrained nonparametric least squares. The 
performance of the proposed estimation techniques is examined using Monte Carlo simulations and an 
illustrative application.  
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1. Introduction 
 

The literature of production frontier estimation has been dominated by two approaches: the 
nonparametric data envelopment analysis (DEA: Farrell, 1957; Charnes et al., 1978) and the parametric 
stochastic frontier analysis (SFA: Aigner et al., 1977; Meeusen and van den Broeck, 1977). The main 
appeal of DEA lies in its nonparametric treatment of the frontier, which does not assume a particular 
functional form but relies on the general regularity properties such as monotonicity, convexity, and 
homogeneity. However, DEA attributes all deviations from the frontier to inefficiency, and completely 
ignores any stochastic noise in the data. The key advantage of SFA is its stochastic treatment of 
residuals, decomposed into a non-negative inefficiency term and an idiosyncratic error term that accounts 
for measurement errors and other random noise. However, SFA builds on the parametric regression 
techniques, which require an ex ante specification of the functional form. Since the economic theory 
rarely justifies a particular functional form, the flexible functional forms, such as the translog or 
generalized McFadden (Christensen et al., 1973; Diewert and Wales, 1987), are frequently used in the 
SFA literature. The problem with the flexible functional forms is that the estimated frontiers often violate 
the monotonicity, concavity/convexity and homogeneity conditions. On the other hand, imposing these 
regularity conditions will sacrifice the flexibility (see e.g. Christensen and Caves, 1980; Diewert and 
Wales, 1987; Sauer, 2006). In summary, it is generally accepted that the virtues of DEA lie in its general, 
nonparametric treatment of the frontier, while the virtues of SFA lie in its stochastic, probabilistic 
treatment of inefficiency and noise (e.g., Bauer, 1990; Seiford and Thrall, 1990). 

To bridge the gap between SFA and DEA, a large and growing number of stochastic semi- or 
nonparametric frontier models have been developed (e.g., Park and Simar, 1994; Fan et al., 1996; Kneip 
and Simar, 1996; Park et al., 1998, 2003, 2006; Post et al., 2002; Griffin and Steel, 2004; Henderson and 
Simar, 2005; Kuosmanen et al., 2007; Kumbhakar et al., 2007). While these studies come a long way in 
combining some of the virtues of DEA and SFA, the conceptual link between the parametric and non-
parametric branches is still missing: none of these techniques can be viewed as a stochastic extension of 
DEA in the same way as SFA extends the classic deterministic econometric frontier models by Aigner 
and Chu (1968), Timmer (1971), Richmond (1974), and others. Furthermore, while the assumptions 
required by the previous semi- and nonparametric SFA models are relatively weak (c.f., e.g., Henderson 
and Simar, 2005; Kumbhakar et al., 2007), there is no guarantee that these models satisfy the regularity 
conditions implied by the economic theory. Therefore, there is an evident need for semi- and 
nonparametric stochastic frontier approaches that could satisfy the regularity properties and thus 
combine the virtues of DEA and SFA in a unified framework of frontier estimation.  

This paper develops an amalgam of DEA and SFA, which combines a DEA-style nonparametric, 
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piecewise linear frontier with a SFA-style composite error term consisting of noise and inefficiency 
components. Distributions of the noise and inefficiency terms are assumed to be of a known form, similar 
to the traditional SFA, but no particular functional form for the production frontier is assumed. Rather, the 
frontier is only required to satisfy the global monotonicity and concavity properties, similar to DEA. In 
essence, this model combines the key characteristics of both DEA and SFA in the same framework, 
closing the gap between the parametric and nonparametric approaches. Such a unifying model deserves 
a name, so we will henceforth refer to this amalgam model as stochastic nonparametric envelopment of 

data (StoNED).1       
Banker and Maindiratta (1992) (henceforth BM) were the first to propose such an amalgam 

model and explore its practical estimation. Unfortunately, this elegant paper has not attracted deserved 
attention. Presumably, this is largely due to the lack of an operational estimation procedure. BM pursued 
constrained maximum likelihood (ML) estimation of their model, but in practice, the resulting ML problem 
is extremely difficult (if not impossible) to solve. Therefore, one of our main contributions is to develop an 
operational estimation method for the StoNED model.  

Our estimation method consists of two stages. In the first stage, we estimate the average 
production function by nonparametric least squares (NLS) subject to monotonicity and concavity 
constraints (Hildreth, 1954; Hanson and Pledger, 1976; Mammen, 1991; Groeneboom et al., 2001). NLS 
provides an unbiased, consistent estimator for the shape of the production frontier. However, it 
underestimates the true frontier due to the inefficiency term. Therefore, in the second stage we estimate 
the conditional expected value of the inefficiency term, and correct the NLS estimates. We show how the 
conditional expected values can be estimated by using the method of moments or pseudolikelihood 
techniques. We examine the performance of both these methods by means of Monte Carlo simulations.  

The remainder of the paper is organized as follows. Section 2 introduces the StoNED model as a 
generalization of DEA and SFA. Section 3 discusses its estimation by means of constrained maximum 
likelihood along the lines of BM. Section 4 describes the estimation of the average production function by 
means of NLS. Based on the NLS residuals, we estimate the inefficiency and noise terms by means of 
method of moments or pseudolikelihood techniques in Section 5. Section 6 discusses some useful 
extensions to estimation of cost functions and modeling alternative assumptions about the returns to 
scale. Section 7 examines how the proposed techniques perform in a controlled environment of Monte 
Carlo simulations. Section 8 presents an illustrative application using data on tax collection offices. 
Section 9 draws the concluding remarks.         

                                                 
1 The term “nonparametric” refers here specifically to the fully nonparametric treatment of the frontier. As a whole, the cross-
sectional model discussed in this paper could be more appropriately described as “semiparametric” due to the distributional 
assumptions about the stochastic components. These parametric assumptions can be avoided in the panel data setting (see 
the working paper Kuosmanen, 2006, for discussion).   
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2. Stochastic nonparametric envelopment of data (StoNED)  
 

This section formally introduces the StoNED model in the cross-sectional, multi-input single-output 
setting. The m-dimensional input vector is denoted by x and the scalar output by y. The production 
technology is represented by the production function y = f(x). We assume that function f belongs to the 

class of monotonic increasing and concave functions, denoted by . In contrast to the SFA literature, no 

specific functional form for f is assumed a priori; our specification of the production function proceeds 
along the nonparametric lines of the DEA literature.   

2F

The observed output  of firm i may differ from  due to inefficiency and noise. We follow 

the SFA literature and introduce a composite error term 

iy x( )if

ε = −i iv ui , which consists of the inefficiency 

term  and the idiosyncratic error term , formally,  > 0iu iv

ε= + = − + =x x   ( ) ( ) , 1,...,i i i i i iy f f u v i n .       (1) 

Terms  and  ( ) are assumed to be statistically independent of each other as well as of 

inputs . Furthermore, we follow the standard SFA practice and assume 

iu iv = 1,...,i n

ix σ∼ 2

. .
(0, )i ui i d

u N  and 

σ∼ 2

. .
(0, )i i i d

v N v . Other distributions such as gamma or exponential are also used for the inefficiency term 

ui (e.g. Kumbhakar and Lovell, 2000), but this paper focuses on the standard half-normal specification. 
Model (1) is referred to as the stochastic nonparametric envelopment of data (StoNED) model. It 

can be thought as a generalization of the classic SFA and DEA. Specifically, if f is restricted to some 
specific functional form (instead of the class F2), model (1) boils down to the SFA model by Aigner et al. 

