251,186 research outputs found

    Passive-aggressive for on-line learning in statistical machine translation

    Full text link
    New variations on the application of the passive-aggressive algorithm to statistical machine translation are developed and compared to previously existing approaches. In online adaptation, the system needs to adapt to real-world changing scenarios, where training and tuning only take place when the system is set-up for the first time. Post-edit information, as described by a given quality measure, is used as valuable feedback within the passive-aggressive framework, adapting the statistical models on-line. First, by modifying the translation model parameters, and alternatively, by adapting the scaling factors present in stateof- the-art SMT systems. Experimental results show improvements in translation quality by allowing the system to learn on a sentence-by-sentence basis.This paper is based upon work supported by the EC (FEDER/FSE) and the Spanish MICINN under projects MIPRCV “Consolider Ingenio 2010” (CSD2007-00018) and iTrans2 (TIN2009-14511). Also supported by the Spanish MITyC under the erudito.com (TSI-020110-2009-439) project, by the Generalitat Valenciana under grant Prometeo/2009/014 and scholarship GV/2010/067 and by the UPV under grant 20091027.Martínez Gómez, P.; Sanchis Trilles, G.; Casacuberta Nolla, F. (2011). Passive-aggressive for on-line learning in statistical machine translation. En Pattern Recognition and Image Analysis. Springer Verlag (Germany). 6669:240-247. https://doi.org/10.1007/978-3-642-21257-4_30S2402476669Barrachina, S., et al.: Statistical approaches to computer-assisted translation. Computational Linguistics 35(1), 3–28 (2009)Callison-Burch, C., Bannard, C., Schroeder, J.: Improving statistical translation through editing. In: Proc. of 9th EAMT Workshop Broadening Horizons of Machine Translation and its Applications, Malta (April 2004)Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., Schroeder, J.: (meta-) evaluation of machine translation. In: Proc. of the Workshop on SMT, pp. 136–158. ACL (June 2007)Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. Journal of Machine Learning Research 7, 551–585 (2006)Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing II, pp. 181–184 (May 1995)Koehn, P.: Europarl: A parallel corpus for statistical machine translation. In: Proc. of the MT Summit X, pp. 79–86 (2005)Koehn, P., et al.: Moses: Open source toolkit for statistical machine translation. In: Proc. of the ACL Demo and Poster Sessions, Prague, Czech Republic, pp. 177–180 (2007)Och, F., Ney, H.: Discriminative training and maximum entropy models for statistical machine translation. In: Proc. of the ACL 2002, pp. 295–302 (2002)Och, F.: Minimum error rate training for statistical machine translation. In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 160–167. Springer, Heidelberg (2004)Ortiz-Martínez, D., García-Varea, I., Casacuberta, F.: Online learning for interactive statistical machine translation. In: Proceedings of NAACL HLT, Los Angeles (June 2010)Papineni, K., Roukos, S., Ward, T.: Maximum likelihood and discriminative training of direct translation models. In: Proc. of ICASSP 1998, pp. 189–192 (1998)Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: A method for automatic evaluation of machine translation. In: Proc. of ACL 2002, pp. 311–318 (2002)Reverberi, G., Szedmak, S., Cesa-Bianchi, N., et al.: Deliverable of package 4: Online learning algorithms for computer-assisted translation (2008)Sanchis-Trilles, G., Casacuberta, F.: Log-linear weight optimisation via bayesian adaptation in statistical machine translation. In: Proc. of COLING 2010, Beijing, China, pp. 1077–1085 (August 2010)Snover, M., et al.: A study of translation edit rate with targeted human annotation. In: Proc. of AMTA 2006, Cambridge, Massachusetts, USA, pp. 223–231 (August 2006)Zens, R., Och, F., Ney, H.: Phrase-based statistical machine translation. In: Jarke, M., Koehler, J., Lakemeyer, G. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 18–32. Springer, Heidelberg (2002

