8,553 research outputs found

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Brain–machine interface for eye movements

    Get PDF
    A number of studies in tetraplegic humans and healthy nonhuman primates (NHPs) have shown that neuronal activity from reach-related cortical areas can be used to predict reach intentions using brain–machine interfaces (BMIs) and therefore assist tetraplegic patients by controlling external devices (e.g., robotic limbs and computer cursors). However, to our knowledge, there have been no studies that have applied BMIs to eye movement areas to decode intended eye movements. In this study, we recorded the activity from populations of neurons from the lateral intraparietal area (LIP), a cortical node in the NHP saccade system. Eye movement plans were predicted in real time using Bayesian inference from small ensembles of LIP neurons without the animal making an eye movement. Learning, defined as an increase in the prediction accuracy, occurred at the level of neuronal ensembles, particularly for difficult predictions. Population learning had two components: an update of the parameters of the BMI based on its history and a change in the responses of individual neurons. These results provide strong evidence that the responses of neuronal ensembles can be shaped with respect to a cost function, here the prediction accuracy of the BMI. Furthermore, eye movement plans could be decoded without the animals emitting any actual eye movements and could be used to control the position of a cursor on a computer screen. These findings show that BMIs for eye movements are promising aids for assisting paralyzed patients

    A guide to sampling design for GPS‐based studies of animal societies

    Full text link
    GPS-based tracking is widely used for studying wild social animals. Much like traditional observational methods, using GPS devices requires making a number of decisions about sampling that can affect the robustness of a study's conclusions. For example, sampling fewer individuals per group across more distinct social groups may not be sufficient to infer group- or subgroup-level behaviours, while sampling more individuals per group across fewer groups limits the ability to draw conclusions about populations. Here, we provide quantitative recommendations when designing GPS-based tracking studies of animal societies. We focus on the trade-offs between three fundamental axes of sampling effort: (1) sampling coverage—the number and allocation of GPS devices among individuals in one or more social groups; (2) sampling duration—the total amount of time over which devices collect data and (3) sampling frequency—the temporal resolution at which GPS devices record data. We first test GPS tags under field conditions to quantify how these aspects of sampling design can affect both GPS accuracy (error in absolute positional estimates) and GPS precision (error in the estimate relative position of two individuals), demonstrating that GPS error can have profound effects when inferring distances between individuals. We then use data from whole-group tracked vulturine guineafowl Acryllium vulturinum to demonstrate how the trade-off between sampling frequency and sampling duration can impact inferences of social interactions and to quantify how sampling coverage can affect common measures of social behaviour in animal groups, identifying which types of measures are more or less robust to lower coverage of individuals. Finally, we use data-informed simulations to extend insights across groups of different sizes and cohesiveness. Based on our results, we are able to offer a range of recommendations on GPS sampling strategies to address research questions across social organizational scales and social systems—from group movement to social network structure and collective decision-making. Our study provides practical advice for empiricists to navigate their decision-making processes when designing GPS-based field studies of animal social behaviours, and highlights the importance of identifying the optimal deployment decisions for drawing informative and robust conclusions

    City rats: From rat behaviour to human spatial cognition in urban environments

    Get PDF
    The structure and shape of an urban environment influence our ability to find our way about in the city^1-2^. Indeed, urban designers who face the challenge of planning environments that facilitate wayfinding^3^, have a consequent need to understand the relations between the urban environment and spatial cognition^4^. Previous studies have suggested that certain qualities of city elements, such as a distinct contrast with the background (e.g. The Eiffel Tower in Paris), or a clear morphology (e.g. the grid layout of Manhattan's streets) affect spatial behaviour and cognition^1,5-7^. However, only a few empirical studies have examined the relations between the urban environment and spatial cognition. Here we suggest that testing rats in experimental environments that simulate certain facets of urban environment can provide an insight into human spatial behaviour in urban environments with a similar layout. Specifically, we simulated two city layouts: (1) a grid street layout such as that of Manhattan; and (2) an irregular street layout such as that of Jerusalem. We found that the rats that were tested in the grid layout covered more ground and visited more locations, compared with the restricted movement demonstrated by the rats tested in the irregular layout. This finding in rats is in accordance with previous findings that urban grids conduce to high movement flow throughout the city, compared to low movement flow in irregular urban layouts^8-9^. Previous studies revealed that the spatial behaviour of rats and humans is controlled by the same underlying mechanisms^10-11^. In the same vein, we show that rats demonstrate spatial movement patterns that recall those of humans in similar urban environments. Rat behaviour may thus offer an in-vivo means for testing and analyzing the spatial cognitive principles of specific urban designs and for inferring how humans may perceive a particular urban environment and orient in it

    Can we identify non-stationary dynamics of trial-to-trial variability?"

    Get PDF
    Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial) to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation). This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies the observed trial-to-trial variability. Thus, the empirical tool developed within this study potentially allows us to infer the source of variability in in-vivo neural recordings
    • 

    corecore