
 
 

 

BIROn - Birkbeck Institutional Research Online 
 
Enabling open access to Birkbeck’s published research output 

 
 

 

Tectonic significance of changes in post-subduction 
Pliocene-Quaternary magmatism in the south east part 
of the Carpathian-Pannonian Region 
 
Journal Article 
Accepted (Refereed) 
 
http://eprints.bbk.ac.uk/1787  
 
 
Citation: 
 
 

 

 
 
 
 
 
 

© 2010 Elsevier 
 
 
 
Publisher version 
 
 
______________________________________________________________ 
 
All articles available through Birkbeck ePrints are protected by intellectual property law, including 
copyright law. Any use made of the contents should comply with the relevant law. 

______________________________________________________________ 
 

Deposit Guide 
 

Contact: lib-eprints@bbk.ac.uk 

Birkbeck ePrints Birkbeck ePrints 

Seghedi, I.; Matenco, L.; Downes, H.; Mason, P.R.D.; Szakacs, A.; 
Pecskay, D. 
Tectonic significance of changes in post-subduction Pliocene-
Quaternary magmatism in the south east part of the Carpathian-
Pannonian Region 
Tectonophysics 502(2), pp. 146-157 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/106911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.bbk.ac.uk/irstats.cgi
http://eprints.bbk.ac.uk/1787
http://dx.doi.org/10.1016/j.tecto.2009.12.003
http://eprints.bbk.ac.uk/deposit_guide.html
mailto:lib-eprints@bbk.ac.uk


Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in 

the south east part of the Carpathian-Pannonian Region 

Ioan Seghedi1, Liviu Maţenco2, Hilary Downes3, Paul R. D. Mason4, Alexandru Szakács1, 5, 

Zoltán Pécskay6 

1 Institute of Geodynamics, 19-21, Jean-Luis Calderon str., Bucharest 020032, Romania, e7 

mail- seghedi@geodin.ro 

2 Netherlands Centre for Integrated Solid Earth Sciences, University of Amsterdam, De 

Boelelaan 1085, 1081HV Amsterdam, The Netherlands 

3 Birkbeck/UCL Research School of Earth Sciences, Birkbeck University of London, Malet 

St., London WC1E 7HX, UK 

4 Veining Meinesz Research School of Geodynamics, Utrecht University, Budapestlaan, 4, 

3584 CD, Utrecht, The Netherlands 

5 Sapientia University, Dept. of Environmental Sciences, Matei Corvin str., 4, RO-400112 

Cluj-Napoca, Romania 

6 Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, Bem ter 

18/c, H-4001 Debrecen, Hungary 

 

Abstract 

The south-eastern part of the Carpathian-Pannonian region records the cessation of 

convergence between the European platform/ Moesia and the Tisza-Dacia microplate. 

Magmatic activity in this area, in close proximity to the ‘Vrancea zone’, shows a shift from 

normal calc-alkaline to much more diverse compositions (adakite-like calc-alkaline, K24 

alkalic, mafic Na-alkaline and ultrapotassic) in the Pliocene-Quaternary, suggesting a 

significant change in geodynamic processes at approximately 3 Ma. We review the tectonic 

setting, timing, petrology and geochemistry of the post-collisional volcanism to constrain the 

role of geodynamics on melt production and migration. The calc-alkaline volcanism (5.3-3.9 

Ma) marks the end of normal subduction-related magmatism along the post-collision 

Călimani-Gurghiu-Harghita volcanic chain in front of the European convergent plate margin. 

At ca. 3 Ma magma compositions changed in South Harghita to adakite-like calc-alkaline and 

continued until recent times (< 0.03 Ma) interrupted at 1.6-1.2 Ma by generation of Na and K 

alkalic varieties, signifying changes in the source and melting mechanism. We attribute the 

progressive change in magma composition in front of the Moesian platform to two main 

geodynamic events: (1) slab-pull and steepening with opening of a tear window (adakite-like 

calc-alkaline magmas) and (2) inversion tectonics (Na and K alkalic magmas). 

Contemporaneous post-collision volcanism at the eastern edge of the Pannonian Basin at 2.6- 

1.3 Ma was dominated by Na alkalic and ultrapotassic magmas, suggesting a close 

relationship with thermal rifting and inversion tectonics. Similar timing, magma chamber 

processes and volume for K-alkalic (shoshonitic) magmas in the South Apuseni Mountains 

(1.6 Ma) and South Harghita area at a distance of ca. 200 km imply a regional connection 

with the inversion tectonics. 

Key words: Post-collisional slab mechanics, calc-alkaline, adakite-like, Na-alkalic, K-alkalic 

and ultrapotassic magmas. 

 

 

 

 



1. Introduction 

Post-collision magmatism at convergent plate boundaries is very complex and is usually 

characterized by the presence of adakite-like and/or alkaline magmas, e.g. in the 

Mediterranean (Duggen et al., 2005), Tibet (Turner et al., 1996; Mo et al., 2006) and Baja 

California (Negrete-Aranda and Cañon-Tapia, 2008). The existence of such magmas may be 

associated with the post-collisional evolution of inherited slabs. A typical Africa-European 

collision zone includes a subduction stage characterized by roll-back associated with 

extensional back-arc volcanism in highly arcuate orogenic settings (Faccenna et al., 2004; 

Harangi et al., 2006). The SE Carpathians is a region where the post-collisional stage of a 

highly arcuate orogen is associated with unusual volcanism, where the final stage of roll-back 

of the slab can be seen in the high-velocity intermediate-depth mantle anomaly detected by 

seismic tomography studies (e.g., Martin et al., 2006), associated with the Vrancea seismic 

zone (e.g., Oncescu and Bonjer, 1997). 

