1,813 research outputs found

    User Review-Based Change File Localization for Mobile Applications

    Get PDF
    In the current mobile app development, novel and emerging DevOps practices (e.g., Continuous Delivery, Integration, and user feedback analysis) and tools are becoming more widespread. For instance, the integration of user feedback (provided in the form of user reviews) in the software release cycle represents a valuable asset for the maintenance and evolution of mobile apps. To fully make use of these assets, it is highly desirable for developers to establish semantic links between the user reviews and the software artefacts to be changed (e.g., source code and documentation), and thus to localize the potential files to change for addressing the user feedback. In this paper, we propose RISING (Review Integration via claSsification, clusterIng, and linkiNG), an automated approach to support the continuous integration of user feedback via classification, clustering, and linking of user reviews. RISING leverages domain-specific constraint information and semi-supervised learning to group user reviews into multiple fine-grained clusters concerning similar users' requests. Then, by combining the textual information from both commit messages and source code, it automatically localizes potential change files to accommodate the users' requests. Our empirical studies demonstrate that the proposed approach outperforms the state-of-the-art baseline work in terms of clustering and localization accuracy, and thus produces more reliable results.Comment: 15 pages, 3 figures, 8 table

    Feature Extraction and Duplicate Detection for Text Mining: A Survey

    Get PDF
    Text mining, also known as Intelligent Text Analysis is an important research area. It is very difficult to focus on the most appropriate information due to the high dimensionality of data. Feature Extraction is one of the important techniques in data reduction to discover the most important features. Proce- ssing massive amount of data stored in a unstructured form is a challenging task. Several pre-processing methods and algo- rithms are needed to extract useful features from huge amount of data. The survey covers different text summarization, classi- fication, clustering methods to discover useful features and also discovering query facets which are multiple groups of words or phrases that explain and summarize the content covered by a query thereby reducing time taken by the user. Dealing with collection of text documents, it is also very important to filter out duplicate data. Once duplicates are deleted, it is recommended to replace the removed duplicates. Hence we also review the literature on duplicate detection and data fusion (remove and replace duplicates).The survey provides existing text mining techniques to extract relevant features, detect duplicates and to replace the duplicate data to get fine grained knowledge to the user

    A comparison of parsing technologies for the biomedical domain

    Get PDF
    This paper reports on a number of experiments which are designed to investigate the extent to which current nlp resources are able to syntactically and semantically analyse biomedical text. We address two tasks: parsing a real corpus with a hand-built widecoverage grammar, producing both syntactic analyses and logical forms; and automatically computing the interpretation of compound nouns where the head is a nominalisation (e.g., hospital arrival means an arrival at hospital, while patient arrival means an arrival of a patient). For the former task we demonstrate that exible and yet constrained `preprocessing ' techniques are crucial to success: these enable us to use part-of-speech tags to overcome inadequate lexical coverage, and to `package up' complex technical expressions prior to parsing so that they are blocked from creating misleading amounts of syntactic complexity. We argue that the xml-processing paradigm is ideally suited for automatically preparing the corpus for parsing. For the latter task, we compute interpretations of the compounds by exploiting surface cues and meaning paraphrases, which in turn are extracted from the parsed corpus. This provides an empirical setting in which we can compare the utility of a comparatively deep parser vs. a shallow one, exploring the trade-o between resolving attachment ambiguities on the one hand and generating errors in the parses on the other. We demonstrate that a model of the meaning of compound nominalisations is achievable with the aid of current broad-coverage parsers

    Automated subject classification of textual web documents

    Full text link
    corecore