2,015 research outputs found

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with speciïŹ c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of speciïŹ cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and speciïŹ c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Fault Behavior of Wind Turbines

    Get PDF
    Synchronous generators have always been the dominant generation type in the grid. This fact affected both planning and operation of power systems. With the fast increase of wind power share in the grid in the last decade, the situation is changing. In some countries wind power represents already a consistent amount of the total generation. Wind turbines can be classified as non-synchronous generation and they behave differently than synchronous generation under many circumstances. Fault behavior is an important example. This thesis deals with the behavior of wind turbines during faults in the grid. The first part focuses on the fault currents delivered by wind turbines with Doubly-Fed Induction Generators (DFIG). The second part investigates the impact of faults below the transmission level on wind turbine grid fault ride-through and the voltage support that wind turbines can provide in weak grids during faults. A wide theoretical analysis of the fault current contribution of DFIG wind turbines with crowbar protection is carried out. A general analytical method for fault current calculation during symmetrical and unsymmetrical faults in the grid is proposed. The analytical method can be used to find the maximum fault current and its AC or DC components without the need to actually perform detailed simulations, which is the method used today. DFIG wind turbines may also be protected using a chopper resistance on the DC-link. A method to model the DC-link with chopper as an equivalent resistance connected to the generator rotor during symmetrical grid faults is presented. This allows to calculate the short-circuit currents of a DFIG with chopper protection as an equivalent DFIG with crowbar protection. This is useful since fault current calculation methods for DFIG with crowbar are available in the literature. Moreover, power system simulation tools include standard models of DFIG wind turbines with crowbar protection, but often not with chopper protection. The use of an aggregate model to represent the fault current contribution of a wind farm has been analyzed through simulations. It has been found that the aggregate model is able to reproduce accurately the total fault current of the wind farm for symmetrical and unsymmetrical faults. The use of aggregate models simplifies simulation models and saves simulation time. The Swedish grid code requires wind turbines at all voltage levels to ride through faults at the transmission network. For faults at voltage levels below transmission level fault clearing times are often longer and this could impact on fault ride-through of wind turbines. Simulation of study cases with faults at sub-transmission level, performed using the standard Nordic 32 test system, show that wind turbines should still be able to ride through such faults. Only in case of high dynamic load scenarios and failure of the protection system, wind turbines could disconnect from the grid. Load modelling is important when carrying out this analysis. Faults on adjacent MV feeders seriously endanger grid fault ride-through (GFRT) of wind turbines. Finally, an investigation on the voltage support of wind turbines in weak networks during faults has been carried out. A simplified model of the power system of the Danish island of Bornholm has been used as a test system. It has been found that the minimum requirements for voltage support set by grid codes do not result in satisfactory voltage recovery in weak grids after fault clearing. However, if properly controlled, wind turbines are able to provide a voltage support comparable to that supplied by power plants with synchronous generation

    Dynamic Modeling of Networks, Microgrids, and Renewable Sources in the dq0 Reference Frame:A Survey

    Get PDF

    Transient stability assessment of hybrid distributed generation using computational intelligence approaches

    Get PDF
    Includes bibliographical references.Due to increasing integration of new technologies into the grid such as hybrid electric vehicles, distributed generations, power electronic interface circuits, advanced controllers etc., the present power system network is now more complex than in the past. Consequently, the recent rate of blackouts recorded in some parts of the world indicates that the power system is stressed. The real time/online monitoring and prediction of stability limit is needed to prevent future blackouts. In the last decade, Distributed Generators (DGs) among other technologies have received increasing attention. This is because DGs have the capability to meet peak demand, reduce losses, due to proximity to consumers and produce clean energy and thus reduce the production of CO₂. More benefits can be obtained when two or more DGs are combined together to form what is known as Hybrid Distributed Generation (HDG). The challenge with hybrid distributed generation (HDG) powered by intermittent renewable energy sources such as solar PV, wind turbine and small hydro power is that the system is more vulnerable to instabilities compared to single renewable energy source DG. This is because of the intermittent nature of the renewable energy sources and the complex interaction between the DGs and the distribution network. Due to the complexity and the stress level of the present power system network, real time/online monitoring and prediction of stability limits is becoming an essential and important part of present day control centres. Up to now, research on the impact of HDG on the transient stability is very limited. Generally, to perform transient stability assessment, an analytical approach is often used. The analytical approach requires a large volume of data, detailed mathematical equations and the understanding of the dynamics of the system. Due to the unavailability of accurate mathematical equations for most dynamic systems, and given the large volume of data required, the analytical method is inadequate and time consuming. Moreover, it requires long simulation time to assess the stability limits of the system. Therefore, the analytical approach is inadequate to handle real time operation of power system. In order to carry out real time transient stability assessment under an increasing nonlinear and time varying dynamics, fast scalable and dynamic algorithms are required. Transient Stability Assessment Of Hybrid Distributed Generation Using Computational Intelligence Approaches These algorithms must be able to perform advanced monitoring, decision making, forecasting, control and optimization. Computational Intelligence (CI) based algorithm such as neural networks coupled with Wide Area Monitoring System (WAMS) such as Phasor Measurement Unit (PMUs) have been shown to successfully model non-linear dynamics and predict stability limits in real time. To cope with the shortcoming of the analytical approach, a computational intelligence method based on Artificial Neural Networks (ANNs) was developed in this thesis to assess transient stability in real time. Appropriate data related to the hybrid generation (i.e., Solar PV, wind generator, small hydropower) were generated using the analytical approach for the training and testing of the ANN models. In addition, PMUs integrated in Real Time Digital Simulator (RTDS) were used to gather data for the real time training of the ANNs and the prediction of the Critical Clearing Time (CCT)