After the collision at 11 Ma (Maţenco and Bertotti 2000), volcanism occurred in the SE 

Carpathians and in the Pannonian Basin (Fig. 1). The large amount of research in recent 

decades related to deciphering the lithospheric structure of the Carpathians (e.g., Cloetingh et 

al., 2006; Schmid et al., 2008 and references therein) resulted in a vast structural database that 

is relevant to the interpretation of magma generation episodes. Furthermore, the foreland of 

the SE Carpathians has striking contrasts in mechanical properties distributed along the 

orogen which have been proven to impact the earlier subduction stage (e.g. Cloetingh et al., 

2004) and have the potential to affect magma generation. Changes in the stress regimes within 

the Pannonian-Carpathian system (Bada et al., 2007; Jarosinski et al., 2007) can partition 

strain along particular fault structures which might function as magma pathways. In 

particular, reactivated large fault systems such as transcurrent zones or transform faults can 

facilitate rapid ascent of magma. 

In the SE Carpathians and Transylvanian Basin, post-collisional magmas include 

adakite-like calc-alkaline, K-alkalic and Na-alkalic varieties (e.g. Mason et al, 1996, 1998; 

Pécskay et al., 1995, 2006; Seghedi et al, 2004a, b; Harangi et al., 2006) whereas isolated 

occurrences of K-alkalic, Na-alkalic and ultrapotassic rocks are present in the SE Pannonian 

Basin, near the contact with the Apuseni Mountains and South Carpathians (Downes et al., 

1995; Harangi et al., 1995; Roşu et al., 2004; Pécskay et al., 2006; Seghedi et al., 2008). 

Using recently published geochemical and structural data, we critically examine the tectonic 

models, proposing a novel explanation for the origin of post-collisional volcanism that 

encompasses an understanding of the geodynamic evolution of the region. We demonstrate a 

clear relationship between the mechanism of Pliocene-Quaternary magma generation and 

coeval tectonic processes in the Carpathians. 

 

2. Constraints from the post-collisional evolution of the SE Carpathians 

The evolution of the entire Carpathian region during Middle-Late Miocene times was 

characterized by coeval back-arc extension in the Pannonian Basin and contraction at the 

exterior of the arc (e.g. Horváth et al., 2006). Back-arc extension took place over an inherited 

orogenic structure composed of basement and cover nappes, sutured during episodes of 

successive shortening during Albian-Palaeogene times (Csontos and Vörös, 2004 and 

references therein). This structure includes three presently internal Carpathian blocks: Tisza 

to the south-west and Dacia to the south-east that were sutured during intra-Turonian times, 

and subsequently sutured to the ALCAPA block to the north in early Miocene times (Schmid 



et al., 2008) (Fig. 1). During Palaeogene-Miocene times, these blocks moved into the so93 

called Carpathian embayment, a gulf into the stable foreland platforms of 

Palaeozoic/Proterozoic Europe (i.e. the East European/Scythian and Moesian platforms) 

(Balla 1987; Pharaoh et al., 2006; Ustaszewski et al., 2008 and references therein). In between 

these internal blocks and the external foreland, the Carpathian nappes experienced 160-220 

kms of shortening (e.g. Morley 1996) by the time contraction ceased at 11 Ma. 

 

2.1 Tectonic constraints 

Post-dating nappe emplacement, two different periods can be defined in the tectonic 

evolution of the SE Carpathians (Fig. 2). The first period is latest Miocene-Pliocene when 

subsidence is recorded in all areas overlying the Moesian platform, commonly interpreted as a 

slab-pull effect (Maţenco et al., 2007). The second period (latest Pliocene-Quaternary) was 

characterized by differential vertical movements associated with ~5km of contraction 

restricted roughly to the area located between the Trotuş and Intramoesian faults (Fig. 1, 

Leever et al., 2006). This is interpreted as foreland-coupling (sensu Ziegler et al., 1995), 

exhumation related to high-angle reverse faulting in the central part of the orogen being 

associated with enhanced subsidence in the foreland (Maţenco et al., 2007). This 

interpretation is supported by the apparently folded, shallow Moho beneath the orogen 

(Hauser et al., 2007, see Schmid et al., 2008 and their East Carpathians profile in Plate 3). At 

the regional scale, this was coeval with the Plio-Quaternary inversion recorded in the 

Pannonian Basin, associated with fault reactivation, large-scale folding and present-day 

seismicity, generally interpreted as an effect of the push from the Adriatic indenter (e.g. Pinter 

et al., 2005). 

The present-day geometry of the lithosphere-asthenosphere boundary (the probable 

magma generation zone) is a result of two diachronous mechanisms. Firstly the widely 

distributed Miocene crustal extension (Tari et al., 1999) is associated with much larger 

thinning of the mantle lithosphere in the Pannonian Basin (Lenkey and Horvath 2006), 

reaching thicknesses as low as 60 km (Horvath et al., 1995). Secondly, gravitational sinking 

of the slab beneath the Vrancea region induces convection in the asthenospheric mantle with 

downwelling adjacent to the sinking slab and upwelling beneath the eastern part of the 

Transylvanian Basin (Ismail-Zadeh et al., 2005). The upwelling part is demonstrated by 

seismic attenuation beneath the internal part of the Carpathian bend zone (Russo et al., 2005; 

Popa et al., 2005; Ivan 2008), by the low velocity anomaly observed in seismic tomography 

beneath the Transylvanian Basin (Martin et al., 2006), and by high 3He/4He values of post126 

volcanic gas emanations (Vaselli et al., 2000). The neighboring high velocity anomaly 

coincides with a series of frequent and strong intermediate mantle-level earthquakes clustered 

in a narrow zone which extends almost vertically from around 70 to 170km in depth, known 

as the Vrancea mantle seismic zone (Fig. 1) (Oncescu et al., 1984; Oncescu and Bonjer, 

1997). In contrast, the area between the Pannonian Basin and the Vrancea zone, i.e. the 

Transylvanian Basin and the eastern part of the Apuseni mountains, displays only minor 

Miocene upper crustal extension (Krézsek and Bally, 2006; Szakács and Krézsek, 2006). This 

transitional area has a rather low surface heat-flux (30-60mW/m2) which may indicate crust 

and lithosphere of normal thicknesses (Demetrescu and Andreescu, 1994; Demetrescu et al., 

2001; Dererova et al., 2006). 

