4 research outputs found

    A hybrid multi-class MAC protocol for IoT-enabled WBAN systems

    Get PDF
    This study proposes a hybrid MAC protocol that can efficiently and effectively optimize the communication channel access of a WBAN multi-class system. The proposed protocol consists of two major processes that include the contention phase (CP) and the transmission phase (TP). In the CP, only the biomedical devices that have health packets to transmit randomly contend with equal probabilities using a slotted ALOHA scheme for transmission opportunities and the successful biomedical devices are allocated a transmission time-slot by employing a reservation-based time division multiple access (TDMA) scheme in the transmission phase. A multi-objective optimization problem was formulated to maximize the system sum-throughput, packet success-access-ratio, as well as the reservation ratio, and solved by the controller (i.e., access point) to determine the optimal length of the CP and the number of biomedical devices that can transmit in the TP. Monte Carlo simulation was performed and the optimization solution improved the proposed protocol's performances. For validation purposes, the simulated results in MATLAB revealed that the proposed protocol performs better than the contemporary system in the context of the system sum-throughput, reservation ratio, and the average health packet delay with performance gains of about 9.2%, 9.5%, and 9.6% respectively.This work was supported in part by the Council for Scientific and Industrial Research, Pretoria, South Africa, through the Smart Networks collaboration initiative and IoT-Factory Program (funded by the Department of Science and Innovation).https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7361hj2021Electrical, Electronic and Computer Engineerin

    Capítulo 1: Las redes de sensores inalámbricas, arquitectura y aplicaciones

    Get PDF
    Las redes de sensores inalámbricas (WSN), son una tendencia tecnológica que cada día cuenta con más aplicaciones, las características de sus nodos, los protocolos que utilizan y la versatilidad de sus configuraciones, las hacen como una opción importante dentro del mundo tecnológico. Actualmente no es extraño encontrar en un hospital una WSN que haga seguimiento a un paciente con una determinada patología; como tampoco es fuera de lo común que en algunas granjas tecnificadas, las WSN ayuden a controlar el cultivo de la plantas que allí se producen; también es posible que alguien que haya viajado recientemente en un sistema de transporte masivo, haya experimentado que el bus mostraba en una pantalla la ubicación del mismo y la próxima estación que cubriría, lo mismo sucede con los aeropuertos, los bancos, etc.; es decir son tantas las aplicaciones que hoy existen alrededor de esta tecnología que su estudio es casi obligado y un referente importante para el desarrollo de nuevas soluciones que propendan por el mejoramiento de las condiciones de vida de las personas. En el presente capitulo se hace una reseña de la definición de las WSN, sus orígenes y aplicaciones. Luego se estudia los elementos que hacen parte de una WSN, las características de los mismos y se profundiza en la descripción técnica que contiene este tipo de redes. Por último, se presenta un acercamiento de la aplicación de las WSN con el cuidado de la salud y se cierra el capítulo con la descripción de un caso específico, relacionado con una patología denominada “Preeclampsia”

    Capacity Approaching Coding Strategies for Machine-to-Machine Communication in IoT Networks

    Get PDF
    Radio access technologies for mobile communications are characterized by multiple access (MA) strategies. Orthogonal MA techniques were a reasonable choice for achieving good performance with single user detection. With the tremendous growth in the number of mobile users and the new internet of things (IoT) shifting paradigm, it is expected that the monthly mobile data traffic worldwide will exceed 24.3 exabytes by 2019, over 100 billion IoT connections by 2025, and the financial impact of IoT on the global economy varies in the range of 3.9 to 11.1 trillion dollars by 2025. In light of the envisaged exponential growth and new trends, one promising solution to further enhance data rates without increasing the bandwidth is by increasing the spectral efficiency of the channel. Non-orthogonal MA techniques are potential candidates for future wireless communications. The two corner points on the boundary region of the MA channel are known to be achievable by single user decoding followed by successive decoding (SD). Other points can also be achieved using time sharing or rate splitting. On the other hand, machine-to-machine (M2M) communication which is an enabling technology for the IoT, enables massive multipurpose networked devices to exchange information among themselves with minor or no human intervention. This thesis consists of three main parts. In the first part, we propose new practical encoding and joint belief propagation (BP) decoding techniques for 2-user MA erasure channel (MAEC) that achieve any rate pair close to the boundary of the capacity region without using time sharing nor rate splitting. While at the encoders, the corresponding parity check matrices are randomly built from a half-rate LDPC matrix, the joint BP decoder employs the associated Tanner graphs of the parity check matrices to iteratively recover the erasures in the received combined codewords. Specifically, the joint decoder performs two steps in each decoding iteration: 1) simultaneously and independently runs the BP decoding process at each constituent sub-graph to recover some of the common erasures, 2) update the other sub-graph with newly recovered erasures and vice versa. When the number of erasures in the received combined codewords is less than or equal to the number of parity check constraints, the decoder may successfully decode both codewords, otherwise the decoder declares decoding failure. Furthermore, we calculate the probability of decoding failure and the outage capacity. Additionally, we show how the erasure probability evolves with the number of decoding iterations and the maximum tolerable loss. Simulations show that any rate pair close to the capacity boundary is achievable without using time sharing. In the second part, we propose a new cooperative joint network and rateless coding strategy for machine-type communication (MTC) devices in the multicast settings where three or more MTC devices dynamically form a cluster to disseminate messages between themselves. Specifically, in the basic cluster, three MTC devices transmit their respective messages simultaneously to the relay in the first phase. The relay broadcasts back the combined messages to all MTC devices within the basic cluster in the second phase. Given the fact that each MTC device can remove its own message, the received signal in the second phase is reduced to the combined messages coming from the other two MTC devices. Hence, this results in exploiting the interference caused by one message on the other and therefore improving the bandwidth efficiency. Furthermore, each group of three MTC devices in vicinity can form a basic cluster for exchanging messages, and the basic scheme extends to N MTC devices. Furthermore, we propose an efficient algorithm to disseminate messages among a large number of MTC devices. Moreover, we implement the proposed scheme employing practical Raptor codes with the use of two relaying schemes, namely amplify and forward (AF) and de-noise and forward (DNF). We show that with very little processing at the relay using DNF relaying scheme, performance can be further enhanced. We also show that the proposed scheme achieves a near optimal sum rate performance. In the third part, we present a comparative study of joint channel estimation and decoding of factor graph-based codes over flat fading channels and propose a simple channel approximation scheme that performs close to the optimal technique. Specifically, when channel state information (CSI) is not available at the receiver, a simpler approach is to estimate the channel state of a group of received symbols, then use the approximated value of the channel with the received signal to compute the log likelihood ratio. Simulation results show that the proposed scheme exhibits about 0.4 dB loss compared to the optimal solution when perfect CSI is available at the receiver
    corecore