(1977). On the other hand, if we impose the restriction σ =2 0v  and relax the distributional assumption 

concerning the inefficiency term, we obtain the DEA model by Banker et al. (1984). In this sense, both 
SFA and DEA can be seen as special cases of the more general StoNED framework. 
 
3. Constrained maximum likelihood estimation 
 

Banker and Maindiratta (1992) (henceforth BM) considered a multiplicative variant of model (1), and 
proposed to estimate it by constrained maximum likelihood (ML) method. While BM assumed the 
distribution of the inefficiency term to be truncated normal, we here rephrase their approach in terms of 
the more standard half-normal specification.2 Using the parametrization by Aigner et al. (1977) with 

σ σ σ≡ +2 2
u

2
v  and λ σ σ≡ /u v , the log-likelihood function can we written in terms of the unobserved 

                                                 
2 Truncated normal specification (or any other distributional assumption) for ui only influences the log-likelihood function. It is 
straightforward to adapt the model to these situations.  
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frontier outputs ≡ x( )f
i iy f  as 

( ) (
λ

σ λ π σ
σ σ= =

⎡ ⎤− −
⎢ ⎥= − + Φ − −
⎢ ⎥⎣ ⎦

∑ ∑
22

2
1 1

1ln ( , , ) ln(2 / ) ln ln
2 2

fn n
i if f

i i
i i

y ynL ny )y y ,                  (2) 

where  denotes the cumulative distribution function of the standard normal distribution. Given the 

regularity condition , the ML estimates of the frontier outputs 

Φ

∈ 2f F ˆ f
iy  and the density function 

parameters σ̂  and λ̂  are obtained as the optimal solutions to the following constrained ML problem 

  { }
σ λ

σ λ σ λ= ∀ ∈ ≥
1

2
2,...,

,

max ln ( , , ) ( ) ; ; , , 0
f f

n

f f f
i i

y y
L y f i f F

  

y   x    y .    (3) 

This is a complex, infinite dimensional optimization problem. An important contribution of BM was 
to transform (3) into a finite dimensional optimization problem by applying insights from Afriat’s Theorem 
(see Afriat, 1967, 1972; Hanoch and Rotchild, 1972; and Diewert and Parkan, 1983). Their main result 
was to show that the constraints of (3) can be linearized, and the constrained ML problem can be 
equivalently written as 

( ) ( )
σ λ

λ
π σ

σ σ

σ λ

= =

⎡ ⎤− −
⎢ ⎥− + Φ − −
⎢ ⎥⎣ ⎦

′ ′− ≥ − ∀ =

≥ ∀ =

≥ ∀ = ≥

∑ ∑
2

2, , , 1 1

1max ln(2 / ) ln ln
2 2

, 1,...,
1,..., ,

0 1,..., ; , 0.

fn n
i i f

i i
i i

f f
i i i j i j

i
f
i

y yn n y

y y i j n
i n

y i n

fy β
  

β x β x  
β 0 

   

y

   (4) 

BM did not present any asymptotic results for their method. Later, Sarath and Maindiratta (1997) proved 
consistency of the estimators for frontier outputs and the composed error density function parameters 
under relatively weak assumptions.  

Unfortunately, the objective function of (4) remains a complex, nonlinear, non-convex function. In 
particular, the sum of the logarithms of the cumulative normal density in n different points is hard to 
compute because there is no closed form solution to the definite integrals of Φ . BM suggested various 
solution strategies including grid search and cutting plane algorithms, but no practical computational 
procedure is available (see also Banker et al., 2002; and Allon et al., 2007, for critical discussion). To our 
knowledge, there are no reported empirical applications of this ML method. 
 
4. Constrained nonparametric least squares estimation  
 

In this section we develop a least squares estimator for the shape of the production frontier. The 
challenge in the least squares estimation of model (1) is that the expected value of the composite error 
term is greater than zero. Given the half-normal specification of the inefficiency term, Aigner et al. (1977) 
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showed that 

ε σ π= = >( ) ( ) 2 / 0i i uE E u .        (5) 

This implies that the StoNED model (1) violates the Gauss-Markov assumptions and hence the least 
squares estimators are biased and inconsistent. However, the Gauss-Markov properties can be restored 
by rephrasing the model as 

[ ] [ ]μ ε μ υ= − + + = + =( ) ( ) , 1,...,i i i i iy f g ix x   n ,      (6) 

where μ ≡ ( )iE u  is the expected inefficiency and μ≡ −( ) ( )g fx x  can be interpreted as an “average” 

production function (in contrast to the “frontier” production function f), and υ ε μ≡ + =, 1,...,i i i  n , is a 

modified composite error term. It is easy to verify that the modified errors υi  satisfy the Gauss-Markov 

conditions under the maintained assumptions of the StoNED model. Thus, the average production 
function g can be consistently estimated by nonparametric regression techniques. Subsequently, the 
expected value μ  and the parameters of the inefficiency and noise distributions can be estimated based 

on the regression residuals by the method of moments or pseudolikelihood techniques (as discussed in 
Section 5).  

To estimate the average production function g, we employ nonparametric least squares (NLS) 
subject to monotonicity and concavity restrictions (Hildreth, 1954; Hanson and Pledger, 1976; Mammen, 
1991; Groeneboom et al., 2001). The constrained NLS estimator is particularly suited for the estimation of 
the StoNED model because it draws its power from the monotonicity and concavity conditions (which are 
the maintained assumptions of both StoNED and DEA models) without any further assumptions about the 
functional form or its smoothness. This approach avoids the bias-variance tradeoff associated with other 
nonparametric regression techniques (such as kernel or spline techniques) (e.g., Yatchew 2003). 

The shape constrained NLS problem can be stated as  

=

−∑ x 2
2

1
min ( ( ))  . . 

n

i ig i
y g s t g F∈ .        (7) 

In words, the NLS estimator of g is a monotonic increasing and concave function that minimizes the L2-
norm of the residuals. The maximum likelihood property of this estimator was noted already by Hildreth 
(1954). Hanson and Pledger (1976) proved consistency of estimator (7) in the single regression case. 
Nemirovskii et al. (1985), Mammen (1991) and Mammen and Thomas-Agnen (1999) have established 
convergence rates and Groeneboom et al. (2001) derived the asymptotic distribution at a fixed point. In 
the case of m inputs, the NLS estimator (7) achieves the standard nonparametric rate of convergence 
OP(n-1/(2+m)). If one imposes further smoothness assumption by postulating that g belongs to some 
constrained Sobolev functional class, the optimal convergence rate of nonparametric estimator in the 
sense of Stone (1980, 1982) can be achieved (see e.g. Mammen and Thomas-Agnen, 1999; and 

 6



Yatchew, 2003). While introducing more stringent smoothness assumptions can improve the rate of 
convergence, the economic theory does not provide guidance regarding the appropriate degree of 
smoothness (or bounds of derivatives). More importantly, imposing further smoothness assumptions 
spoils the connection to DEA. Therefore, we here restrict to the non-smooth NLS. 

