29 research outputs found

    Evolutionary Machine Learning and Games

    Full text link
    Evolutionary machine learning (EML) has been applied to games in multiple ways, and for multiple different purposes. Importantly, AI research in games is not only about playing games; it is also about generating game content, modeling players, and many other applications. Many of these applications pose interesting problems for EML. We will structure this chapter on EML for games based on whether evolution is used to augment machine learning (ML) or ML is used to augment evolution. For completeness, we also briefly discuss the usage of ML and evolution separately in games.Comment: 27 pages, 5 figures, part of Evolutionary Machine Learning Book (https://link.springer.com/book/10.1007/978-981-99-3814-8

    Critical Analysis of Decision Making Experience with a Machine Learning Approach in Playing Ayo Game

    Get PDF
    The major goal in defining and examining game scenarios is to find good strategies as solutions to the game. A plausible solution is a recommendation to the players on how to play the game, which is represented as strategies guided by the various choices available to the players. These choices invariably compel the players (decision makers) to execute an action following some conscious tactics. In this paper, we proposed a refinement-based heuristic as a machine learning technique for human-like decision making in playing Ayo game. The result showed that our machine learning technique is more adaptable and more responsive in making decision than human intelligence. The technique has the advantage that a search is astutely conducted in a shallow horizon game tree. Our simulation was tested against Awale shareware and an appealing result was obtained

    Online Meta-learning by Parallel Algorithm Competition

    Full text link
    The efficiency of reinforcement learning algorithms depends critically on a few meta-parameters that modulates the learning updates and the trade-off between exploration and exploitation. The adaptation of the meta-parameters is an open question in reinforcement learning, which arguably has become more of an issue recently with the success of deep reinforcement learning in high-dimensional state spaces. The long learning times in domains such as Atari 2600 video games makes it not feasible to perform comprehensive searches of appropriate meta-parameter values. We propose the Online Meta-learning by Parallel Algorithm Competition (OMPAC) method. In the OMPAC method, several instances of a reinforcement learning algorithm are run in parallel with small differences in the initial values of the meta-parameters. After a fixed number of episodes, the instances are selected based on their performance in the task at hand. Before continuing the learning, Gaussian noise is added to the meta-parameters with a predefined probability. We validate the OMPAC method by improving the state-of-the-art results in stochastic SZ-Tetris and in standard Tetris with a smaller, 10×\times10, board, by 31% and 84%, respectively, and by improving the results for deep Sarsa(λ\lambda) agents in three Atari 2600 games by 62% or more. The experiments also show the ability of the OMPAC method to adapt the meta-parameters according to the learning progress in different tasks.Comment: 15 pages, 10 figures. arXiv admin note: text overlap with arXiv:1702.0311

    A kernel-based framework for learning graded relations from data

    Get PDF
    Driven by a large number of potential applications in areas like bioinformatics, information retrieval and social network analysis, the problem setting of inferring relations between pairs of data objects has recently been investigated quite intensively in the machine learning community. To this end, current approaches typically consider datasets containing crisp relations, so that standard classification methods can be adopted. However, relations between objects like similarities and preferences are often expressed in a graded manner in real-world applications. A general kernel-based framework for learning relations from data is introduced here. It extends existing approaches because both crisp and graded relations are considered, and it unifies existing approaches because different types of graded relations can be modeled, including symmetric and reciprocal relations. This framework establishes important links between recent developments in fuzzy set theory and machine learning. Its usefulness is demonstrated through various experiments on synthetic and real-world data.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Mixed-Initiative Creative Interfaces

    Get PDF
    Enabled by artificial intelligence techniques, we are witnessing the rise of a new paradigm of computational creativity support: mixed-initiative creative interfaces put human and computer in a tight interactive loop where each suggests, produces, evaluates, modifies, and selects creative outputs in response to the other. This paradigm could broaden and amplify creative capacity for all, but has so far remained mostly confined to artificial intelligence for game content generation, and faces many unsolved interaction design challenges. This workshop therefore convenes CHI and game researchers to advance mixed-initiative approaches to creativity support

    Changes in connectivity patterns in the kainate model of epilepsy

    Get PDF
    Epilepsy is a neurological disorder characterized by seizures, i.e. excessive and hyper synchronous activity of neurons in the brain. ElectroEncephaloGram (EEG) is the recording of brain activity in time through electrodes placed on the scalp and is one of the most used techniques to monitor brain activity. In order to identify pattern of propagation across brain areas that are specific to epilepsy, connectivity measures such as the Directed Transfer Function (DTF) and the Partial Directed Coherence (PDC) have been developed. These measures reveal connections between different areas by exploiting statistical dependencies within multichannel EEG recordings. This work proposes a framework to identify and compare interdependencies between EEG signals in different brain states. We considered an animal model of epilepsy characterized by spontaneous recurrent seizures. In three rats we identified a normal healthy baseline state and an epileptic state for which we estimated interdependencies between EEG channels using DTF and PDC and extracted significant differences between both states. We showed the feasibility of detection of connectivity patterns in a simple animal model of epilepsy. We found common patterns of propagation in the brain of the three rats during the baseline state. After the kainic acid injection, the connectivity pattern of interictal period is significantly altered compared to the baseline situation. Inter-rat variations are observed, but the intra-rat pattern alterations are consistent in time, revealing that the kainic acid permanently changes the brain connectivity

    Learning valued relations from data

    Get PDF
    Driven by a large number of potential applications in areas like bioinformatics, information retrieval and social network analysis, the problem setting of inferring relations between pairs of data objects has recently been investigated quite intensively in the machine learning community. To this end, current approaches typically consider datasets containing crisp relations, so that standard classification methods can be adopted. However, relations between objects like similarities and preferences are in many real-world applications often expressed in a graded manner. A general kernel-based framework for learning relations from data is introduced here. It extends existing approaches because both crisp and valued relations are considered, and it unifies existing approaches because different types of valued relations can be modeled, including symmetric and reciprocal relations. This framework establishes in this way important links between recent developments in fuzzy set theory and machine learning. Its usefulness is demonstrated on a case study in document retrieval
    corecore