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Abstract 12 

Plate restoration of South America and Africa to their pre-breakup position faces the 13 

problem of gaps and overlaps between the continents, an issue commonly solved with 14 

implementing intra-plate deformation zones within South America. One of these zones is often 15 

positioned at the latitude of SE/S Brazil. However, geological evidence for the existence of a 16 

distinct zone in this region is lacking, which is why it remains controversial and is not included in 17 

all modeling studies. In order to solve this problem we present a study of multiple geological 18 

aspects of both parts of the margin, SE/S Brazil and its conjugate part NW Namibia at the time of 19 

continental breakup. Our study highlights pronounced differences between these regions with 20 

respect to Paraná-Etendeka lava distribution, magmatic dyke emplacement, basement 21 



reactivation, and fault patterns. In Namibia, faults and dykes reactivated the rift-parallel 22 

Neoproterozoic basement structure, whereas such reactivation was scarce in SE/S Brazil. Instead, 23 

most dykes, accompanied by small-scale grabens, are oriented margin-perpendicular along the 24 

margin from northern Uruguay to São Paulo. We propose that these differences are rooted in 25 

large-scale plate movement and suggest a clockwise rotation of southern South America away 26 

from a stable northern South America and Africa, in a similar way as proposed by others for a 27 

Patagonian continental section just prior to South Atlantic rifting. This rotation would produce 28 

margin-parallel extension in SE/S Brazil forming margin-perpendicular pathways for lava 29 

extrusion and leading to the asymmetric distribution of the Paraná-Etendeka lavas. NW Namibia 30 

instead remained relatively stable and was only influenced by extension due to rifting, hot spot 31 

activity, and mantle upwelling. Our study argues for significant margin-parallel extension in SE/S 32 

Brazil, however not confined to a single distinct deformation zone, but distributed across ~1000 33 

km along the margin.  34 
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1. Introduction 40 

The separation of Africa and South America occurred during the breakup of Pangea, and 41 

more specifically the breakup of Gondwana. Dissection started with the opening of the Central 42 

Atlantic, i.e. along NW Africa and North America, in the Lower Jurassic followed by the opening 43 



of the Indian Ocean between Africa, Madagascar, India and Antarctica in the Upper Jurassic 44 

(Veevers, 2004, and references therein). The South Atlantic opened with rifting to the north of 45 

the Falkland Plateau at the beginning of the Cretaceous and seafloor spreading started during the 46 

Valanginian or Hauterivian (e.g., Eagles, 2007; Moulin et al., 2010; Rabinowitz and LaBresque, 47 

1979; Torsvik et al., 2009). The Falkland Plateau was sheared off from the southern tip of Africa 48 

along a strike-slip fracture zone. Rifting and spreading continuously migrated to the north with 49 

South America describing a clockwise rotation away from Africa. At the present latitude of 50 

Cameroon, the South Atlantic migrated to the west where it connected with the Central Atlantic. 51 

This process left the Benue Trough aulacogen in Central and West Africa (e.g., Burke and 52 

Dewey, 1974; Unternehr et al., 1988). Complete separation of South America and Africa is 53 

assigned to the Albian (e.g., Eagles, 2007; Moulin et al., 2010; Torsvik et al., 2009; Veevers, 54 

2004). Whether rifting and breakup occurred in response to large-scale plate movements or to 55 

regional mantle plume activity is subject to ongoing discussions (e.g., Beniest et al., 2017; 56 

Franke, 2013). 57 

Kinematic plate reconstruction models have demonstrated that South America and Africa 58 

do not fit perfectly when the continents are restored to their pre-breakup position, a misfit that is 59 

generally solved by considering intra-plate deformation within South America. Indeed, intra-60 

continental deformation shortly before or during South Atlantic rifting is by now well-known 61 

from the Patagonian region, documented for example in the formation of the Salado, Colorado, 62 

and San Jorge basins, all of which run perpendicular to the South American continental margin 63 

(Autin et al., 2013,; Fitzgerald et al., 1990; Koopmann et al., 2013; Macdonald et al., 2003). An 64 

according N-S rifting phase before the Atlantic opening has been included in some models 65 

(Heine et al., 2013). Another margin-perpendicular zone of intra-plate shearing is often 66 

positioned at the latitude of SE/S Brazil (e.g., Eagles, 2007; Jacques, 2003; Moulin et al., 2010; 67 