The NLS problem (7) does not restrict beforehand to any particular functional form of g, but 

searches the best-fit function from the family , which includes an infinite number of functions. This 

makes problem (7) generally hard to solve. In statistics, efficient algorithms for solving problem (3) in the 
single regressor (i.e., single input) case have been developed (e.g., Fraser and Massam, 1989; Meyer, 
1999). These algorithms require that the data is sorted in ascending order according to the regressor. 
However, such a sorting trick is not possible in the general multiple regression (i.e., multi-input) setting 
where x is a vector rather than scalar.  

2F

To estimate the NLS problem (7) in the general multi-input setting, we utilize the insights from 
Afriat’s Theorem, in line with BM and Matzkin (1994). Specifically, we take the constraints of the ML 
problem (3) by BM and form the following least-squares problem  

( )2

, 1
min

, 1,...,
1,..., .

g

n
g

i i
i

g g
i i i j i j

i

y y

y y i j
i n

=

−

′ ′− ≥ − ∀ =

≥ ∀ =

∑
y β  

β x β x  
β 0 

n

                                                

       (8) 

This gives a quadratic programming (QP) problem with n(m+1) unknowns and n2+n linear inequalities, 
which is relatively easy to solve by standard QP algorithms and solver software.3 Interestingly, this finite 
QP problem is equivalent to the infinite dimensional NLS problem (7) in the following sense: 
 

Proposition 1: Let  be the minimum sum of squares of problem (7) and let  be the minimum 

sum of squares of problem (8). Then for any real-valued data, . 

2
NLSs 2

Afriats

=2 2
NLS Afriats s

 
This equivalence result is an important step towards operationalizing NLS in the multiple 

regression setting. While the use of Afriat inequalities to model concavity constraints in NLS has been 
briefly suggested earlier (e.g., Matzkin, 1994; Yatchew, 1998), to our knowledge, the equivalence of the 
infinite dimensional NLS problem and a finite QP problem has not been formally proven before.     

 
3 QP is a standard class of problems within nonlinear programming (NLP). A variety of commercial and shareware solver 
software are available for solving QP problems. High-performance QP solvers include, e.g., CPLEX, LINDO, MOSEK, and 
QPOPT, but also general NLP solvers such as MINOS and BQPD can handle QP problems. Most solvers can be integrated 
with standard mathematical modeling systems/languages such as GAMS, Gauss, Mathematica, and Matlab.  
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 Proposition 1 implies that the QP problem (8) yields unbiased and consistent fits ˆ g
iy  in the 

observed points . To estimate a full-fledged production function throughout the observed 

range of input values, including the unobserved points, the following model proves convenient: 

=, 1,...,i ix n

2

, , 1
min

, 1,...,
1,..., .

n

i
i

i i i i i

i i i h h i

i

y
h i n

i n

υ

α υ
α α

=

′= + +
′ ′+ ≤ + ∀ =

≥ ∀ =

∑υ α β

β x
β x β x  

β 0 

       (9) 

The first constraint of this problem can be interpreted as a standard regression equation, the second 
constraint enforces concavity analogous to the Afriat inequalities, and the third constraint ensures 
monotonicity. The analogy of model (9) with the conventional parametric regression models is useful for 
econometric model building (e.g., we exploit it in Section 6.3 for estimating cost functions). Note that (9) 

differs from the classic OLS problem in that the coefficients α ,i iβ  are here firm-specific. In this respect, 

model (9) is structurally similar to the varying coefficient (VC) regression models (also referred to as 
random parameters models) (e.g., Fan and Zhang, 1999; Greene, 2005), which typically assume a 
conditional linear structure. However, while the random parameters models estimate n different 
production functions of the same a priori specified functional form, the NLS regression (9) estimates n 

tangent hyper-planes to one unspecified production function. The slope coefficients  represent the 

marginal products of inputs (i.e., the sub-gradients 

iβ

ˆ ( )ig∇ x ). Interestingly, problems (8) and (9) are 

equivalent in the following sense: 
 

Proposition 2: Let  be the minimum sum of squares of problem (9). For any real-valued data, 

. 

2
VCs

=2 2
Afriat VCs s

 

Given the estimated coefficients  from model (9), we may estimate the average production 

function g by the following piece-wise linear function  

α β̂ˆ ,i i

{ }
α

∈
′≡ +x β x

1,...,
ˆˆ ˆ( ) min ( )i ii n

g .         (10) 

This function provides estimates for function g in unobserved points x. In addition, one can use this 
function for computing substitution and scale elasticities. This piece-wise linear estimator is legitimized by 
the following result. 
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Proposition 3: Denote the set of functions that minimize problem (7) by . For any real-

valued data, . 

∗ ∗ ⊂2 2 2:G G F
∗∈ 2ĝ G

   
The piece-wise linear structure of the estimator (10) closely resembles that of the DEA frontier. 

Although problem (9) includes n different firm-specific coefficients , the number of different 

hyperplane segments in  is typically much lower than n (for graphical illustration, see Figures 1-3 in 

Section 7). Second similarity with DEA is that the estimator  and its coefficients  are not 

necessarily unique. This is because  depends on the particular choice of subgradients  that 

are represented by the slope coefficients . To test for uniqueness, one could construct upper and lower 

bounds for function  along the lines of Varian (1984). 

α ,i iβ

xˆ( )g

xˆ( )g α β̂ˆ ,i i

xˆ( )g ∇ xˆ( )g

ˆ
iβ

xˆ( )g

Despite these links to DEA, the piece-wise linear function  does not estimate the frontier, 

but the average production function g(x). Estimation of g is a common approach both in parametric and 
semiparametric panel data stochastic frontier models (e.g., Schmidt and Sickles, 1984; Cornwell et al., 
1990; Kneip and Simar, 1996). However, some authors claim that the technology in use at the average 
production frontier can differ from that of the best practice frontier (see, e.g., Greene, 1997, for 
discussion). Yet, no convincing theory supports such an argument. In the present framework (which is 
standard in the literature), the shape of the frontier f(x) must be exactly the same as that of the average 
production function g(x) because 

xˆ( )g

μ≡ −( ) ( )g fx x , where the expected inefficiency μ  is a constant. To 

estimate  consistently, we next need to estimate ( )f x μ , and then shift the estimated  upward, 

similarly to the modified OLS (MOLS) approach in the SFA literature. In next section we show how the 

expected inefficiency 

xˆ( )g

μ  and the unknown standard deviations σ σ,u v  can be estimated from the NLS 

residuals by the method of moments or pseudolikelihood techniques.  
  

5. Efficiency estimation 
 

Given the NLS residuals υ υ≡υ 1ˆ ˆ ˆ( ,..., )n , the next challenge is to disentangle inefficiency from noise. This 

can be done by method of moments or pseudolikelihood techniques. 
  