    Online learning via dynamic reranking for Computer Assisted Translation

    Full text link
    New techniques for online adaptation in computer assisted translation are explored and compared to previously existing approaches. Under the online adaptation paradigm, the translation system needs to adapt itself to real-world changing scenarios, where training and tuning may only take place once, when the system is set-up for the first time. For this purpose, post-edit information, as described by a given quality measure, is used as valuable feedback within a dynamic reranking algorithm. Two possible approaches are presented and evaluated. The first one relies on the well-known perceptron algorithm, whereas the second one is a novel approach using the Ridge regression in order to compute the optimum scaling factors within a state-of-the-art SMT system. Experimental results show that such algorithms are able to improve translation quality by learning from the errors produced by the system on a sentence-by-sentence basis.This paper is based upon work supported by the EC (FEDER/FSE) and the Spanish MICINN under projects MIPRCV “Consolider Ingenio 2010” (CSD2007-00018) and iTrans2 (TIN2009-14511). Also supported by the Spanish MITyC under the erudito.com (TSI-020110-2009-439) project, by the Generalitat Valenciana under grant Prometeo/2009/014 and scholarship GV/2010/067 and by the UPV under grant 20091027Martínez Gómez, P.; Sanchis Trilles, G.; Casacuberta Nolla, F. (2011). Online learning via dynamic reranking for Computer Assisted Translation. En Computational Linguistics and Intelligent Text Processing. Springer Verlag (Germany). 6609:93-105. https://doi.org/10.1007/978-3-642-19437-5_8S931056609Brown, P., Pietra, S.D., Pietra, V.D., Mercer, R.: The mathematics of machine translation. In: Computational Linguistics, vol. 19, pp. 263–311 (1993)Zens, R., Och, F.J., Ney, H.: Phrase-based statistical machine translation. In: Jarke, M., Koehler, J., Lakemeyer, G. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 18–32. Springer, Heidelberg (2002)Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proc. HLT/NAACL 2003, pp. 48–54 (2003)Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., Schroeder, J.: (meta-) evaluation of machine translation. In: Proc. of the Workshop on SMT. ACL, pp. 136–158 (2007)Papineni, K., Roukos, S., Ward, T.: Maximum likelihood and discriminative training of direct translation models. In: Proc. of ICASSP 1988, pp. 189–192 (1998)Och, F., Ney, H.: Discriminative training and maximum entropy models for statistical machine translation. In: Proc. of the ACL 2002, pp. 295–302 (2002)Och, F., Zens, R., Ney, H.: Efficient search for interactive statistical machine translation. In: Proc. of EACL 2003, pp. 387–393 (2003)Sanchis-Trilles, G., Casacuberta, F.: Log-linear weight optimisation via bayesian adaptation in statistical machine translation. In: Proceedings of COLING 2010, Beijing, China (2010)Callison-Burch, C., Bannard, C., Schroeder, J.: Improving statistical translation through editing. In: Proc. of 9th EAMT Workshop Broadening Horizons of Machine Translation and its Applications, Malta (2004)Barrachina, S., et al.: Statistical approaches to computer-assisted translation. Computational Linguistics 35, 3–28 (2009)Casacuberta, F., et al.: Human interaction for high quality machine translation. Communications of the ACM 52, 135–138 (2009)Ortiz-Martínez, D., García-Varea, I., Casacuberta, F.: Online learning for interactive statistical machine translation. In: Proceedings of NAACL HLT, Los Angeles (2010)España-Bonet, C., Màrquez, L.: Robust estimation of feature weights in statistical machine translation. In: 14th Annual Conference of the EAMT (2010)Reverberi, G., Szedmak, S., Cesa-Bianchi, N., et al.: Deliverable of package 4: Online learning algorithms for computer-assisted translation (2008)Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. Journal of Machine Learning Research 7, 551–585 (2006)Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit rate with targeted human annotation. In: Proc. of AMTA, Cambridge, MA, USA (2006)Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: A method for automatic evaluation of machine translation. In: Proc. of ACL 2002 (2002)Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65, 386–408 (1958)Collins, M.: Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In: EMNLP 2002, Philadelphia, PA, USA, pp. 1–8 (2002)Koehn, P.: Europarl: A parallel corpus for statistical machine translation. In: Proc. of the MT Summit X, pp. 79–86 (2005)Koehn, P., et al.: Moses: Open source toolkit for statistical machine translation. In: Proc. of the ACL Demo and Poster Sessions, Prague, Czech Republic, pp. 177–180 (2007)Och, F.: Minimum error rate training for statistical machine translation. In: Proc. of ACL 2003, pp. 160–167 (2003)Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing II, pp. 181–184 (1995)Stolcke, A.: SRILM – an extensible language modeling toolkit. In: Proc. of ICSLP 2002, pp. 901–904 (2002

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio
    • …
    corecore