Torsvik et al., 2009; Unternehr et al., 1988) and variously named “Lineament in southern Brazil”, 68 

“Paraná-Etendeka Fracture Zone”, or “Paraná-Chacos Deformation Zone”. However, there is a 69 

lack of geological evidence for the existence of this zone, and thus not all plate reconstruction 70 

models do incorporate this zone (Heine et al., 2013).  71 

Nevertheless, over the last two to three decades numerous studies have been published on 72 

geological aspects at the time of continental breakup. A synthesis of these different studies 73 

pictures an asymmetric continental syn-rift evolution of SE/S Brazil and its conjugate part across 74 

the Atlantic, NW Namibia. Based on a review of previous work we propose a break-up scenario 75 

for the South Atlantic.  76 

 77 

2. Geological Setting 78 

The basement geology of SE/S Brazil and NW Namibia is controlled by the Rio de la 79 

Plata, Congo, and Kalahari cratons which collided during the amalgamation of Gondwana, 80 

forming the low-to high-grade metamorphic Dom Feliciano, Kaoko, and Damara mobile belts 81 

(e.g., Foster et al., 2009; Goscombe et al., 2005; Oyhantçabal et al., 2011). The Dom Feliciano 82 

Belt in SE/S Brazil and the Kaoko belt as its counterpart in NW Namibia (e.g., Konopásek et al., 83 

2016) run sub-parallel to the present-day continental margin, whereas the Damara Belt situated 84 

south of the Kaoko Belt is oriented perpendicular to the margin.  85 

Basement rocks are overlain by the intra-continental Karoo/Paraná sedimentary rocks of 86 

Carboniferous to Jurassic age (e.g., de Wit et al., 1988; Smith et al., 1993). Their thickness 87 

increases from Namibia towards the west into Brazil, where they fill the large Paraná basin, 88 

which spans across ~1,400,000 km² (Zalán et al., 1990). The aeolian Botucatu (Brazil) / 89 



Twyfelfontein (Namibia) sandstone of Lower Cretaceous age (Perea et al., 2009; Scherer, 2000) 90 

superposes the Karoo/Paraná rocks and inter-fingers with the volcanic rocks of the Paraná-91 

Etendeka Large Igneous Province (Jerram et al., 1999). The latter derived from the Tristan da 92 

Cunha hotspot that is now located in the central South Atlantic. The Paraná-Etendeka volcanic 93 

rocks erupted within 1 Myr at ~135 Ma (Renne et al., 1992; Baksi, 2017)  and have been 94 

emplaced shortly before (Stica et al., 2014) or during the onset of South Atlantic rifting at this 95 

latitude (e.g., Beglinger et al., 2012, O’Connor and Jokat, 2015; Salomon et al., 2016). 96 

 97 

3. Margin Differences 98 

The evolution of the NW Namibian and SE/S Brazilian conjugate South Atlantic rift 99 

margins shows remarkable differences in terms of margin morphology, basement inheritance on 100 

younger faulting, magmatic dyke and flood basalt emplacement, and stress evolution. 101 

The South Atlantic rift follows the trend of the Neoproterozoic Kaoko and Dom Feliciano 102 

Belts (Figs. 1, 2; Oyhantçabal et al., 2011). Significant reactivation of Kaoko Belt shear zones 103 

occurred during South Atlantic opening, but similar reactivation for Dom Feliciano shear zones is 104 

lacking (Salomon et al., 2015a). Instead, the majority of faults in cover rocks in Brazil run 105 

oblique to shear zones in the Dom Feliciano Belt, while they are mostly shear zone parallel in the 106 

Kaoko Belt (Salomon et al., 2015b). These faults are identified as being predominantly normal 107 

faults in Namibia, whereas those in SE/S Brazil are strike-slip faults with average visible lengths 108 

of about 5-10 km, trending ENE-WSW. 109 

In addition, several lineaments that represent large fault zones (Fig. 2; Milani et al., 1998; 110 

Soares et al., 2007; Zalán et al., 1990) run margin-perpendicular in Brazil, in a NW-SE direction 111 



through the Paraná basin. These fault zones have previously been assigned to Mesoproterozoic or 112 