5.1. Method of moments 

The method of moments (MM) is widely used in the SFA literature (referred to as MOLS, e.g. Greene 
1997). Under the maintained assumptions of half-normal inefficiency and normal noise, the second and  
third central moments of the composite error distribution are given by 

 9



π σ σ
π
−⎡ ⎤= ⎢ ⎥⎣ ⎦

2
2

2
uM + 2

v           (11) 

σ
π π

⎛ ⎞⎡ ⎤= −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠

3
3

2 41 uM  .         (12) 

These can be estimated based on the distribution of the NLS residuals as 

υ υ
=

= −∑ 2
2

1

ˆ ˆˆ( ( ))
n

i i
i

M E / n

/ n

         (13) 

 .         (14) υ υ
=

= −∑ 3
3

1

ˆ ˆˆ( ( ))
n

i i
i

M E

Note that the third moment (which represents the skewness of the distribution) only depends on the 

standard deviation parameter σ u  of the inefficiency distribution. Thus, given the estimated  (which 

should be negative), we can estimate 

3M̂

σ u  parameter by 

σ

π π

=
⎛ ⎞⎡ ⎤−⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

3

3

ˆ
ˆ

2 41
u

M  .         (15)  

Subsequently, the standard deviation of the error term σv  is estimated based on (11) as  

πσ σ
π
−⎡ ⎤= − ⎢ ⎥⎣ ⎦

2
2

2ˆˆv M ˆu .        (16) 

These MM estimators are unbiased and consistent (Aigner et al., 1977; Greene, 1997), but not 
necessarily as efficient as the maximum likelihood estimators.   
 
5.2. Pseudolikelihood estimation 

An alternative way to estimate the standard deviations σ σ,u v  is to apply the pseudolikelihood (PSL) 

method suggested by Fan et al. (1996).4 Compared to the MM, PSL is potentially more efficient, but is 
computationally and conceptually somewhat more demanding.  

Like in the MM approach, our starting point is the NLS residuals υ υ≡υ 1ˆ ˆ ˆ( ,..., )n . In the PSL 

approach we set parameters σ σ σ≡ +u v  and λ σ σ≡ /u v  to maximize the concentrated log-likelihood 

function. One of the main contributions of Fan et al. (1996) was to show that the log-likelihood can be 
                                                 
4 Fan et al. (1996) estimated a variant of the StoNED using a two-stage method: in stage 1) the average production function g 
is estimated using the kernel regression, and in stage 2) the standard deviations σ σ,u v  are estimated by PSL. While the 
kernel regression yields a consistent estimator of g, the estimated frontier may violate monotonicity and concavity. Our 
approach deviates from Fan et al. in the first stage where we estimate g by using shape restricted NLS instead of kernel 
techniques. 
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expressed as a function of a single parameter (λ ) as,   

( ) 2
2

1 1

ˆ 1 ˆln   - ln ˆ ln
ˆ 2 ˆ

n n
i

i
i i

L n ε λλ σ
σ σ= =

−⎡ ⎤= + Φ −⎢ ⎥⎣ ⎦
∑ ε∑ ,     (17) 

where  

( ) ( )ε υ λσ π λ⎡= − +⎣
1 22ˆ ˆ 2 ˆ 1i i ⎤⎦ ,        (18) 

and   

( )
λσ υ

π λ=

⎧ ⎫⎡ ⎤⎪= −⎨ ⎢ +⎪ ⎪⎣ ⎦⎩ ⎭
∑

1 2
2

2

1

1 2ˆˆ 1
1

n

i
jn

⎪
⎬⎥ .        (19) 

Note that ε̂ i  and σ̂  cannot be computed from the NLS residuals as they depend on the unknown 

parameterλ . In practice, we maximize the log-likelihood function (17) by enumerating over λ  values, 

using a simple grid search or more sophisticated search algorithms. After the pseudolikelihood estimate 

λ̂  that maximizes (17) is found, estimates for ε i  and σ  are obtained from (18) and (19). Subsequently, 

we obtain σ σλ λ= +ˆˆ ˆ /(1u
ˆ)  and σ σ λ= + ˆˆ ˆ /(1v ) . Regarding convergence, Fan et al. (1996) note that 

estimators λ̂  and σ̂  converge to the true λ  and σ  at parametric rate −1 2n .  

 
5.3. Estimation of the inefficiency term 

Given a consistent estimator σ̂ u  (obtained by either MM or PSL), the frontier production function f can be 

consistently estimated by  

xˆ( )if = σ π+xˆ( ) ˆ 2 /i ug .         (20) 

In practice, this means that frontier is obtained by shifting the NLS estimate of the average production 
function upwards by the expected value of the inefficiency term, analogous to the MOLS approach.  

Regardless of how σ σ,u v  are estimated, the firm-specific inefficiency component ui must be 

inferred indirectly in the cross-sectional setting. Jondrow et al. (1982) have shown that the conditional 

distribution of inefficiency ui given ε i  is a zero-truncated normal distribution with mean 

μ ε σ σ σ∗ = − +2 2 2/( )i u u v  and variance σ σ σ σ σ∗ = +2 2 2 2 2/(u v u v ) . As a point estimator for ui, one can use 

the conditional mean 

φ μ σε μ σ
μ σ
∗ ∗

∗ ∗
∗ ∗

⎡ −
= + ⎢ −Φ −⎣ ⎦

( / )( )
1 ( / )i iE u

⎤
⎥ ,        (21) 

where  φ  is the standard normal density function, and Φ  is the standard normal cumulative distribution 
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function. Given the estimated σ σˆ , ˆu v  parameters, the conditional expected value of inefficiency can be 

computed as  

ε σ σ σ φ ε σε
σ σ σ σ ε σ

⎡ ⎤
= − + ⎢ ⎥+ + −Φ⎣ ⎦

2 2 2 2

2 2 2 2 2
ˆ ˆ ˆ ˆ ( / ˆ )ˆ ˆ( )

ˆˆ ˆ ˆ ˆ 1 ( / ˆ )
i u u v i v

i i
u v u v i v

E u ˆ ,      (22) 

where ε υ σ π= −ˆ ˆ ˆ 2 /i i u  is the estimator of the composite error term (compare with (18)), not the NLS 

residual. The conditional expected value (22) is an unbiased but inconsistent estimator of ui: irrespective 
of the sample size n, the variance of the estimator does not converge to zero. 
 
5.4. Statistical inference 
Even though the log-likelihood function and the statistical distributions of the inefficiency and noise terms 
are known (by assumption), the conventional methods of statistical inference do not directly apply in the 
present setting. For example, one might apply the likelihood ratio test for testing significance of two 
alternative hierarchically nested StoNED models, but the degrees of freedom are difficult to specify (see 
Meyer, 2003, 2006, for discussion). One could also construct confidence intervals based on the known 
conditional distribution of the inefficiency term (see Horrace and Schmidt, 1996, for details). However, 
such confidence intervals do not take into account the sampling distribution of the inefficiency estimators, 
and consequently, have poor coverage properties (Simar and Wilson, 2005). 

In light of these complications, parametric bootstrap appears to be the best suited approach to 
statistical inference in the present context. Simar and Wilson (2005) have recently developed a bootstrap 
procedure for SFA, which can be adapted to the context of the StoNED model as follows: 

[1] Given the sample data { }
=

x
1

( , )
n

i i i
y , solve the NLS problem (9) to obtain estimates { }α υ

=
β

1
ˆˆ ˆ( , , )

n

i i i i
. 

Use the NLS residuals { }υ
=1

ˆ
n

i i
 and the MM or PSL methods to obtain estimates σ λ σ σˆˆ , , ˆ , ˆu v . 

[2] For i = 1,…,n, draw σ∼ 2(0, ˆ )i uu N  and σ∼ 2(0, ˆ )iv N v , and compute α ′= + − +β xˆˆi i i i i iu v . y

[3] Using the pseudo-data { }
=

x
1

( , )
n

i i i
y , solve the NLS problem (9) to obtain estimates { }α υ

=
β

1

ˆˆ ˆ( , , )
n

i i i
i

. 

