54,633 research outputs found

    Thermal structure of a gas-permeable lava dome and timescale separation in its response to perturbation

    Get PDF
    The thermal boundary layer at the surface of a volcanic lava dome is investigated through a continuum model of the thermodynamic advection diffusion processes resulting from magmatic gas flow through the dome matrix. The magmatic gas mass flux, porosity and permeability of the rock are identified as key parameters. New, theoretical, nonlinear steady-state thermal profiles are reported which give a realistic surface temperature of 210 degC for a region of lava dome surface through which a gas flux of 3.5 x 10-3 kg s-1 m-2 passes. This contrasts favourably with earlier purely diffusive thermal models, which cool too quickly. Results are presented for time-dependent perturbations of the steady states as a response to: changes in surface pressure, a sudden rockfall from the lava dome surface, and a change in the magmatic gas mass flux at depth. Together with a generalized analysis using the method of multiple scales, this identifies two characteristic time scales associated with the thermal evolution of a dome carapace: a short time scale of several minutes, over which the magmatic gas mass flux, density, and pressure change to a new quasi-steady-state, and a longer time scale of several days, over which the thermal profile changes to a new equilibrium distribution. Over the longer time scale the dynamic properties of the dome continue to evolve, but only in slavish response to the ongoing temperature evolution. In the light of this time scale separation, the use of surface temperature measurements to infer changes in the magmatic gas flux for use in volcanic hazard prediction is discussed

    Tectonic history of the South Tannuol Fault Zone (Tuva region of the northern Central Asian Orogenic Belt, Russia) : constraints from multi-method geochronology

    Get PDF
    In this study, we present zircon U/Pb, plagioclase and K-feldspar Ar-40/Ar-39 and apatite fission track (AFT) data along the South Tannuol Fault Zone (STFZ). Integrating geochronology and multi-method thermochronology places constraints on the formation and subsequent reactivation of the STFZ. Cambrian (similar to 510 Ma) zircon U/Pb ages obtained for felsic volcanic rocks date the final stage of STFZ basement formation. Ordovician (similar to 460-450 Ma) zircon U/Pb ages were obtained for felsic rocks along the structure, dating their emplacement and marking post-formational local magmatic activity along the STFZ. Ar-40/Ar-39 stepwise heating plateau-ages (similar to 410-400 Ma, similar to 365 and similar to 340 Ma) reveal Early Devonian and Late Devonian-Mississippian intrusion and/or post-magmatic cooling episodes of mafic rocks in the basement. Permian (similar to 290 Ma) zircon U/Pb age of mafic rocks documents for the first time Permian magmatism in the study area creating prerequisites for revising the spread of Permian large igneous provinces of Central Asia. The AFT dating and Thermal history modeling based on the AFT data reveals two intracontinental tectonic reactivation episodes of the STFZ: (1) a period of Cretaceous-Eocene (similar to 100-40 Ma) reactivation and (2) the late Neogene (from similar to 10 Ma onwards) impulse after a period of tectonic stability during the Eocene-Miocene (similar to 40-10 Ma)

    Asymmetric continental deformation during South Atlantic rifting along southern Brazil and Namibia

    Get PDF
    Plate restoration of South America and Africa to their pre-breakup position faces the problem of gaps and overlaps between the continents, an issue commonly solved with implementing intra-plate deformation zones within South America. One of these zones is often positioned at the latitude of SE/S Brazil. However, geological evidence for the existence of a distinct zone in this region is lacking, which is why it remains controversial and is not included in all modeling studies. In order to solve this problem we present a study of multiple geological aspects of both parts of the margin, SE/S Brazil and its conjugate part NW Namibia at the time of continental breakup. Our study highlights pronounced differences between these regions with respect to Paraná-Etendeka lava distribution, magmatic dyke emplacement, basement reactivation, and fault patterns. In Namibia, faults and dykes reactivated the rift-parallel Neoproterozoic basement structure, whereas such reactivation was scarce in SE/S Brazil. Instead, most dykes, accompanied by small-scale grabens, are oriented margin-perpendicular along the margin from northern Uruguay to São Paulo. We propose that these differences are rooted in large-scale plate movement and suggest a clockwise rotation of southern South America away from a stable northern South America and Africa, in a similar way as proposed by others for a Patagonian continental section just prior to South Atlantic rifting. This rotation would produce margin-parallel extension in SE/S Brazil forming margin-perpendicular pathways for lava extrusion and leading to the asymmetric distribution of the Paraná-Etendeka lavas. NW Namibia instead remained relatively stable and was only influenced by extension due to rifting, hot spot activity, and mantle upwelling. Our study argues for significant margin-parallel extension in SE/S Brazil, however not confined to a single distinct deformation zone, but distributed across ~ 1000 km along the margin