Archean age (Zalán et al., 1990), but have later been interpreted as having developed in the 113 

Mesozoic (Milani et al., 1998). Reactivation of these zones occurred repeatedly throughout their 114 

existence, including the phase of Atlantic rifting (Eyles and Eyles, 1993; Karl et al., 2013; Milani 115 

et al., 1998; Zalán et al., 1990). In contrast, margin-perpendicular lineaments are missing in the 116 

Kaoko Belt in Namibia. A relation of the Rio Grande Fracture Zone north of the Walvis Ridge 117 

with the Opuwo Lineament in the Congo Craton (Fig. 1) as proposed by Corner (2002), can 118 

neither be confirmed in the field nor by geophysical data. South of the Kaoko Belt, margin-119 

perpendicular lineaments do exist in the ~E-W-trending Neoproterozoic Damara Belt (Corner, 120 

2002), but significant reactivation of Damara Belt fabric is proposed for the 121 

Campanian/Maastrichtian outside the period of South Atlantic rifting (Raab et al., 2002). 122 

The volcanic rocks of the Paraná-Etendeka Large Igneous Province are present mostly on 123 

the South American side and cover an area of about 917,000 km² with a maximum preserved 124 

thickness of 1700 m (Peate et al., 1990; Frank et al., 2009), while in Namibia an area of only 125 

78,000 km² is covered with a maximum preserved thickness of around 900 m (Erlank et al., 1984; 126 

Milner et al., 1992). These lavas were mostly emplaced via feeder dykes, which in Namibia 127 

generally follow the Kaoko (~margin-parallel) and Damara Belt (~margin-perpendicular) 128 

structures (Fig. 1; Hawkesworth et al., 1992; Trumbull et al., 2004; and own observations). In 129 

SE/S Brazil, margin-parallel dykes occur only at the easternmost onshore margin at Florianópolis 130 

(Florianópolis dyke swarm: Fig. 2; Florisbal et al. 2014) and are otherwise absent in the margin-131 

parallel Dom Feliciano Belt fabric (Zalán et al., 1990). Instead, feeder dykes are oriented mostly 132 

NW-SE-directed, as evidenced in the prominent dyke swarms at the Ponta Grossa Arch and 133 

eastern Paraguay (Druecker and Gay, 1982; Piccirillo et al., 1990), but also in southernmost 134 

Brazil (Fig. 3; Hartmann et al., 2016b) and northern Uruguay (Masquelin et al., 2009), where 135 



they deviate towards the coast to an E-W orientation (Fig. 2). The early Cretaceous Asunción 136 

Rift, whose development is related to the breakup of Gondwana (Riccomini et al., 2001), is 137 

oriented parallel to the dykes in Paraguay. NW-trending normal faults in southernmost Brazil 138 

have also been related to Atlantic opening (Zerfass et al., 2005). Along the shelf offshore, a 50 139 

km-wide margin-perpendicular syn-rift graben, named Mostardas graben, is located southeast of 140 

the city of Porto Alegre (Figs. 2, 4; Cardozo, 2011; Garcia, 2012).  141 

Deformation bands, i.e. mm-wide zones of shear strain, formed in the Twyfelfontein / 142 

Botucatu sandstone formation during the covering of this sandstone with the Paraná-Etendeka 143 

lavas (Salomon et al., 2016). These structures are oriented margin-perpendicular in SE/S Brazil 144 

(Rodrigues et al., 2015) and margin-parallel in NW Namibia (Salomon et al., 2016).  145 

Offshore, the SE/S Brazil margin morphology encompasses three prominent right-lateral, 146 

~100 km long steps, visible on GEBCO bathymetric data / Google Earth (Fig. 2). This contrasts 147 

the morphology of the NW Namibian continental margin, which trends smoothly NNW until it 148 

reaches the Walvis ridge, formed by the Tristan da Cunha hotspot (Fig. 1).  149 

 150 

4. Discussion 151 

The most striking difference between NW Namibia and SE/S Brazil is the asymmetric 152 

distribution of the Paraná-Etendeka volcanic rocks. The lavas derived from the Tristan da Cunha 153 

hotspot, whose plume head is proposed to have been situated underneath southern Brazil, as 154 

judged by the large volume of volcanic rocks there (O’Connor and Duncan, 1990; Turner et al., 155 