Significant differences exist between the northern (East European and Scythian 

Platforms) and southern (Moesian Platform) parts of the foreland (Cloetingh et al., 2004 and 



references therein), north and south of the Trotus fault. In the north, collision was oblique, 

being accommodated by orogenic exhumation in the order of 6 km (Gröger et al., 2008). The 

coeval collision in the south was associated with somewhat reduced uplift (Sanders et al., 

1999) and by subsidence in the foreland, with up to 6 km of sediments being recorded 

(Tărăpoancă et al., 2003). 

Most geodynamic models for the East Carpathians start from a common point: the 

Miocene roll-back of the distal (presumed oceanic) parts of the European lithosphere (sensu 

Royden and Burchfiel, 1989). Ideas diverge when discussing the post-collisional times, in an 

effort to explain the origin of the Carpathian volcanism and Vrancea seismicity in a consistent 

manner. Most models assume that the current geodynamic situation is the result of 

subduction, probably of oceanic character (e.g. Linzer et al., 1998). Other models assume that 

slab detachment, initiated at 16 Ma in the area of the Western Carpathians, had migrated 

towards the SE, allowing movement of the intra-Carpathian blocks into the Carpathian 

embayment (Nemčok et al., 1998; Wortel and Spakman, 2000), potentially associated with 

tearing of previously subducted slab fragments (Sperner et al. 2001). The overall detachment 

would explain the gradual migration in time of emplacement of volcanic structures along the 

Călimani-Gurghiu-Harghita (CGH) volcanic chain in the East Carpathians (e.g., Seghedi et 

al., 2005) (Fig.1). Different types of delamination (sensu Sacks and Secor, 1990), potentially 

associated with detachment, could have taken place during or after collision (Gîrbacea and 

Frisch, 1998; Gwirtzman, 2002; Knapp et al., 2005). This could provide an alternatively 

explanation for the asthenospheric upwelling in the hinterland (NW) of the present-day slab. 

Finally the model of Houseman and Gemmer (2007) suggests that the present-day situation 

can also be obtained by gravitational instability of the mantle lithosphere by viscous flow 

towards the Vrancea high velocity anomaly. 

 

2.2 Constraints from magmatic products 

While post-11 Ma shortening in the foreland was minor, in the same time interval large 

volumes of calc-alkaline volcanic rocks (~1400 km3) were emplaced in the CGH volcanic 

chain (Szakács and Seghedi, 1995). Volcanic centers seem to be concentrated along 

individual faults and/or at intersections of faults, the age of volcanism becoming gradually 

younger southwards between 10.5-0.03 Ma (Pécskay et al., 1995; Seghedi et al., 1994; Fielitz 

and Seghedi, 2005). In the north, this volcanism was coeval with the opening of small-scale 

hinterland basins, which are interpreted as either extensional (Fielitz or Seghedi, 2005) or 

shallow volcanic sag structures (Szakács and Krézsek, 2006). In the south, part of the 

magmatism was coeval with or post-dated the subsidence of the Braşov (<5.8 Ma, Ciulavu et 

al., 2000), Gheorgheni and Ciuc basins (Gîrbacea et al., 1998; Fielitz and Seghedi, 2005). The 

geometry of the faults and alignment of volcanic centers indicate both strike-slip and normal 

faulting and permitted the ascent of magmas generated in the upper mantle and lower crust 

(see Mason et al., 1995, 1996; Seghedi et al., 2004a). 

Pliocene-Quaternary magmatism occurred in the South Harghita Mountains which form 

part of the CGH volcanic chain (Szakács et al., 1993; Szakács & Seghedi, 1995) (Figs. 1 and 

2). Calc-alkaline volcanism developed here between 5.3 and 0.3 Ma with a major gap at 3.9 - 

2.8 Ma and another gap at 1.6-1.0 Ma. However, in spite of these interruptions, the partial 

spatial overlap of individual volcanoes shows continuity along the NW-SE direction although 

row of South Harghita volcanic edifices crosscuts the easternmost tip of the Dacia unit 

(Szakács et al., 1993) (Figs. 1 and 2). The 1.6-1.0 Ma time gap along the CGH chain is a 



period when K-alkalic volcanism (1.6-1.4 Ma) developed at Bicsad/Malnaş close to the 

southward extension of the South Harghita chain, whilst Na-alkalic volcanism (1.5-1.2 Ma) 

developed 40 km to the west in the Perşani Mountains (Downes et al., 1995; Panaiotu et al., 

2004) (Figs. 1 and 2). These volcanic centers are arranged parallel to a ~ NNE-SSW normal 

fault system with the same orientation as the main normal faults of the Braşov basin crossing 

with an E-W system (Ciulavu et al., 2000; Gîrbacea, 1997). A final stage of Na-alkalic 

magmatism occurred in the Perşani Mts. at 0.6 Ma (Panaiotu et al., 2004). In the eastern part 

of the Pannonian Basin (Fig. 1), Na-alkalic volcanism at Lucareţ is older, occurring at 2.4-2.6 

Ma. In the south Apuseni area, an isolated 1.6 Ma old K-alkalic body at Uroi (Roşu et al., 

2004) was emplaced at the same time as the K-alkalic rocks in the SE Carpathian. 

Ultrapotassic magmatism is older (2.1 Ma) at Bar in the Pannonian Basin (Harangi et al, 

1995; Pécskay et al., 1995) and younger (1.35 Ma) at its eastern margin at Gătaia (Seghedi et 

al., 2008). 

 

3. Petrological and geochemical features of the Plio-Quaternary post-collisional 

volcanism 

Detailed petrological characteristics of South Harghita and Perşani volcanic rocks were 

described by Downes et al. (1995), Mason et al. (1996, 1998) and Seghedi et al. (2004 a, b). 