Use the residuals { }υ
=1

ˆ n

i i
 and the MM or PSL methods to obtain bootstrap estimates σ λ σ σˆˆ ˆ ˆ, , ,u v . 

[4] Repeat steps [2]-[3] to obtain bootstrap estimates { }α υ
= =

⎧ ⎫
⎨ ⎬
⎩ ⎭

β
1 1

ˆˆ ˆ( , , )
Bn

ib ib ib
i b

 and  { }σ λ σ σ
=1

ˆˆ ˆ ˆ, , ,
B

b b ub vb
b

. 

 The resulting bootstrap estimates can be used for statistical inference in many ways (see, e.g., 
Efron, 1979, 1982; and Efron and Tibshirani, 1993, for discussion). For example, the α⋅ −100 (1 )%  
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confidence interval for parameter σ u  is constructed as [ ] [ ]α ασ σ −⎡ ⎤
⎣ ⎦

/ 2 (1 ) / 2ˆ ˆ,u u  where [ ]σ̂ p
u  denotes the 

-percentile of the elements of {⋅100p }σ
=1

ˆ B

ub b
. The confidence interval for the expected inefficiency μ  is 

hence [ ] [ ]α ασ π σ π−⎡
⎣

/ 2 (1 ) / 2ˆ ˆ2 / , 2 /u u
⎤
⎦ . Thus, the confidence interval for the production function f in point 

x is [ ] [ ]α ασ π σ −⎡ ⎤+ +⎣ ⎦
/ 2 (1 ) / 2ˆ ˆˆ ˆ π( ) 2 / , ( ) 2 /u ug gx x . 

Finally, we note that in empirical applications the least-squares residuals are often skewed in the 

wrong direction ( ). In the SFA literature, the usual approach is to set , which means that 

all firms are diagnosed as efficient. It may also occur that the skewness is so great that 

>3
ˆ 0M σ =ˆu 0

σ σ>ˆu ˆ , and 

thus σ̂v  becomes negative. In that case, the typical approach is to set σ̂v = 0 and attribute all observed 

variation to inefficiency (as in DEA). The “wrong skewness” is conventionally seen as a built-in diagnostic, 
which signals model misspecification or inappropriate data (Greene, 1997). However, Simar and Wilson 
(2005) have shown by means of Monte Carlo simulations that the wrongly skewed residuals can 
frequently arise even in correctly specified SFA models. Wrongly skewed residuals can also occur in 
correctly specified StoNED models. This is not only a problem for the method of moments, it equally 
affects the pseudolikelihood method. Thus, it is comforting to note that Simar and Wilson (2005) have 
shown that the parametric bootstrap method described above can provide useful information about the 
inefficiency levels even in such situations where the residuals are wrongly skewed.  
 
6. Extensions  
 

6.1. Returns to scale 

We have thus far left returns to scale (RTS) unrestricted. In many applications, it is meaningful to impose 
further structure on RTS or it is interesting to test for alternative RTS assumptions statistically. Imposing 
RTS is straightforward in the NLS regression (9). We simply add the following constraints:  

• constant returns to scale (CRS): α = ∀ =0 1,...,i i n  

• non-increasing returns to scale (NIRS): α ≥ ∀ =0 1,...,i i n  

• non-decreasing returns to scale (NDRS): α ≤ ∀ =0 1,...,i i n  

While the NLS regression is easily adapted to alternative RTS assumptions, the implications to 
the efficiency estimation are somewhat trickier. Specifically, if one estimates the average technology g 
subject to CRS, and subsequently shifts the frontier upward by the expected inefficiency, the resulting 
best-practice frontier does not generally satisfy CRS. This is due to the mismatch of the additive structure 
of the inefficiency and noise terms assumed in (1) and the multiplicative nature of the scale properties. If 
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one imposes CRS, NIRS, or NDRS assumptions, it is logically consistent to employ the multiplicative 
specification of inefficiency and noise, to be discussed next.   
 

6.2. Multiplicative errors 
Although the additive model of errors is standard in the econometric theory, in practice, most SFA studies 
employ a multiplicative error model due to the log-transformations applied to the data (e.g., when the 
popular Cobb-Douglas or translog functional forms are used). As noted above, the RTS assumptions 
require a multiplicative specification of errors. Moreover, multiplicative error specification might alleviate 
heteroskedasticity across different sized firms.  

In the present setting, applying log-transformations would violate the concavity constraints of the 
NLS regression. Therefore, we need an alternative way of modeling noise and inefficiency in a 
multiplicative fashion. The following multiplicative specification proves convenient for our purposes: 

ε −= ⋅ − = + − =x x   1( ) (1 ) ( ) /(1 ) , 1,...,i i i i i iy f f u v i n .      (23) 

The composite error term ε i  and its components ui and vi are assumed to satisfy the standard 

assumptions imposed in Section 2.   
For the purposes of estimation, we decompose the multiplicative model (23) as  

[ ] [ ]μ μ υ= + ⋅ + + − = − =x x( ) /(1 ) (1 ) /(1 ) ( ) /(1 ) , 1,...,i i i i i iy f u v g i n ,    (24) 

where μ  is the expected inefficiency as in (5), μ≡ +x x( ) ( ) /(1 )i ig f  is the average production function, 

and υ μ= − + +( ) /(1i i iu v μ)  is the modified composite error term with υ =( ) 0iE . Since 

υ= −x( ) (1 )i ig y i , the average production function can be consistently estimated by the following NLS 

regression:  

2

, , 1
min

. . 
(1 )  1,...,

 , 1,...,
 1,...,

i

n

i
i

i i i i i

i i i h h i

i

s t
y i n

h i n
i n

υ

υ α
α α

=

′− = + ∀ =
′ ′+ ≤ + ∀ =

≥ ∀ =

∑α β υ

β x
β x β x

β 0

       (25) 

Subsequently, the method of moments and pseudolikelihood techniques can be used for filtering out the 

noise from inefficiency.5 Given the NLS production function  obtained from (25) and the parameter 

estimate 

ĝ

σ̂ u , the production function is estimated by  

xˆ( )if = σ π+xˆ( )(1 ˆ 2 / )i ug .        (26) 
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Firm efficiency can be gauged using the multiplicative Farrell output efficiency measure (the reciprocal of 

the Shephard output distance function), which can be estimated by ε+ ˆ ˆ1 ( )i iE u , where εˆ ˆ( )i iE u  is 

calculated according to equation (22) using ε υ σ π υ= + −ˆ ˆ ˆˆ 2 / ( 1)i i u i . 

 
6.3 Cost functions 
Duality theory has established that the production technology can be equivalently modeled by means of 
monetary representations. The most popular dual representation is the cost function, formally defined as 

{ }′=( , ) min ( )C y f y
x

w w x x = ,         (27) 

where w denotes the vector of exogenously given input prices. The cost function indicates the minimum 
cost of producing a given target output at given input prices. It is non-negative, non-decreasing, 
homogenous of degree one, concave and continuous in prices w (Kuosmanen, 2003; Theorem 3.3). 
These known properties provide a sound rationale for the nonparametric estimation. 
 In the stochastic cost frontier model, the observed costs Ci  (i = 1,…,n) are assumed to differ from 

the cost function due to a composite error term (ε i ) which is the sum of a non-negative inefficiency term 

(ui) and a noise term (vi), that is, 

  ε= + = +( , ) ( , )i i i i i i iC C y C y u vw w + i .       (28) 

Maintaining the assumptions of ui and vi stated in Section 2, the cost frontier can be estimated analogous 
to the production function procedure using the constrained NLS regression together with the method of 
moments or pseudolikelihood techniques.  