1994). According to these authors, the plume head migrated towards the east into the rift center at 156 

least during or shortly after rifting to form the volcanic chain Walvis Ridge, which commences 157 



from NW Namibia. This model, however, contradicts with magnetic susceptibility analyses of the 158 

Ponta Grossa and the Florianópolis dyke swarms (Raposo and Ernesto, 1995; Raposo, 1997): 159 

magma flow in the inland part of the Ponta Grossa dyke swarm was dominantly horizontal to 160 

sub-horizontal, whereas closer to the coast it shifted towards a vertical flow, and the 161 

Florianópolis dykes encompassed a sub-vertical to vertical magma flow. If the magma source 162 

was the same, this indicates that this source was situated closer to the Florianópolis than to the 163 

Ponta Grossa dyke swarm (Raposo, 1997). Seismic and magnetotelluric imaging indicates that 164 

the plume head was situated underneath the African plate at the landfall of the Walvis Ridge onto 165 

NW Namibia (Heit et al., 2015; Jegen et al., 2016). This has also been favored by Thompson and 166 

Gibson (1991) who point out that the dynamic uplift which should occur above a mantle plume 167 

(White and McKenzie, 1989) is not evident in the Paraná basin-fill sedimentary record. 168 

With regard to these observations, we favor a scenario where the plume head was situated 169 

at or near the rift center on the African side since the beginning of its activity. Such a setting 170 

ultimately focusses on the reasons for the Paraná-Etendeka lava concentration on the South 171 

American side. It may be that the general flow direction of lavas was directed from Namibia 172 

towards Brazil as the basin center is located in southern Brazil, while an elevated inland 173 

topography in Namibia (Miller, 2008) could have prevented extended lava flow towards the east. 174 

Also, potential differences in the amount of post-rift erosion might have played a role in the 175 

asymmetric appearance of the lavas. Both margins had been subject to varying erosion phases 176 

(e.g., Cogné et al., 2011; Dressel et al., 2016; Guillocheau et al., 2012; MacGregor, 2012), which 177 

may have resulted in an unequal removal of Paraná-Etendeka volcanic rocks. However, erosion 178 

should not have affected the deeper parts of the crust, and the occurrence of massive dyke 179 

systems on the South American plate, such as the Ponta Grossa and Paraguay dyke swarms, 180 

argues for a true asymmetric magma distribution.  181 



For magma sourced from a plume head underneath NW Namibia, dykes protruded more 182 

than 1500 km laterally into the South American crust. It is demonstrated that dykes may 183 

propagate horizontally far from their source, if a thick rock overburden, e.g. a lava column, 184 

induces a vertical compression sufficient to prevent magma from breaching the surface (Pinel and 185 

Jaupart, 2004). A well-known example of large-scale horizontal dyke emplacement is the 186 

Mackenzie dyke swarm in the Canadian Shield, where dykes can be traced to at least 2100 km 187 

away from the related plume head locality (Ernst and Baragar, 1992; Hou et al., 2010).  188 

The orientation of Paraná-Etendeka-related magmatic dykes differs markedly between NW 189 

Namibia and SE/S Brazil. In Namibia, magmatic dykes follow the Kaoko and Damara Belt 190 

fabric, indicating that this fabric was a zone of weakness which could be used for magma ascent. 191 

In order to act as such, the basement fabric must lie in a favorable position relative to the acting 192 

stress system, i.e. basement fabric subject to perpendicular compression is less-likely to be used 193 

for dyke emplacement. As the Kaoko and Damara belt fabrics are oriented perpendicular to each 194 

other, an overall extensional stress regime is therefore required to activate both for dyke 195 

intrusion. Regional uplift related to doming could be caused  by Atlantic rifting, the presence of 196 

the Tristan da Cunha hotspot (Heit et al., 2015; Jegen et al., 2016), and mantle upwelling 197 

underneath southern Africa (Burke et al., 2008). An overall extensional setting as indicated by 198 

paleostress analysis (Salomon et al., 2015b) pinpoint in this direction as well. 199 