The youngest volcanic products in South Harghita, according to the total alkali vs. silica 

classification diagram (Fig. 3a), are shoshonitic and high-K calc-alkaline basaltic andesites, 

andesites and dacites, with a gradual increase in K2O and decrease in SiO2 for the youngest 

rocks (Peccerillo and Taylor, 1976; Seghedi et al., 1987, Szakács et al., 1993) (Fig. 3a). This 

increase in K2O, associated with H2O enrichment, is reflected in a change of phenocryst 

composition from pyroxene, through hornblende, to biotite. The calc-alkaline rocks are 

intermediate to acidic, derived from a mafic parental magma by fractional crystallization 

associated with some crustal assimilation (Seghedi et al., 1986; Szakács and Seghedi, 1986; 

Mason et al., 1996). These magmas differ in chemical composition from the older calc211 

alkaline magmas of the CGH chain in having high Ba and Sr and low Y and B concentrations 

(1000-2000 ppm Ba, 1000-1600 ppm Sr, 5-15 ppm Y, 10–30 μg/g B) (Mason et al., 1996, 

1998; Seghedi et al., 1987; Szakács et al., 1993; Vinkler et al., 2007; Gméling et al., 2007). 

These compositions show strong similarities to adakites and hence are termed “adakite-like” 

(Seghedi et al., 2004a). 

The K-alkalic volcanic dome at Uroi in the southern part of the Apuseni Mountains and 

two small-volume K-alkalic volcanic domes (Malnaş, Murgul/Bicsad) in the southernmost 

part of South Harghita Mts., are shoshonitic andesites with high K2O and low SiO2 contents 

(Fig. 3a) and a mineralogical assemblage of olivine, clinopyroxene, orthopyroxene and 

hornblende, showing a hybrid composition resulting from mixing processes during ascent 

(Mason et al., 1996; Roşu et al., 2004; Seghedi et al., 2007). The petrographic and chemical 

similarities between these bodies of similar age but situated 200 km apart indicate that similar 

processes were responsible for their generation. It seems likely that these magmas resided in 

crustal magma chambers where differentiation and mixing occurred. 

Na-alkalic basaltic rocks from Perşani Mts. plot in the trachybasaltic field of Fig. 3a 

(Downes et al., 1995) but have distinctively higher La/Nb and lower Ce/Pb ratios than the 

other alkaline basalts in the Pannonian Basin, suggesting a subduction-related component in 

their source region (Embey-Isztin and Dobosi, 1995; Downes et al., 1995; Seghedi et al., 

2004b). 



In the eastern part of the Pannonian Basin, three post-collisional monogenetic volcanoes 

are known (Fig. 1). Na-alkaline magmas erupted at Lucareţ plot in the same field as the Na232 

alkaline basalts of the Perşani Mts. (Fig. 3a) and most of the Pliocene alkali basalts in the 

western part of the Pannonian Basin (Embey-Isztin et al., 1993; Downes et al., 1995; Harangi, 

2001). Two occurrences of ultrapotassic volcanism (Bar and Gătaia) plot in the highly 

alkaline field (Fig 3a). The ΔQ vs. K2O/Na2O classification diagram (acc. Peccerillo, 2003) 

clearly differentiates potassic and ultrapotassic magmas from normal calc-alkaline ones by 

higher K2O/Na2O ratio and their greater silica undersaturation (Fig. 3b), whereas the Na238 

alkalic magmas are distinguished by their negative ΔQ values. All are clearly distinct from the 

CGH magmas. 

In Figure 4, we use particular trace element ratios such as Nb/Y, Ba/Nb, La/Y, which 

remain relatively unaffected by crystal fractionation processes, to reveal magma sources. The 

calc-alkaline magmas of South Harghita show an increase in Nb/Y with time (Fig, 4a), 

starting from the normal varieties erupted before 3.9 Ma to the adakite-like calc-alkaline and 

K-alkalic ones which were erupted until recent times. Na-alkalic basalts from Lucareţ and 

ultrapotassic magmas from Bar and Gataia show Nb/Y ratios >2 as do the Na-alkalic magmas 

from the rest of the Pannonian Carpathian Region. Na-alkalic basalts from the Perşani Mts. 

and the Uroi K-alkalic magmas fall between these two groups. 

The SiO2-Nb/Y diagram (Fig 4b) separates source processes (various types of mantle 

source and inferred degrees of partial melting) from various differentiation processes (e.g., 

fractional crystallization – labeled as FC in Fig 4b). The South Harghita calc-alkaline magmas 

show slightly different fractionation trends for each volcanic structure, with slightly 

increasing Nb/Y ratios resulting from partial melting of a heterogeneous mantle source (Fig. 

4b). This source trends towards Na-alkalic basalt magmas from the Persani Mountains, which 

are dominantly derived from an asthenospheric source (Downes et al., 1995; Vaselli et al., 

1995; Seghedi et al., 2004b, 2005). K-alkalic magmas from South Harghita and Uroi show 

similar Nb/Y ratios as the Perşani Na-alkalic basalts, whereas the ultrapotassic ones from Bar 

and Gătaia have similar values to Na-alkalic basalts from elsewhere in the Carpathian- 

Pannonian Region (see Embey-Isztin et al., 1993). 

In the Ba/Nb-La/Y diagram (Fig. 4c) the South Harghita calc-alkaline and K-alkalic 

magmas show a positive correlation that suggests an important involvement of fluid 

components (Ba/Nb>60) and high-pressure fractionation (La/Y>2), probably related to slab262 

melting processes in the generation of adakite-like calc-alkaline magmas (Seghedi et al., 

2004a, 2005). Higher La/Y at lower Ba/Nb is characteristic for ultrapotassic and K-alkalic 

magmas from the eastern part of the Pannonian Basin and Apuseni Mts. The younger Na265 

alkalic basalts in the Pannonian Basin differ from those in the Perşani Mountains, which show 

a higher Ba/Nb ratio that suggests the influence of subduction-modified material in magma 

generation (Downes et al., 1995). 