The main challenge of the cost function estimation concerns the specification of the NLS model 

to estimate the conditional expected values w( ,i i iE C y ) . If the production function f is concave, then the 

cost function is a convex function of output y. However, the cost function must be a concave function of 
input prices w. To estimate a cost frontier by NLS, we need to transform the cost function as a concave 
(or convex) function of all its arguments. To this end, we note that if the cost function is a convex function 
of output, then it is a concave function of its additive inverse. Introducing the expected inefficiency, we 
may rephrase equation (28) as 

[ ] [ ]μ μ= + + + − = − +( , ) ( , )i i i i i i iC C y u v AC yw υiw ,      (29) 

where μ− ≡ +( , ) ( , )i i i iAC y C yw w  is a concave function of all its arguments, and υi  is a modified error 

term that satisfies the Gauss-Markov assumptions. The average cost curve AC can be consistently 
estimated by the NLS model: 

                                                                                                                                                           
5 The multiplicative error structure should be taken into account when forming the log-likelihood function for PSL; equations 
(17)-(19) need to be adjusted to the multiplicative error structure. 
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2

, , , 1
min

. . 
 ( )   1,...,

( ) ( )  , 1,...,
, 0   1,...,

N

i
I

i i i i i i i

i i i i i h h i h i

i i

s t
C y i n

y y h i n
i n

υ

α δ υ
α δ α δ

δ

=

′= + + − + ∀ =
′ ′+ + − ≤ + + − ∀ =

′ ≥ ≤ ∀ =

∑α β δ υ

β w
β w β w

β 0

     (30) 

Coefficients iδ  represent (the additive inverse of) the marginal cost of output, and are postulated to be 

non-positive. Coefficients  indicate the marginal cost of input prices (which depends on the input 

substitution possibilities). Intercepts 

iβ

α i  have an interpretation as the fixed cost.  

Given the NLS residuals, the conditional expected values of the inefficiency terms can be 
estimated along the lines described in Section 5. Note the changed sign of the inefficiency component 
and the direction of skewness (compare, e.g., with Greene, 1997, and Kumbhakar and Lovell, 2000). The 

interpretation of the inefficiency term also changes:  here represents (overall) cost inefficiency that 

captures both technical and allocative aspects of inefficiency. Extending the cost frontier estimation to 
multi-output settings is straightforward. 

iu

 
7. Monte Carlo Simulations  
 

The purpose of this section is three-fold. First, we present four simulated examples to illustrate how the 
proposed approach works in practice and to visualize the estimated StoNED frontiers and isoquants. 
Second, the simulations demonstrate that the proposed estimation methods can perform better than the 
existing parametric, nonparametric and semiparametric techniques at least in some nontrivial settings. 
Third, we compare systematically the performance of the method of moments and the pseudolikelihood 
estimators suggested in Section 5.  
 
7.1 Illustration 

We first estimate the StoNED frontiers in four simulated scenarios described by Table 1. Scenario A 
represents a single-input case, with a small sample size and relatively large noise. Scenario B also has a 
single input, but has a larger sample size and lower noise. Scenario C involves two inputs, constant 
returns to scale, and a multiplicative error structure. Scenario D is the most difficult to estimate, because 
it involves three inputs, and an exponential error structure that contradicts our assumptions.  
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  Table 1: Description of the four scenarios 

Scenario inputs true production function n σ u  σv  

A) x yi = xi 1/2 + ln(xi) + vi - ui 50 0.6 0.4 
B) x yi = ln(xi) + 2 + vi - ui 100 0.6 0.3 
C) x1,x2 yi = (0.1x1i + 0.1x2i + 0.3(x1ix2i)1/2)/(1 - vi + ui) 100 0.4 0.2 
D) x1,x2,x3 yi = (0.1x1i + 0.1x2i + 0.1x3i + 0.3(x1ix2ix3i)1/3)exp(vi - ui) 100 0.4 0.2 

 
In all scenarios, the input data were randomly sampled from Uni[1,11], independently for each 

input and firm. The efficient output levels were calculated using the production function described by 

Table 1. From the efficient output level, we subtracted a random inefficiency term σ∼ 2

. .
(0, )i ui i d

u N  and 

added a random error σ∼ 2

. .
(0, )i i i d

v N v , to obtain the “observed” output data used in estimation. The 

standard deviations σ σ2 2,u v  used in each scenario are described in Table 1.  

Given the four randomly generated data sets, we computed the shape constrained NLS 
regression and subsequently the MM and PSL estimators for each data set separately. In Scenarios A 
and B we employed unrestricted RTS and an additive error structure, while in Scenarios C and D we 
imposed CRS and a multiplicative error structure.  

Figure 1 illustrates the results of Scenario A by plotting a scatter of the sample data (points ×), 
the true frontier (thick black curve), the NLS estimate of the average production function (thick, grey, 
piece-wise linear curve), and the StoNED frontiers estimated by the MM (solid, thin, piece-wise linear 
curve) and PSL (broken, piece-wise linear curve), respectively. The NLS estimator for the average 
production function consists of four different line segments (segments 1 and 2 have almost identical 
slopes and are indistinguishable in Figure 1). It is worth emphasizing that, in contrast to linear splines, the 
number of segments and the location of the vertices (or knots) are not specified a priori but are 
endogenously determined in the NLS problem (9) to minimize the sum of squares. Despite the small 
sample size, the NLS approximates the shape of the true production function reasonably well. As a result, 
both the MM and PSL estimators come rather close to the true production function, the PSL curve slightly 
exceeding the MM curve. 
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Figure 1: Scenario A: scatter of data, the NLS regression curve, and the StoNED frontiers 
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Figure 2: Scenario B: scatter of data, the NLS regression curve, and the StoNED frontiers. 
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Figure 2 illustrates the results of Scenario B in an analogous fashion. The true frontier is now 
more steeply curved, and the sample size is larger. The NLS curve consists of five different line 
segments (segments 3 and 4 are difficult to distinguish in Figure 2). In this Scenario, the MM curve 
indicates slightly higher output levels than the PSL curve. Nevertheless, both curves closely approximate 
the true frontier. 

The multi-input scenarios are more difficult to visualize. Figure 3 illustrates Scenario C by means 
of an isoquant map. Since the production function exhibits CRS, we plot the scatter of data on normalized 
axes (x1/y and x2/y). The isoquant of the true production function is illustrated by the thin solid curve. The 
isoquant of the average production function estimated by NLS is represented by the thick, grey, piece-
wise linear curve. It consists of four different line segments, and captures the shape of the true isoquant 
relatively well. The MM and PSL estimators of the frontier proved indistinguishable; they both are 
represented by the thin, broken, piece-wise linear curve. In this scenario, the estimated frontier falls 
somewhat short from the true frontier; the skewness of NLS residuals underestimated the magnitude of 

the true σ 2
u , which shows up both the MM and PSL estimates. 