In Brazil, margin-parallel dykes are restricted to the Florianópolis Dyke Swarm, and are 200 

otherwise trending NW-SE, which indicates that the margin-parallel Neoproterozoic fabric had 201 

only a minor control on the dyke emplacement. Instead, the dykes might follow younger fault 202 

zones, as indicated by the accumulated swarm of Ponta Grossa, which parallels a fault zone of 203 

potentially early Mesozoic age (Milani et al., 1998). However, the NW-SE dyke orientation 204 



occurs continuously from this region to northern Uruguay, over more than 1000 km, making an 205 

overall pre-existing fault zone guidance unlikely. 206 

Instead, we stress that both the asymmetric lava distribution and the contrasting dyke 207 

orientations are rooted in the large-scale plate kinematics during breakup (Fig. 5). Koopmann et 208 

al. (2013) and Heine et al. (2013) suggested that southernmost South America (“Patagonian 209 

block”) rotated clockwise away from southern Africa and South America at around ~150 Ma, and 210 

thus prior to the initial South Atlantic rifting (Fig. 5b). This subsequently caused the formation of 211 

the Colorado and Salado basins in a perpendicular orientation to the South Atlantic rift trend, and 212 

whose localities are controlled by the reactivation of a Paleozoic fold-and -thrust belt and a 213 

Proterozoic suture, respectively (Autin et al., 2013; Pángaro and Ramos, 2012). This type of 214 

rotation might as well explain the observed differences between southern Brazil and Namibia 215 

(Fig. 5c). Here, extension is confined to specific rifts to a minor degree, such as the Mostardas 216 

graben or the Asunción rift, but mostly distributed across > 1000 km along the present-day 217 

coastline extending from Uruguay to the north of São Paulo. This wide distribution of 218 

deformation could be rooted in a missing major pre-existing deformation zone in this area, such 219 

as at the Colorado basin that could potentially accommodate most of the strain via reactivation. 220 

Extension in a NE-SW direction, which is also evident from the margin-perpendicular orientation 221 

of deformation bands in the Botucatu formation (Rodrigues et al., 2015), produced widespread 222 

pathways for dyke intrusion in a NW-SE direction. In this setting, the NE-SW trending 223 

Neoproterozoic fabric is in an unfavorable orientation for being reactivated and accordingly, 224 

dykes did not intrude into this fabric. Only the Florianópolis dyke swarm is parallel to this fabric, 225 

which may be rooted in its proximity to the Atlantic rift center or potentially to the plume head. A 226 

later intrusion of this dyke swarm in a different stress field can be excluded, due to its coeval 227 

emplacement age with the Paraná-Etendeka lavas (Florisbal et al., 2014; Baksi, 2017). The cause 228 



for the deviation of the southernmost dykes from an NW-SE orientation in the inland to an E-W 229 

orientation towards the coast remains unclear.  230 

The prominent right-lateral offshore margin steps are interpreted by Stica et al. (2014) as 231 

rift transfer zones as they lie in the continuity of oceanic fracture zones and are thought to be 232 

associated with rift or intraplate deformation. However, in coast-parallel and –perpendicular 233 

seismic cross-sections these morphological margin steps appear as being the result of slumping in 234 

a post-breakup phase (Cardozo, 2011; Garcia, 2012).  235 

Paleostress analyses show that SE/S Brazil was mainly subject to strike-slip faulting since 236 

breakup (Riccomini, 1995; Strugale et al., 2007). In the top-most preserved Paraná-Etendeka 237 

lavas in SE/S Brazil, ENE-oriented strike-slip faults are dominant whereas dyke-parallel normal 238 

faults are scarce (Salomon et al., 2015b). This indicates that the NE-SW directed extension due to 239 

the proposed clockwise rotation of southern South America away from a stable northern South 240 

America and Africa (Fig. 5c) has been superposed by other forces shortly during or after breakup, 241 

which may include stress components induced by Nazca plate subduction, asthenospheric flow, 242 

or flexural margin bending (e.g., Assumpção, 1992; Husson et al., 2012, Salomon et al., 2015b).  243 

 244 

5. Conclusions 245 

The complementary South Atlantic passive margins of SE/S Brazil and NW Namibia 246 

experienced a distinct asymmetric continental evolution during breakup, with respect to extruding 247 

lava volumes, dyke orientations, basement reactivation, and fault patterns. We believe these 248 

differences are best explained with large-scale plate movements. Similar to a Patagonian block 249 

that rotated clockwise away from a stable Africa and South America and forming distinct South 250 