    U-Pn geochronology of deformed metagranites in central Sutherland, Scotland: evidence for widespread late Silurian metamorphism and ductile deformation of the Moine Supergroup during the Caledonian orogeny

    Get PDF
    Within the Caledonides of central Sutherland, Scotland, the Neoproterozoic metasedimentary rocks of the Moine Supergroup record NW-directed D2 ductile thrusting and nappe assembly, accompanied by widespread tight-to-isoclinal folding and amphibolite-facies metamorphism. A series of metagranite sheets which were emplaced and penetratively deformed during D2 have been dated using SHRIMP UâPb geochronology. Zircon ages of 424 8 Ma (Vagastie Bridge granite), 420 6 Ma (Klibreck granite) and 429 11 Ma (Strathnaver granite) are interpreted to date emplacement, and hence regional D2 deformation, during mid- to late Silurian time. Titanite ages of 413 3 Ma (Vagastie Bridge granite) and 416 3 Ma (Klibreck granite) are thought to date post-metamorphic cooling through a blocking temperature of c. 550â 500 8C. A mid- to late Silurian age for D2 deformation supports published models that have viewed the internal ductile thrusts of this part of the orogen as part of the same kinematically linked system of forelandpropagating thrusts as the marginal Moine Thrust Zone. The new data contrast with previous interpretations that have viewed the dominant structures and metamorphic assemblages within the Moine Supergroup as having formed during the early to mid-Ordovician Grampian arcâcontinent orogeny. The mid-to late Silurian D2 nappe stacking event in Sutherland is probably a result of the collision of Baltica with the Scottish segment of Laurentia

    Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in the south east part of the Carpathian-Pannonian Region

    Get PDF
    The south-eastern part of the Carpathian–Pannonian region records the cessation of convergence between the European platform/Moesia and the Tisza–Dacia microplate. Plio-Quaternary magmatic activity in this area, in close proximity to the ‘Vrancea zone’, shows a shift from normal calc-alkaline to much more diverse compositions (adakite-like calc-alkaline, K-alkalic, mafic Na-alkalic and ultrapotassic), suggesting a significant change in geodynamic processes at approximately 3 Ma. We review the tectonic setting, timing, petrology and geochemistry of the post-collisional volcanism to constrain the role of orogenic building processes such as subduction or collision on melt production and migration. The calc-alkaline volcanism (5.3–3.9 Ma) marks the end of normal subduction-related magmatism along the post-collisional Călimani–Gurghiu–Harghita volcanic chain in front of the European convergent plate margin. At ca. 3 Ma in South Harghita magma compositions changed to adakite-like calc-alkaline and continued until recent times (< 0.03 Ma) interrupted at 1.6–1.2 Ma by generation of Na and K-alkalic magmas, signifying changes in the source and melting mechanism. We attribute the changes in magma composition in front of the Moesian platform to two main geodynamic events: (1) slab-pull and steepening with opening of a tear window (adakite-like calc-alkaline magmas) and (2) renewed contraction associated with deep mantle processes such as slab steepening during post-collisional times (Na and K-alkalic magmas). Contemporaneous post-collisional volcanism at the eastern edge of the Pannonian Basin at 2.6–1.3 Ma was dominated by Na-alkalic and ultrapotassic magmas, suggesting a close relationship with thermal asthenospheric doming and strain partitioning related to the Adriatic indentation. Similar timing, magma chamber processes and volume for K-alkalic (shoshonitic) magmas in the South Apuseni Mountains (1.6 Ma) and South Harghita area at a distance of ca. 200 km imply a regional connection with the inversion tectonics

