19,999 research outputs found

    Magnification Control in Self-Organizing Maps and Neural Gas

    Get PDF
    We consider different ways to control the magnification in self-organizing maps (SOM) and neural gas (NG). Starting from early approaches of magnification control in vector quantization, we then concentrate on different approaches for SOM and NG. We show that three structurally similar approaches can be applied to both algorithms: localized learning, concave-convex learning, and winner relaxing learning. Thereby, the approach of concave-convex learning in SOM is extended to a more general description, whereas the concave-convex learning for NG is new. In general, the control mechanisms generate only slightly different behavior comparing both neural algorithms. However, we emphasize that the NG results are valid for any data dimension, whereas in the SOM case the results hold only for the one-dimensional case.Comment: 24 pages, 4 figure

    Magnification Control in Winner Relaxing Neural Gas

    Get PDF
    An important goal in neural map learning, which can conveniently be accomplished by magnification control, is to achieve information optimal coding in the sense of information theory. In the present contribution we consider the winner relaxing approach for the neural gas network. Originally, winner relaxing learning is a slight modification of the self-organizing map learning rule that allows for adjustment of the magnification behavior by an a priori chosen control parameter. We transfer this approach to the neural gas algorithm. The magnification exponent can be calculated analytically for arbitrary dimension from a continuum theory, and the entropy of the resulting map is studied numerically conf irming the theoretical prediction. The influence of a diagonal term, which can be added without impacting the magnification, is studied numerically. This approach to maps of maximal mutual information is interesting for applications as the winner relaxing term only adds computational cost of same order and is easy to implement. In particular, it is not necessary to estimate the generally unknown data probability density as in other magnification control approaches.Comment: 14pages, 2 figure

    Winner-Relaxing Self-Organizing Maps

    Full text link
    A new family of self-organizing maps, the Winner-Relaxing Kohonen Algorithm, is introduced as a generalization of a variant given by Kohonen in 1991. The magnification behaviour is calculated analytically. For the original variant a magnification exponent of 4/7 is derived; the generalized version allows to steer the magnification in the wide range from exponent 1/2 to 1 in the one-dimensional case, thus provides optimal mapping in the sense of information theory. The Winner Relaxing Algorithm requires minimal extra computations per learning step and is conveniently easy to implement.Comment: 14 pages (6 figs included). To appear in Neural Computatio

    Winner-relaxing and winner-enhancing Kohonen maps: Maximal mutual information from enhancing the winner

    Full text link
    The magnification behaviour of a generalized family of self-organizing feature maps, the Winner Relaxing and Winner Enhancing Kohonen algorithms is analyzed by the magnification law in the one-dimensional case, which can be obtained analytically. The Winner-Enhancing case allows to acheive a magnification exponent of one and therefore provides optimal mapping in the sense of information theory. A numerical verification of the magnification law is included, and the ordering behaviour is analyzed. Compared to the original Self-Organizing Map and some other approaches, the generalized Winner Enforcing Algorithm requires minimal extra computations per learning step and is conveniently easy to implement.Comment: 6 pages, 5 figures. For an extended version refer to cond-mat/0208414 (Neural Computation 17, 996-1009

    Investigation of topographical stability of the concave and convex Self-Organizing Map variant

    Get PDF
    We investigate, by a systematic numerical study, the parameter dependence of the stability of the Kohonen Self-Organizing Map and the Zheng and Greenleaf concave and convex learning with respect to different input distributions, input and output dimensions

    Some Further Evidence about Magnification and Shape in Neural Gas

    Full text link
    Neural gas (NG) is a robust vector quantization algorithm with a well-known mathematical model. According to this, the neural gas samples the underlying data distribution following a power law with a magnification exponent that depends on data dimensionality only. The effects of shape in the input data distribution, however, are not entirely covered by the NG model above, due to the technical difficulties involved. The experimental work described here shows that shape is indeed relevant in determining the overall NG behavior; in particular, some experiments reveal richer and complex behaviors induced by shape that cannot be explained by the power law alone. Although a more comprehensive analytical model remains to be defined, the evidence collected in these experiments suggests that the NG algorithm has an interesting potential for detecting complex shapes in noisy datasets

    View-Invariant Object Category Learning, Recognition, and Search: How Spatial and Object Attention Are Coordinated Using Surface-Based Attentional Shrouds

    Full text link
    Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
    corecore