73 research outputs found

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    Coronary Artery Centerline Extraction in Cardiac CT Angiography Using a CNN-Based Orientation Classifier

    Full text link
    Coronary artery centerline extraction in cardiac CT angiography (CCTA) images is a prerequisite for evaluation of stenoses and atherosclerotic plaque. We propose an algorithm that extracts coronary artery centerlines in CCTA using a convolutional neural network (CNN). A 3D dilated CNN is trained to predict the most likely direction and radius of an artery at any given point in a CCTA image based on a local image patch. Starting from a single seed point placed manually or automatically anywhere in a coronary artery, a tracker follows the vessel centerline in two directions using the predictions of the CNN. Tracking is terminated when no direction can be identified with high certainty. The CNN was trained using 32 manually annotated centerlines in a training set consisting of 8 CCTA images provided in the MICCAI 2008 Coronary Artery Tracking Challenge (CAT08). Evaluation using 24 test images of the CAT08 challenge showed that extracted centerlines had an average overlap of 93.7% with 96 manually annotated reference centerlines. Extracted centerline points were highly accurate, with an average distance of 0.21 mm to reference centerline points. In a second test set consisting of 50 CCTA scans, 5,448 markers in the coronary arteries were used as seed points to extract single centerlines. This showed strong correspondence between extracted centerlines and manually placed markers. In a third test set containing 36 CCTA scans, fully automatic seeding and centerline extraction led to extraction of on average 92% of clinically relevant coronary artery segments. The proposed method is able to accurately and efficiently determine the direction and radius of coronary arteries. The method can be trained with limited training data, and once trained allows fast automatic or interactive extraction of coronary artery trees from CCTA images.Comment: Accepted in Medical Image Analysi

    Boosted learned kernels for data-driven vesselness measure

    Get PDF
    Common vessel centerline extraction methods rely on the computation of a measure providing the likeness of the local appearance of the data to a curvilinear tube-like structure. The most popular techniques rely on empirically designed (hand crafted) measurements as the widely used Hessian vesselness, the recent oriented flux tubeness or filters (e.g. the Gaussian matched filter) that are developed to respond to local features, without exploiting any context information nor the rich structural information embedded in the data. At variance with the previously proposed methods, we propose a completely data-driven approach for learning a vesselness measure from expert-annotated dataset. For each data point (voxel or pixel), we extract the intensity values in a neighborhood region, and estimate the discriminative convolutional kernel yielding a positive response for vessel data and negative response for non-vessel data. The process is iterated within a boosting framework, providing a set of linear filters, whose combined response is the learned vesselness measure. We show the results of the general-use proposed method on the DRIVE retinal images dataset, comparing its performance against the hessian-based vesselness, oriented flux antisymmetry tubeness, and vesselness learned with a probabilistic boosting tree or with a regression tree. We demonstrate the superiority of our approach that yields a vessel detection accuracy of 0.95, with respect to 0.92 (hessian), 0.90 (oriented flux) and 0.85 (boosting tree). © 2017 SPIE

    A Deep Learning Approach to Evaluating Disease Risk in Coronary Bifurcations

    Full text link
    Cardiovascular disease represents a large burden on modern healthcare systems, requiring significant resources for patient monitoring and clinical interventions. It has been shown that the blood flow through coronary arteries, shaped by the artery geometry unique to each patient, plays a critical role in the development and progression of heart disease. However, the popular and well tested risk models such as Framingham and QRISK3 current cardiovascular disease risk models are not able to take these differences when predicting disease risk. Over the last decade, medical imaging and image processing have advanced to the point that non-invasive high-resolution 3D imaging is routinely performed for any patient suspected of coronary artery disease. This allows for the construction of virtual 3D models of the coronary anatomy, and in-silico analysis of blood flow within the coronaries. However, several challenges still exist which preclude large scale patient-specific simulations, necessary for incorporating haemodynamic risk metrics as part of disease risk prediction. In particular, despite a large amount of available coronary medical imaging, extraction of the structures of interest from medical images remains a manual and laborious task. There is significant variation in how geometric features of the coronary arteries are measured, which makes comparisons between different studies difficult. Modelling blood flow conditions in the coronary arteries likewise requires manual preparation of the simulations and significant computational cost. This thesis aims to solve these challenges. The "Automated Segmentation of Coronary Arteries (ASOCA)" establishes a benchmark dataset of coronary arteries and their associated 3D reconstructions, which is currently the largest openly available dataset of coronary artery models and offers a wide range of applications such as computational modelling, 3D printed for experiments, developing, and testing medical devices such as stents, and Virtual Reality applications for education and training. An automated computational modelling workflow is developed to set up, run and postprocess simulations on the Left Main Bifurcation and calculate relevant shape metrics. A convolutional neural network model is developed to replace the computational fluid dynamics process, which can predict haemodynamic metrics such as wall shear stress in minutes, compared to several hours using traditional computational modelling reducing the computation and labour cost involved in performing such simulations