Adakite-like magmas from South Harghita show an unusual trend in their Pb–Sr isotope 

ratios (Fig. 4d) that contrasts strongly with the general CGH trend (in which crustal 

assimilation was linked with fractionation). Their adakite-like trend is parallel to that of the 

Perşani Na-alkalic magmas. This is closely associated with an increase of Nb/Y towards 

values more typical of alkaline melts (resembling Ocean Island Basalts - OIB) and is directed 

toward an enriched mantle component (EM1). Enrichments in La over Y and Ba over Nb 

suggest an influx of fluids from the mantle source, which also affected Pb-isotope ratios, 

whereas the HREE-depletion (low La/Y) implies the gradual increase of garnet in the source 



(Mason et al., 1996) and/or high-pressure amphibole fractionation (Harangi and Lenkey 

2007). 

 

4. A combined tectono-magmatic scenario 

Calc-alkaline magma compositions throughout the CGH chain suggest a rather 

homogeneous subduction-related source (CA source) (Mason et al., 1996). In contrast the 

highly variable characteristics of post-collisional Plio-Quaternary magmatism in the SE 

Carpathians and eastern Pannonian Basin call for magma generation processes in a wide 

variety of settings. Heterogeneity of Sr, Nd and Pb isotopic ratios, combined with a great 

heterogeneity of trace element patterns (Seghedi et al., 2008), is probably a source effect (e.g. 

Chalot-Prat and Gîrbacea, 2000; Seghedi et al., 2004a), likely including previously 

metasomatised subcontinental mantle. The 5.3-3.9 Ma Pliocene calc-alkaline volcanism 

discussed here are similar to all CGH volcanism (11-5.3 Ma) (Mason et al., 1996); however 

the younger Pliocene (2.8-1.6 Ma) and Quaternary (1-0.03 Ma) rocks show increasing 

adakitic tendencies, i.e. increasing Sr/Y, Nb/Y and decreasing 206Pb/207Pb isotopic ratio (CA-a 

source) (Mason et al., 1998; Seghedi et al., 2004a, 2005) (Fig. 4b, d). Although the South 

Harghita calc-alkaline and K-alkalic (shoshonitic) rocks have many geochemical 

characteristics in common (e.g., high LILE/HFSE ratios), they display different extents of 

enrichment in incompatible elements as well as different major element characteristics. The 

shoshonitic rocks were derived from anomalous mantle sources, most likely enriched 

lithosphere affected by asthenospheric melt components (AK source). The Na-alkalic rocks 

from Perşani Mts. and Lucareţ were most probably generated in an asthenospheric mantle 

source similar to that of oceanic island basalts (ANa source) (Downes et al., 1995), whereas 

the ultrapotassic rocks clearly show a different source component with very high Nb/Y 

coupled with high La/Y (UK source), considered to be situated deep in the metasomatized 

lithosphere (Harangi et al., 1995; Seghedi et al., 2008). This may indicate contemporaneous 

generation of melts from different mantle sources and/or a change in tectonic regime over a 

short period of time with multiple sourcing events. The main issue is to relate these magmatic 

source components to the tectonic setting in which the magmas were generated. In this respect 

we examine in a geodynamic context the volcanic events and the relationship between the 

timing and direction of displacement along the fault system, considering two periods marked 

by sudden changes in magma composition and geochemistry, 2.8 and 1.6 Ma, respectively 

(Figs. 2 and 4). 

 

4.1. Magmatism with typical subduction signature (until 3.9 Ma) 

The typical calk-alkaline magmatism is concentrated in the final phases of Carpathians 

collision and during post-collisional times. Subduction is documented since the intra-Albian 

phase of thrusting over the Ceahlău-Severin domain (Fig. 5) or the Măgura-Piennides oceans 

further to the north (Săndulescu, 1988; Plasienka, 1997), but subduction-related magmatism 

started in the intra-Carpathians units only during the Middle Miocene (Pécskay et al., 1995; 

2006), when the (thinned) continental parts of the lower plate reached the subduction zone 

(e.g., Ustaszewski et al., 2008). Therefore, a genetic link is likely between the CGH 

subduction-related magmatism and the arrival of continental crust at the subduction zone. 

Magmas generated between 11.0 and 3.9 Ma (Fig. 5) in the CGH chain are normal calc320 

alkaline in composition (Mason et al., 1996, 1998). They show homogeneous Sr–Nd–Pb 

isotopic compositions that reflect a common mantle source considered to be the subduction322 



metasomatised mantle wedge above the subducting slab (Mason et al., 1996, 1998; Seghedi et 

al., 2004a). The volcanoes are located roughly parallel to the Carpathians and become 

younger southwards, along a southward propagating fault system (Pécskay et al., 1995; 

Szakács and Seghedi, 1995). This along-arc temporal distribution of the volcanism has been 

explained by gradual slab detachment following an oblique subduction stage (Mason et al., 

1998, Seghedi et al., 1998). However, this along-arc temporal distribution of the calc-alkaline 

volcanism is not associated with a similar migration in time of near-surface vertical 

movements, as would be theoretically required by the slab-detachment mechanism (Bertotti et 

al., 2003). This discrepancy still remains to be explained, but the age of the magmatism 

suggests that, if slab-detachment occurred, it must postdate the cessation of major thrusting at 

11 Ma and the 9 Ma thickening in the core of the orogen, as suggested by the exhumation of 

the Transylvania basin at around 9 Ma (Krézsek and Bally, 2006). In this situation the 

hypothesis of magma generation during an oblique collision with the thick continental parts of 

East-European and Scythian lower plate (see Mason et al., 1998) does not explain the rather 

large time lag between the last possible moment of orogenic shortening (9 Ma) and the 

youngest normal calc-alkaline volcanism (3.9 Ma). 

Magma ascent in the CGH chain was facilitated by the existence of inherited or coeval 

fractures. Normal faulting and/or transtensional zones are inferred below the volcanic edifices 

both during the Late Cretaceous (Gröger et al., 2008) and possibly during the latest Miocene- 

Pliocene (Fielitz and Seghedi, 2005) (Fig. 5). 