Atlantic rift-perpendicular basins, we propose a model where southern South America, including 251 

Patagonia, rotated away from a stable Africa and northern South America (Fig. 5). As no pre-252 

existing major deformation zones, such as the Paleozoic fold-and-thrust belt in the Colorado 253 

basin, is located margin-perpendicular in SE/S Brazil, the resulting extension was not confined to 254 

a single structure, but distributed across a ~1000 km wide zone along the South Atlantic margin. 255 

This resulted in South Atlantic rift-parallel extension forming smaller-scale margin-perpendicular 256 

grabens and pathways for magma ascent.  257 

Southern Africa instead remained stable and was subject to overall extension due to rifting, 258 

hot spot activity, and mantle upwelling. This allowed the reactivation of rift-parallel Kaoko Belt 259 

fabric and the intrusion of dykes into both Kaoko and Damara Belt fabric, despite their 260 

perpendicular orientation relative to each other.  261 

As the Tristan da Cunha plume head was likely positioned in the rift center or on the 262 

Namibian margin, the enhanced opening of pathways in southern Brazil, Paraguay, and northern 263 

Uruguay due to the proposed rotation of southern South America appears responsible for the 264 

asymmetric distribution of the Paraná-Etendeka Large Igneous Province.  265 
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 505 

Figure Captions 506 

Figure 1: Geologic map of northern Namibia and bathymetric image of the ocean floor. 507 

FFZ / RGFZ: Florianópolis Fracture Zone / Rio Grande Fracture Zone. Lithologies after Salomon 508 

et al. (2015b) and after Simplified Geological Map of Namibia, 1:2.000.000, Geological Survey 509 

of Namibia (1988). Magmatic dykes in Kaoko Belt derived from own mapping and dykes in 510 

Damara Belt after Trumbull et al. (2004). Bathymetric image derived from Google Earth. 511 

Figure 2: Geologic map of SE/S Brazil and bathymetric image of the ocean floor. For 512 

legend see figure 1. Cross-section A-A’ is shown in figure 4. FFZ / RGFZ: Florianópolis 513 

Fracture Zone / Rio Grande Fracture Zone. Lithologies simplified and Ponta Grossa Dyke Swarm 514 

after Mapa Geodiversidade do Brasil, 1:2.500.000, Serviço Geológico do Brasil (2006). 515 

Florianópolis Dyke Swarm simplified after Hartmann et al. (2016a). Eastern Paraguay Dyke 516 

Swarm after Druecker and Gay (1982). Asunción Rift after Velazquez et al. (1998). Basement 517 

lineaments after Zalán et al. (1990). Bathymetric image derived from Google Earth. 518 

Figure 3: Analytic signal map showing aeromagnetic anomalies in southernmost Brazil 519 

(for location see figure 2; modified after Travassos, 2014, and Hartmann et al., 2016b). NW-520 

trending linear structures indicate Paraná-Etendeka related magmatic dykes and NE-trending 521 

structures resemble basement structures (Hartmann et al., 2016b). 522 

Figure 4: Coast-parallel seismic cross section located in the Pelotas Basin, offshore SE/S 523 

Brazil (modified after Garcia, 2012). The section indicates a 50 km-wide margin-perpendicular 524 

syn-Atlantic rift graben (“Mostardas graben“; Garcia, 2012). For location of profile see figure 2. 525 



Figure 5: Proposed schematic model of continental break-up. a) Setting prior to break-up; 526 

b) the onset of break-up initiates with the clockwise rotation of Patagonia away from a stable 527 

northern South America and Africa, which results in the formation of basins perpendicular to the 528 

developing South Atlantic margins (cf. Heine et al., 2013; Koopmann et al., 2013); c) in the 529 

progress of break-up, southern South America rotates clockwise away from stable northern South 530 

America and Africa, which creates an extensional domain in between southern and northern 531 

South America. In this domain excessive pathways develop for magma ascending from the 532 

Tristan da Cunha hot spot whose plume head is situated in or close to the South Atlantic rift 533 

center. In the close vicinity to the plume head, magmatic dykes follow the basement fabric due to 534 

domal uplift; d) rotation of the South American plate causes complete break-up with Africa. 535 
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