    Magmatic record of India-Asia collision

    Get PDF
    This work was financially co-supported by Chinese Academy of Sciences (XDB03010301) and other Chinese funding agencies (Project 973: 2011CB403102 and 2015CB452604; NSFC projects: 41225006, 41273044, and 41472061).New geochronological and geochemical data on magmatic activity from the India-Asia collision zone enables recognition of a distinct magmatic flare-up event that we ascribe to slab breakoff. This tie-point in the collisional record can be used to back-date to the time of initial impingement of the Indian continent with the Asian margin. Continental arc magmatism in southern Tibet during 80-40 Ma migrated from south to north and then back to south with significant mantle input at 70-43 Ma. A pronounced flare up in magmatic intensity (including ignimbrite and mafic rock) at ca. 52-51 Ma corresponds to a sudden decrease in the India-Asia convergence rate. Geological and geochemical data are consistent with mantle input controlled by slab rollback from ca. 70 Ma and slab breakoff at ca. 53 Ma. We propose that the slowdown of the Indian plate at ca. 51 Ma is largely the consequence of slab breakoff of the subducting Neo-Tethyan oceanic lithosphere, rather than the onset of the India-Asia collision as traditionally interpreted, implying that the initial India-Asia collision commenced earlier, likely at ca. 55 Ma.Peer reviewe

    Tertiary-Quaternary subduction processes and related magmatism in the Alpine-Mediterranean region

    Get PDF
    During Tertiary to Quaternary times, convergence between Eurasia and Africa resulted in a variety of collisional orogens and different styles of subduction in the Alpine-Mediterranean region. Characteristic features of this area include arcuate orogenic belts and extensional basins, both of which can be explained by roll-back of subducted slabs and retreating subduction zones. After cessation of active subduction, slab detachment and post-collisional gravitational collapse of the overthickened lithosphere took place. This complex tectonic history was accompanied by the generation of a wide variety of magmas. Most of these magmas (e.g. low-K tholeiitic, calc-alkaline, shoshonitic and ultrapotassic types) have trace element and isotopic fingerprints that are commonly interpreted to reflect enrichment of their source regions by subduction-related fluids. Thus, they can be considered as ‘subduction-related’ magmas irrespective of their geodynamic relationships. Intraplate alkali basalts are also found in the region generally postdated the ‘subduction-related’ volcanism. These mantle-derived magmas have not been, or only slightly, influenced by subduction-related enrichment. This paper summarises the geodynamic setting of the Tertiary-Quaternary “subduction-related” magmatism in the different segments of the Alpine-Mediterranean region (Betic-Alboran-Rif province, Central Mediterranean, the Alps, Carpathian-Pannonian region, Dinarides and Hellenides, Aegean and Western Anatolia), and discusses the main characteristics and compositional variation of the magmatic rocks. Radiogenic and stable isotope data indicate the importance of continental crustal material in the genesis of these magmas. Interaction with crustal material probably occurred both in the upper mantle during subduction (‘source contamination’) and in the continental crust during ascent of mantle-derived magmas (either by mixing with crustal melts or by crustal contamination). The 87Sr/86Sr and 206Pb/204Pb isotope ratios indicate that an enriched mantle component, akin to the source of intraplate alkali mafic magmas along the Alpine foreland, played a key role in the petrogenesis of the ‘subduction-related’ magmas of the Alpine-Mediterranean region. This enriched mantle component could be related to mantle plumes or to long-term pollution (deflection of the central Atlantic plume and recycling of crustal material during subduction) of the shallow mantle beneath Europe since the late Mesozoic. In the first case, subduction processes could have had an influence in generating asthenospheric flow by deflecting nearby mantle plumes due to slab roll-back or slab break-off. In the second case, the variation in the chemical composition of the volcanic rocks in the Mediterranean region can be explained by “statistical sampling” of the strongly inhomogeneous mantle followed by variable degrees of crustal contamination

    Canary Islands geology

    Get PDF
    corecore