 

4.2. Magmatism related to slab corners, asthenospheric uprise and slab steepening (2.8- 

0.03 Ma) 

In the SSE-ward continuation of the CGH volcanic chain, the South Harghita volcanism 

is oriented oblique, crossing the trend of the East Carpathians (Figure 5a). After a gap of ca. 1 

Ma, it records the transition from normal calc-alkaline magmas (up to 3.9 Ma) (CA source) to 

adakite-like calc-alkaline magmas (CA-a source), erupting during two time intervals at 2.8- 

1.6 Ma and 1-0.03 Ma, respectively (Pécskay et al., 1995, 2006; Seghedi et al., 2005; Szakács et 

al., 1993). This sudden change in magma composition has previously been interpreted as 

being related to the processes in the hanging slab beneath the Vrancea zone as the expression 

of the latest stage of subduction along the Carpathians (Mason et al., 1998; Nemčok et al., 

1998; Wortel and Spakman, 2000; Konečný et al, 2002; Seghedi et al., 2004a). However, two 

other processes have previously received much less attention in the effort to link magma 

generation with geodynamic processes: (1) the existence of a rheologically different domain 

as the lower plate in the SE Carpathians (i.e. the Moesian Platform and its distal margins, Fig. 

6a), and (2) the inversion recorded in the SE Carpathians which started at the beginning of the 

Quaternary. 

The change in subduction mechanics in the Moesian domain changed the process of 

magma generation. The reduced rates of collision and the gradual steepening of the slab 

inherited from the roll-back collision continued with a thermal resettlement and viscous re362 

equilibration in the asthenosphere of the long-lasting Cretaceous slab (Cloetingh et al., 2004). 

The pronounced sinking of the slab into the asthenosphere, as inferred from the character of 

the earthquakes and the geometry of the high velocity body (e.g., Heidbach et al., 2007 and 

referenced therein), created localized convection currents of asthenospheric material, as 

derived by numerical modeling of the thermal effects associated with its geometry (Ismail- 

Zadeh et al., 2005). A significant feature of the local tomography is the striking low velocity 



anomaly observed beneath the central and eastern part of the Transylvania basin (Fig. 6a). 

The coincidence in space of the upwelling part of the asthenospheric convection cell with the 

presence of the low velocity body must indicate a genetic link. This process involves a long 

residence time of the distal parts of the Moesian slab in the asthenosphere that would lead to 

slab melting in the eclogite field, generating adakite-like calc alkaline magmas (CA-a source) 

due to increased temperatures related to asthenosphere upwelling or “suction”, which itself 

generated contemporaneous Na-alkalic basalt magmas via decompressional melting (Downes 

et al, 1995; Mason et al., 1998; Seghedi et al., 2004b, 2005). A downward force (slab-pull) 

was exerted by this thermally re-equilibrating lithospheric body (e.g., Cloetingh et al., 2004), 

which can be interpreted in any of the existing Vrancea geodynamic scenarios, from a 

remnant slab to an inherited and delaminated cold block (senso Schott and Schmelling, 1998) 

from the Moesian lithosphere. In any of these situations, the Moesian block was decoupled 

(tearing) from the European-Scythian Plate along the Trotuş fault system during the late 

Miocene collision (see also Seghedi et al., 1998). In the case of delamination of its eclogitic 

keel and partial melting of this material at mantle depths may explain the peculiar chemistry 

of shoshonites and adakite-like rocks as a consequence of elevated K2O/Na2O in the protolith 

and high pressure conditions of partial melting (e.g. Xiao and Clemens, 2006). Similar 

examples have been recognized elsewhere in Baja California by Pallares et al. (2007) and in 

Italy by Rosenbaum et al. (2008). 

In the next sections we relate the three types of magmas (adakite-like calc-alkaline, K388 

alkalic and Na-alkalic) as being generated in the transition region between the European- 

Scythian Plates and the Moesian Plate and specifically within the Moesian plate domain. 

 

4.2.1. Adakite-like calc-alkaline magmatism associated with corner-flow effect 

The change of magmatism from normal calc-alkaline type in the CGH chain to the large 

variety found to the south occurred at the contact between the East-European/Scythian and 

Moesian platforms along the extension of the Trotuş fault (Fig. 5). In the same place, a 

significant change in the geometry of the lower plate is observed, from normal sub-horizontal 

inclinations to the north, to the vertical position of the Vrancea slab (Cloetingh et al., 2004). 

This geometry suggest a tear in the lower plate perpendicular to the strike of the orogen (i.e. 

the Trotuş fault and its extension), its offset increasing westwards to a situation where the 

asthenosphere can flow around and into the tear (see Maţenco et al., 1997), using a 

mechanism similar to the corner flow effects interpreted around the Calabrian slab (Faccenna 

et al., 2005). The metasomatised lithosphere heated during the horizontal asthenospheric flow 

around the steepening Vrancea slab is the source of the adakite-like calc-alkaline volcanism 

recorded exactly on the surface projection of its northern margin. The pathways used by the 

magmas during their ascent are most likely situated at the structural intersection between the 

major E-W Trotuş contact and the N-S oriented normal faults system, which was active from 

approximately 4 Ma (Fig. 5, see also Gîrbacea et al., 1998 for the kinematics and timing of the 

normal faults system). The second order feature of the observed adakite-like calc-alkaline 

magmatism, i.e. decreasing emplacement ages and volumes in an SE-ward direction, can be 

explained by the gradual opening of the lithospheric tear during slab-steepening. Near the 

surface, this is associated with the westward migration of the late Pliocene-Quaternary 

depocenters in the Focşani basin (Leever et al., 2006). At greater depths, this may allow 

asthenosphere “suction”, lithosphere stretching and generate magmas (CA-a source) in the 

metasomatized regions of the asthenospheric mantle. 