    Fast catheter segmentation and tracking based on x-ray fluoroscopic and echocardiographic modalities for catheter-based cardiac minimally invasive interventions

    Get PDF
    X-ray fluoroscopy and echocardiography imaging (ultrasound, US) are two imaging modalities that are widely used in cardiac catheterization. For these modalities, a fast, accurate and stable algorithm for the detection and tracking of catheters is required to allow clinicians to observe the catheter location in real-time. Currently X-ray fluoroscopy is routinely used as the standard modality in catheter ablation interventions. However, it lacks the ability to visualize soft tissue and uses harmful radiation. US does not have these limitations but often contains acoustic artifacts and has a small field of view. These make the detection and tracking of the catheter in US very challenging. The first contribution in this thesis is a framework which combines Kalman filter and discrete optimization for multiple catheter segmentation and tracking in X-ray images. Kalman filter is used to identify the whole catheter from a single point detected on the catheter in the first frame of a sequence of x-ray images. An energy-based formulation is developed that can be used to track the catheters in the following frames. We also propose a discrete optimization for minimizing the energy function in each frame of the X-ray image sequence. Our approach is robust to tangential motion of the catheter and combines the tubular and salient feature measurements into a single robust and efficient framework. The second contribution is an algorithm for catheter extraction in 3D ultrasound images based on (a) the registration between the X-ray and ultrasound images and (b) the segmentation of the catheter in X-ray images. The search space for the catheter extraction in the ultrasound images is constrained to lie on or close to a curved surface in the ultrasound volume. The curved surface corresponds to the back-projection of the extracted catheter from the X-ray image to the ultrasound volume. Blob-like features are detected in the US images and organized in a graphical model. The extracted catheter is modelled as the optimal path in this graphical model. Both contributions allow the use of ultrasound imaging for the improved visualization of soft tissue. However, X-ray imaging is still required for each ultrasound frame and the amount of X-ray exposure has not been reduced. The final contribution in this thesis is a system that can track the catheter in ultrasound volumes automatically without the need for X-ray imaging during the tracking. Instead X-ray imaging is only required for the system initialization and for recovery from tracking failures. This allows a significant reduction in the amount of X-ray exposure for patient and clinicians.Open Acces

    Medical image registration by neural networks: a regression-based registration approach

    Get PDF
    This thesis focuses on the development and evaluation of a registration-by-regression approach for the 3D/2D registration of coronary Computed Tomography Angiography (CTA) and X-ray angiography. This regression-based method relates image features of 2D projection images to the transformation parameters of the 3D image by a nonlinear regression. It treats registration as a regression problem, as an alternative for the traditional iterative approach that often comes with high computational costs and limited capture range. First we presented a survey of the methods with a regression-based registration approach for medical applications, as well as a summary of their main characteristics (Chapter 2). Second, we studied the registration methodology, addressing the input features and the choice of regression model (Chapter 3 and Chapter 4). For that purpose, we evaluated different options using simulated X-ray images generated from coronary artery tree models derived from 3D CTA scans. We also compared the registration-by-regression results with a method based on iterative optimization. Different image features of 2D projections and seven regression techniques were considered. The regression approach for simulated X-rays was shown to be slightly less accurate, but much more robust than the method based on an iterative optimization approach. Neural Networks obtained accurate results and showed to be robust to large initial misalignment. Third, we evaluated the registration-by-regression method using clinical data, integrating the 3D preoperative CTA of the coronary arteries with intraoperative 2D X-ray angiography images (Chapter 5). For the evaluation of the image registration, a gold standard registration was established using an exhaustive search followed by a multi-observer visual scoring procedure. The influence of preprocessing options for the simulated images and the real X-rays was studied. Several image features were also compared. The coronary registration–by-regression results were not satisfactory, resembling manual initialization accuracy. Therefore, the proposed method for this concrete problem and in its current configuration is not sufficiently accurate to be used in the clinical practice. The framework developed enables us to better understand the dependency of the proposed method on the differences between simulated and real images. The main difficulty lies in the substantial differences in appearance between the images used for training (simulated X-rays from 3D coronary models) and the actual images obtained during the intervention (real X-ray angiography). We suggest alternative solutions and recommend to evaluate the registration-by-regression approach in other applications where training data is available that has similar appearance to the eventual test data
    • …
    corecore