    

x1/y

x2/y

Isoq. f(x)

Isoq. CNLS

Isoq. StoNED
MM&PSL
normalized data
points

 
Figure 3: Scenario C: scatter of data and input isoquants of the NLS regression curve and the StoNED 

frontier 
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7.2 Comparison to other frontier estimation techniques 

We next compared the performance of the two StoNED frontier estimation approaches to the 
conventional SFA and DEA approaches in the previous four scenarios. The comparison also includes the 
semi-parametric kernel regression approach by Fan et al. (1996).6 We restrict attention on the estimation 
of the frontier production function in n observed points (for the stochastic approaches, the conditional 
expected value is used as an estimator). Table 2 reports the mean squared error (MSE) and the bias of 
the alternative estimators.   
 
Table 2: Performance of alternative estimation techniques in the frontier estimation 

  scenario A scenario B scenario C scenario D 
  MSE BIAS MSE BIAS MSE BIAS MSE BIAS 
StoNED MM 0,030 -0,105 0,010 -0,049 0,081 -0,266 0,296 -0,484 
 PSL 0,022 -0,055 0,025 -0,132 0,085 -0,272 0,417 -0,594 
SFA CD 0,102 -0,023 0,189 -0,243 0,361 -0,544 0,092 0,190 
 translog 0,101 -0,023 0,110 -0,307 0,371 -0,547 0,145 0,047 
DEA CRS 21,594 3,868 23,490 3,980 2,571 1,313 1,078 0,830 
 VRS 0,097 0,260 0,151 0,364 1,065 0,802 0,581 0,427 
semiparam. kernel 0,297 0,508 0,075 -0,093 0,103 0,272 0,943 -0,850 

 
Overall, the performance of the proposed estimators was strong. In Scenarios B and C, the 

StoNED estimators achieved both the lowest MSE and bias. In Scenario A, the StoNED estimators 
achieved the lowest MSE, but the SFA estimators had the lowest bias. In Scenario D, the SFA estimators 
achieved the lowest MSE and bias, followed by the StoNED estimators. In general, SFA achieved lower 
MSE and bias than DEA, with the exception of Scenario A. Note that the MM estimator of the StoNED 
model outperformed the kernel estimator by both criteria in all four scenarios. The MM performed better 
than the PSL method in Scenarios B-D, but the PSL was superior in Scenario A. 

 
 

7.3 MM vs. PSL estimators 

We next evaluate the performance of the MM and PSL estimators for the model parameters σ λ2 ,  and 

the standard deviations σ σ,v u  in a more systematic manner. To facilitate comparisons, we replicate the 

setting by Aigner et al. (1977) and Fan et al. (1996). We focus on the model ε= +1iy i

i

, where 

, ε = −i iv u σ∼ 2(0, )i iid
v N v , and σ∼ 2(0, )i iid

u N u  for all = 1,...,i n

                                                

. As estimator for g, we use the 

 
6 The Gaussian kernel function was used. Following Fan et al. (1996), the smoothing parameter was set at xsdn-1/(m+4) where 
xsd is the sample standard deviation of input x. 
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arithmetic average of the observed output values, and hence the estimated  may differ from the true 

value of g (i.e., 

ĝ

μ−1 ). Hence, this simple model suffices to capture the essential elements of frontier 

estimation for the comparison of the MM and PSL estimators.  

 Following Aigner et al. (1997) and Fan et al. (1996), three different levels of the true σ λ2( , )  

parameters are considered: σ λ2( , )  = (1.88, 1.66), (1.63, 1.24), (1.35, 0.83). These correspond to 

standard deviations (σ σ,v u ) = (0.71, 1.17), (0.80, 0.99), (0.89, 0.74), respectively. All three models are 

replicated 1,000 times and the MM and PSL estimates are computed for σ λ2 , ,σv , and σ u . This allows 

us to assess the performance of the estimators both within and across scenarios. 
Table 3 reports the MSE and bias of the MM and PSL estimators in the three scenarios. In 

general, our results are in line with those reported by Aigner et al. (1977) and Fan et al. (1996). Although 
there can be large differences between the MM and PSL estimators in a single model run, neither MM 
nor PSL approach dominates in light of these results. An interesting finding in the simulations was that 
the MM estimator of parameter λ  overshoots the true value more often than the PSL estimator. This 

explains the much better performance of PSL in the estimation of λ . On the other hand, the PSL 

estimator yields zero estimates of parameter λ  more often than the MM estimator (the negative values 

of λ  are truncated to zero). This could partly explain the good performance of MM in the estimation of 

σ 2
u  and σ 2

v  parameters.   

 
Table 3: Mean squared error (MSE) and bias statistics of the MM and PSL estimators 
 Scenario  1 Scenario  2 Scenario 3 

 σ 2  λ  σ 2  λ  σ 2  λ  
 1,88 1,66 1,63 1,24 1,35 0,83 
           
PSL MSE BIAS MSE BIAS MSE BIAS 
σ 2  0,297 -0,075 0,285 -0,042 0,150 -0,149 
λ  1,107 0,043 0,578 -0,139 0,466 -0,400 
σ 2

u  0,524 -0,097 0,541 0,262 0,450 -0,483 
σ 2

v  0,054 0,022 0,141 -0,304 0,147 0,334 
             
MM MSE BIAS MSE BIAS MSE BIAS 
σ 2  0,282 -0,079 0,294 -0,012 0,210 0,038 
λ  2,438 0,117 0,920 -0,030 0,587 -0,019 
σ 2

u  0,500 -0,103 0,600 0,310 0,435 -0,189 
σ 2

v  0,054 0,024 0,157 -0,322 0,108 0,227 
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Table 4: Head-to-head comparison of the MM and PSL estimators 
 Scenario  1 Scenario  2 Scenario 3 

 σ 2  λ  σ 2  λ  σ 2  λ  
 1,88 1,66 1,63 1,24 1,35 0,83 
           
PSL wins 47,0 % 49,6 % 40,5 % 39,0 % 35,0 % 37,5 % 
MM wins 45,8 % 43,2 % 40,5 % 42,0 % 33,8 % 31,3 % 
equally good 7,2 % 7,2 % 19,0 % 19,0 % 31,3 % 31,3 % 

 
In addition to the MSE and bias statistics, we also conducted a head-to-head comparison of the 

two estimators for parameters σ λ2 ,  in the same model runs. Table 4 reports the percentages of model 

runs where the PSL yields more accurate estimates than the MM, and vice versa. These results suggest 
that the PSL approach performs generally somewhat better than MM. Still, it is fair to note that the MM 
wins the PSL in a significant proportion of the cases. The cases where the two approaches yield exactly 
the same result occur when the estimated λ  parameter yields the zero value. The percentage of these 

cases increases as the true λ  decreases. Parameter λ  can be interpreted as a signal-to-noise ratio; 

obviously, detecting the signal (inefficiency) is more difficult in a noisier environment. 
  