 

4.2.2. Na- and K-alkalic magmatism associated with localised asthenospheric 

convection 

At greater distances along the strike of the orogen from the northern margin of the 

Moesian platform, coeval generation of Na- and K-alkalic magmas is recorded along the 

same N-S oriented normal fault system (Figs. 4, 5 and 6a, see also Ciulavu et al., 2000). At 

depth, the size and amplitude of the recently discovered low velocity anomaly associated with 

seismic wave attenuation are unlikely to be the effect of a lithospheric high-temperature body, 

such as a magmatic chamber (Fig. 6a). Although its western margins are less precise in 

seismic tomographic images, this low velocity zone must be the effect of hot asthenospheric 

uprising beneath the center and eastern part of the Transylvania basin. We have, therefore, 

corrected the lithospheric configuration (Horvath et al., 2006; Dererova et al., 2006) taking 

into account the results of recent local tomography studies (Martin et al., 2006) (Fig. 6a). 

The Na-alkalic mafic magmas were derived from an asthenospheric mantle-source 

partly affected by subduction metasomatism (ANa source), resulted most probably by 

decompressional melting during asthenospheric uprise (Fig. 6a, Downes et al., 1995; Seghedi 

et al., 2004a). This asthenospheric upwelling correlates well with the described low-velocity 

anomaly, which coincides with a high attenuation volume (Popa et al., 2005; Russo et al. 

2005; Martin et al., 2006). Mantle xenoliths in the Na-alkalic basalts of the Perşani Mts. point 

to a refertilised lithospheric mantle which resulted from interaction with an hydrous LREE434 

poor, HREE-rich, silica-saturated melt with high Sr contents (Coltorti et al., 2007), the same 

melts that have favoured generation of adakite-like calc-alkaline magma in this unusual 

context thermally re-equilibrating slab. 

The primitive K-alkalic magmas (AK source), which mixed thoroughly with more 

evolved similar magmas in crustal reservoirs generating hybrid magmas as lava flows or 

shallow intrusions (Figs. 3 and 6a), must be linked with the same process of hot 

asthenospheric uprise, but this time the magmas were generated at the base of the lithosphere, 

that has been previously fertilized by the adakite-like silica-saturated melts (see Coltorti et al., 

2007). 

The obvious geochemical and isotopic similarities of all magmatic rocks associated with 

the Carpathian bend area at 2.8-0.03 Ma suggest that asthenospheric uprise might also have 

mobilized subduction-related fluids/melts from the neighboring lithosphere (e.g., Mason et al, 

1998). Alternatively, subduction-related components may have resided in the asthenosphere, 

where alkaline mafic magmas were generated (Harangi and Lenkey, 2007). 

 

4.3. A distinct mantle source for the Pannonian basin post-collision magmas 

The ultrapotassic rocks at Bar (2.1 Ma) in the Pannonian basin and at Gătaia (1.36 Ma) 

close the eastern border of the Pannonian basin (Figs. 1 and 6a) were derived from a distinct 

mantle source (UK source), in a profoundly metasomatized lithospheric mantle (Harangi et 

al., 2005; Seghedi et al., 2008). Isolated occurrences of Na-alkalic lavas at Lucareţ (ANa 

source) on the eastern border of the Pannonian basin (Downes et al., 1995) are similar to the 

Pannonian asthenospheric mantle source, which is similar to that described in other parts of 

Europe (e.g. Lustrino and Wilson, 2007). In the case of the Lucareţ (ANa source) and Uroi 

bodies (AK source), uprise of the magmas was facilitated by close proximity to a major, 

almost vertical contact inherited from the Jurassic-Cretaceous evolution of the Eastern Vardar 

ocean, i.e. the contact between the Apuseni Mountains and the South Carpathians along the 



South Transylvania fault (Fig. 6b, see Schmid et al., 2008 for the kinematics, timing and 

paleogeographic significance of this contact). The magmas certainly have different sources, 

but have used the same fault as pathways to the surface, in different locations along its strike. 

At the shallow asthenospheric level the two sources of Na-alkalic magmas (ANa source) are 

also different: that of the Pannonian Basin is inherited from the late-stage Miocene thermal 

rifting phase (Tari et al., 1999), while that in the SE Carpathians is an effect of the 

asthenospheric flow generated by the descending high-velocity body. However, deeper in the 

asthenosphere, these two sources would gradually merge (Fig. 6a and 6b) and this would 

explain their petrological similarities. 

 

4.4. Superimposed effect of the latest Pliocene – Quaternary inversion 

The time of eruption of ultrapotassic and K-alkalic magmas coincides with, or slightly 

post-dates, the onset of the latest Pliocene-Quaternary inversion in the SE Carpathians 

(Maţenco et al., 2007), which might be linked with the regional inversion recorded in the 

Pannonian-Carpathian domain during the indentation of Adria (Bada et al., 2007). The 

interval between 1.8 and 1.0 Ma is a time gap in activity of two adjacent adakite-like calc476 

alkaline volcanoes at the southern termination of the South Harghita chain, which is filled by 

the simultaneous generation of K- and Na-alkalic magmas south of Harghita and also the Uroi 

K-alkalic volcano in the Apuseni Mountains and the Gătaia lamproite volcano at the eastern 

edge of Pannonian Basin (Fig. 2). 

Since the K-alkalic (shoshonitic) occurrences south of Harghita and in the South 

Apuseni Mountains (AK source) (Fig. 6a) are roughly contemporaneous and show the same 

petrological characteristics, one possible way would be to connect and activate them along the 

South-Transylvanian Fault (Szakacs and Seghedi, 1996) (Fig. 6b). However, there is no 

coeval kinematic structure in the Transylvania basin to link the two areas (Krézsek and Bally, 

2006). More likely, the magmas used a local relaxation during the renewed inversion on two 

different crustal scale structures: (1) the South Transylvania fault, where at a regional level, 

the inversion changes gradually towards extension (Bada et al., 2007), and (2) the small-scale 

normal faults in the SE Carpathians. 

 

5. Conclusions 

The Pliocene-Quaternary evolution of the south-eastern part of the Carpathian- 

Pannonian area is characterized by two main geodynamic events: slab-pull, steepening and 

melting, and inversion tectonics. This generated various types of magma at 

lithospheric/asthenospheric depths in front of the Moesian plate and in the eastern part of the 

Pannonian basin. It also marks the end of subduction-related magmatism, generated along the 

CGH volcanic chain. The most plausible hypothesis for magma generation in this volcanic arc 

is an initial oblique collision of thick continental parts of East-European and Scythian lower 

plate with the Tisza-Dacia plate until 9 Ma, subsequently followed by slab break-off until 3.9 

Ma (see also Mason et al., 1998). However, the continuous generation of normal calc-alkaline 

volcanism up to 3.9 Ma supports a differentiation in tectonic mechanisms. 

Post-collisional volcanism specific to the Moesian Plate domain is characterized by 

adakite-like calc-alkaline, mafic Na-alkalic and shoshonitic K-alkalic compositions. Adakite503 

like calc-alkaline magmatism in the South Harghita area was generated as a series of 

overlapping composite volcanoes during two time intervals. This type of magmatism is the 

result of a corner-flow around the steepening and melting Moesian slab, magmas being 



differentiated in the lower crust. This process was coeval with the slab tearing along the 

Trotuş fault system, which is an inherited contact between two rheologically distinct foreland 

units. 

Contemporaneous Na-alkalic and K-alkalic magmatic activity took place during a short 

interruption in adakite-like calc-alkaline magmatism. It was triggered by asthenospheric 

convection during slab sinking into deeper mantle levels. Furthermore, the plume-like 

asthenospheric upraise can also enhance the down-thrusting of the Moesian slab lithosphere, 

as suggested by mechanisms of plume head–lithosphere interactions near intra-continental 

plate boundaries (Burov et al., 2007). The ascent of magmas was facilitated by the generalized 

tectonic inversion event which started during the latest Pliocene. 

Na-alkalic magmatism at the westernmost edge of the Braşov basin system was 

associated with asthenospheric uprise and decompression melting during slab steepening. 

Isolated occurrences of K-alkalic (shoshonitic) magmas south of the Harghita area were 

produced by melting at the base of a lithosphere already fertilized by the adakite-like melts, 

during the asthenospheric uprise that forms part of the slab-driven convective current. 

Isolated occurrences of lamproitic magmas at the eastern part of the Pannonian basin 

from Bar and Gataia and Na-alkalic mafic magmas at Lucareţ have different sources 

(lithospheric and asthenospheric), which exploited a major fault system inherited from the 

transcurrent evolution of the contact between the South Carpathians and the Apuseni 

Mountains. Magmas were emplaced along this fault system in different locations along its 

strike, reflecting the progressive eastward influence of the Pliocene-Quaternary inversion of 

the Pannonian-Carpathians system. K-alkalic (shoshonitic) magmas in the South Apuseni 

Mountains have striking petrologic and age similarities to the shoshonites from South 

Harghita at ca. 200 km distance. Given the absence of a connecting structure, the magmatic 

ascent was favored by strain partitioning along different fault systems during inversion. 
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Figure captions 

Fig. 1. Sketch map of the Carpathian-Pannonian region showing the Pliocene-Quaternary 

magmatism (simplified after Schmid et al., 2008). The Na-alkalic volcanism in the western 

part (red circles) is not discussed. In the south-eastern part the volcanism under discussion 

(calc-alkaline, Na-alkaline, K-alkaline and ultrapotassic) is shown in red dots. Time intervals 

of volcanic activity are given. SH = South Harghita; STF – South Transylvania Fault 

Fig. 2. Space-time distribution of Pliocene-Quaternary post-collisional magmatism in the SE 

Carpathians and eastern part of the Pannonian Basin, and tectonic events Local Paratethys 

time scale after Vasiliev et al. (2004). 

Fig. 3. (a) Total alkali vs. silica classification diagram for Plio-Quaternary magmatic rocks 

and the symbol for each type of rock; (b) delta-Q vs. K2O/Na2O classification diagram for 

Plio-Quaternary magmatic rocks. Delta-Q is the algebraic sum of normative quartz (q), minus 

leucite (lc), nepheline (ne), kalsilite (kal) and olivine (ol). Silica-oversaturated rocks have 

delta-Q > 0, whereas silica undersaturated rocks have delta-Q < 0 (acc. Peccerillo, 2003). 

23 

Fig. 4. (a) Nb/Y vs Age (Ma); (b) Nb/Y vs.SiO2; (c) Ba/Nb vs. La/Y and (d) 86Sr/87Sr vs. 

206Pb/204Pb for the available Pliocene-Quaternary magmatic rocks in the south-eastern part of 

Carpathian-Pannonian region. Symbols as in Fig. 3. 

Fig. 5. Simplified tectonic map of the Romanian Carpathians and magmatism during 3.0-0.03 

Ma times (simplified after Săndulescu, 1984 and Schmid et al., 2008). Abbreviation: BDVF880 

Bogdan- Dragoş Vodă fault; PCF- Peceneaga - Camena fault; 



Fig. 6 (a) Crustal-scale cross-section and lithospheric configuration across the Apuseni 

Mountains, Transylvania basin, the SE Carpathians and their foreland (location in Fig. 5). 

Note the corrected lithospheric configuration which follows the velocity anomalies detected 

by local tomography studies. The calc-alkaline adakite-like magmas are generated by 

horizontal astenospheric flow during slab steepening, around the Trotus fault slab-tear (i.e. out 

of the plane of the section, in map view, see Fig. 5). The Na- and K-alkalic magmas are 

generated by astenospheric upraise and decompressional melting on a vertical convection 

circuit linked with the slab sinking into the deeper mantle (i.e. in the plane of the section); 

(b) Crustal-scale cross-section and lithospheric configuration across the Apuseni Mountains, 

South Carpathians and their foreland (location in Fig. 5). Note the major transcurrent contact 

along which the magmas were emplaced (the South Transylvania Fault). 
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