8. Application to tax collection offices 
 

We next apply the proposed estimation techniques to empirical data to compare the efficiency estimates 
with those obtained by standard DEA and SFA methods. We re-examine a cross-sectional data of 62 
local property tax collection offices (called rates departments) in the London Boroughs and Metropolitan 
Districts; the data has been documented and used for relative performance assessment by Thanassoulis 
et al. (1987) and Dyson and Thanassoulis (1988).7  

The data set includes the total annual cost (considered as an input by Thanassoulis et al.) and 
four output variables. Thus, we resort to the cost frontier approach (see Section 6.3), assuming that the 
cost function is increasing and convex in outputs and that the input prices are the same across all offices. 
The output variables are: (y1) non-council hereditaments, (y2) rates rebates granted, (y3) summonses 
issued and distress warrants obtained, and (y4) NPV of non-council rates collected.  

We first estimated the average cost function using the shape constrained NLS model. This 
gave a good empirical fit, with the coefficient of determination R2=0.974. The piece-wise linear NLS cost 
function consists of 29 different segments, the largest one containing 11 observations. Based on the NLS 
residuals, the standard deviations of the inefficiency and error terms were estimated using the MM and 

PSL techniques. Based on the NLS residuals and the estimated standard deviations σ σ2 2ˆ , ˆu v , the 

                                                 
7 The data set is available online at:  http://www.etm.pdx.edu/dea/dataset/  
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conditional expected values of the inefficiency terms were computed using the results by Jondrow et al.  
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Figure 4: Cost efficiency indices of the 62 authorities by different methods (minimum / observed cost) 

 
Figure 4 presents the distribution of the cost efficiency estimates (i.e., the ration of minimum to 

observed cost) computed with the StoNED, SFA, and DEA methods. Each point in the figure represents a 
cost efficiency index of an observed unit: the 62 units run on the horizontal axis, ranked in decreasing 
order according to the input-oriented DEA CRS efficiency scores. Regarding the StoNED estimates, the 
PSL technique yields systematically higher cost efficiency estimates than the MM in this application. Still, 
the efficiency rankings are very similar: the correlation coefficient between the PSL and MM efficiency 
estimates is 0.845. For comparison, we estimated three SFA models using the linear, Cobb-Douglas and 
translog functional forms, assuming the half-normal specification of the error term. In the translog 
specification, the OLS residuals were skewed in the wrong direction, and thus all units were diagnosed as 
efficient. Also the Cobb-Douglas specification yields higher efficiency levels than the StoNED models. By 
contrast, the linear specification resulted with efficiency estimates that come very close to the DEA CRS 
efficiency scores (the correlation coefficient 0.967). In light of these observations, we conclude that the 
SFA estimates are sensitive to chosen functional form in this application. The results obtained with the 
most standard DEA and SFA methods diverge extensively, while the StoNED estimates fell somewhere 
between the two. Of course, we cannot say which of the methods performs best in this application. 
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Nevertheless, this application demonstrates that the StoNED approach can provide empirical results that 
are not obtainable by the established SFA and DEA methods. 
 
9. Conclusions and discussion 
 

We have shown that the frontier estimation based on a nonparametric DEA-like production function and 
stochastic SFA-like inefficiency and noise terms is possible in practice. The new approach, referred to as 
Stochastic Nonparametric Envelopment of Data (StoNED), melds the virtues of both DEA and SFA into a 
uniform framework of frontier estimation. Indeed, both DEA and SFA can be viewed as special cases of 
StoNED under some more restrictive assumptions. While we mainly focused on the estimation of 
production functions under variable returns to scale, we also demonstrated how the method extends to 
the estimation of cost functions and other representations of technology and allows one to postulate or 
test alternative specifications of returns to scale.  

The potential of the StoNED approach was illustrated by means of numerical examples, Monte 
Carlo simulations, and an empirical application. The simulated examples demonstrated that the proposed 
method can outperform the existing parametric, nonparametric and semiparametric frontier estimation 
techniques at least in some circumstances. Both the method of moments and the pseudo-likelihood 
estimators proved competitive in the Monte Carlo simulations. Finally, the example application proves 
that the StoNED approach can provide empirical results that cannot be obtained by the standard SFA or 
DEA models. This information can be particularly valuable when the results of SFA and DEA diverge and 
the SFA results are sensitive to the functional form specification.  

The proposed StoNED approach shares many common features with SFA and DEA, being a 
genuine amalgam of the two. Thus, many of the existing tools and techniques for SFA and DEA can be 
readily incorporated into the StoNED framework. However, the hybrid nature of StoNED also means that 
there are many important differences to both SFA and DEA, which must be kept in mind in the application 
and interpretation of StoNED models. For example, the interpretation of the StoNED input coefficients 
differs considerably from those of the SFA coefficients. Moreover, in contrast to DEA, all observations 
influence the shape of the frontier. Further research is needed for a better understanding of these 
similarities and differences. We hope that this paper could inspire further theoretical and empirical work in 
this direction, and thus contribute to the unification of the parametric and nonparametric streams of 
productive efficiency analysis. 

While the StoNED approach combines the appealing features of DEA and SFA, it also shares 
some of their limitations. Similar to DEA, the nonparametric orientation of StoNED can make it vulnerable 
to the curse of dimensionality, which means that the sample size must be very large when the number of 
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input variables is high. On the other hand, the maintained SFA assumptions regarding the composite 
error distribution may be violated. Moreover, stochastic noise does not necessarily restrict to the output, 
but also input data may be perturbed by measurement errors and other noise. Treatment of noise in the 
input data remains somewhat problematic in the SFA framework, and hence also in the StoNED 
approach. Addressing these shared limitations presents interesting challenges for the future research. 
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.Appendix: Proofs of the propositions 

Proposition 1: By Afriat’s Theorem, if the fitted output values g
iy  (i=1,…,n) satisfy the constraints of (8), 

then there exists a continuous, monotonic increasing, concave function  such that ⊂ 2g F

= ∀ =( ) 1,...,g
i iy g ix  n  (see, e.g., Banker and Maindiratta, 1992; Proposition 1). Since the objective 

function of (7) depends on the value of g only in a finite set of points =, 1,...,i ix n , representing function g 

with the fitted output values g
iy  (i=1,…,n) does not involve a loss of generality. Therefore, the equality 

 holds for any real-valued data set (X,y).  =2 2
NLS Afriats s

 

Proposition 2: First, introduce intercepts α ′≡ −g
i i iy β x i i and modified composite errors g

i iy yυ ≡ − , 

. Thus, = 1,...,i n ii i i iy α υ′= + +β x . We now see that the objective functions of (8) and (9) are 

equivalent. The proof is completed by transforming the first constraint of (8) into the second constraint of 
(9). To see this, we start from the first inequality of (8): 

′ ′− ≥ − ∀ =, 1,...,g g
i i i j i jy y i jβ x β x  n .       (A1) 

Substituting  α ′= +g
i i iy β x i  and α ′= +g

j j jy β x j

2

 into (A1) and reorganizing the terms, we obtain  

α α′ ′+ ≤ + ∀ =, 1,...,j j j i i j i j nβ x β x  .        (A2) 

Indices i,j run through all firms in the sample, so we can harmlessly substitute the pair (j,i) by (i,h) and 
rewrite inequalities (A2) identical to the second constraint of (9)as   

α α′ ′+ ≤ + ∀ =, 1,...,i i i h h i i h nβ x β x  .          (A3) 

Proposition 3: 

It is straightforward to verify that . Combining propositions 1 and 2, we have . This 

directly implies that 

∈ 2ĝ F =2
NLS VCs s

∗∈ 2ĝ G .   
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