    Integration of Flywheel Energy Storage Systems in Low Voltage Distribution Grids

    Get PDF
    A Flywheel Energy Storage System (FESS) can rapidly inject or absorb high amounts of active power in order to support the grid, following abrupt changes in the generation or in the demand, with no concern over its lifetime. The work presented in this book studies the grid integration of a high-speed FESS in low voltage distribution grids from several perspectives, including optimal allocation, sizing, modeling, real-time simulation, and Power Hardware-in-the-Loop testing

    Integration of Flywheel Energy Storage Systems in Low Voltage Distribution Grids

    Get PDF
    Mit dem Ziel, den Stromsektor zu dekarbonisieren und dem Klimawandel zu begegnen, steigt der Anteil erneuerbarer Energieressourcen in den Energiesystemen rund um den Globus kontinuierlich an. Aufgrund des intermittierenden Charakters dieser Ressourcen kann die Aufrechterhaltung des momentanen Gleichgewichts zwischen Erzeugung und Verbrauch und damit der Netzfrequenz ohne angemessene Maßnahmen jedoch eine Herausforderung darstellen. Da erneuerbare Energiequellen mit Umrichterschnittstellen dem System selbst keine TrĂ€gheit verleihen, nimmt gleichzeitig die kumulative SystemtrĂ€gheit ab, was zu schnelleren Änderungen der Netzfrequenz und Bedenken hinsichtlich der NetzstabilitĂ€t fĂŒhrt. Ein Schwungrad-Energiespeichersystem (Flywheel Energy Storage System, FESS) kann schnell große Leistungsmengen einspeisen oder aufnehmen, um das Netz nach einer abrupten Änderung der Erzeugung oder des Verbrauchs zu unterstĂŒtzen. Neben der schnellen Reaktionszeit hat ein FESS den Vorteil einer hohen Leistungsdichte und einer großen Anzahl von Lade- und Entladezyklen ohne KapazitĂ€tsverlust wĂ€hrend seiner gesamten Lebensdauer. Diese Eigenschaften machen das FESS zu einem gut geeigneten Kandidaten fĂŒr die Frequenzstabilisierung des Netzes oder die GlĂ€ttung kurzfristiger Leistungsschwankungen auf lokaler Ebene. In dieser Dissertation wird die Netzintegration eines Hochgeschwindigkeits-FESS auf der Niederspannungsebene aus mehreren Perspektiven untersucht. ZunĂ€chst wird das Problem der Platzierung und Dimensionierung eines FESS in Niederspannungsverteilnetzen fĂŒr LeistungsglĂ€ttungsanwendungen behandelt. Um den am besten geeigneten Standort fĂŒr ein FESS zu finden, wird eine datengetriebene Methode zur AbschĂ€tzung der relativen Spannungsempfindlichkeit vorgestellt, die auf dem Konzept der Transinformation basiert. Der Hauptvorteil der vorgeschlagenen Methode besteht darin, dass sie kein Netzmodell erfordert und nur Messwerte an den interessierenden Punkten verwendet. Messergebnisse aus einem realen Netz in SĂŒddeutschland zeigen, dass mit dem vorgeschlagenen Ansatz die Netzanschlusspunkte mit einer höheren Spannungsempfindlichkeit gegenĂŒber WirkleistungsĂ€nderungen, welche am meisten von einem durch FESS ermöglichten, glatteren Leistungsprofil profitieren können, erfolgreich zugeordnet werden können. DarĂŒber hinaus wird eine neue Methode zur Dimensionierung von Energiespeichersystemen unter Verwendung von Messdaten eingefĂŒhrt. Der vorgeschlagene Ansatz erkennt wiederkehrende Verbrauchsmuster in aufgezeichneten Leistungsprofilen mit Hilfe des "Motif Discovery"-Algorithmus, die dann zur Dimensionierung verschiedener Speichertechnologien, einschließlich eines FESS, verwendet werden. Anhand von gesammelten Messdaten aus mehreren Niederspannungsnetzen in Deutschland wird gezeigt, dass die Speichersysteme mit den aus den detektierten Mustern abgeleiteten Charakteristika wĂ€hrend der gesamten Messperiode effektiv fĂŒr ihre Anwendungen genutzt werden können. Als nĂ€chstes wurde ein dynamisches Modell eines Hochgeschwindigkeits-FESS entwickelt und mit experimentellen Ergebnissen in mehreren Szenarien, unter BerĂŒcksichtigung der Verluste und des Hilfsenergiebedarfs des Systems, validiert. In den untersuchten Szenarien wurde eine maximale Differenz von nur 0,8 % zwischen dem Ladezustand des Modells und dem realen FESS beobachtet, was die Genauigkeit des entwickelten Modells beschreibt. Nach Festlegung des erforderlichen Aufbaus wurde die LeistungsfĂ€higkeit eines 60 kW Hochgeschwindigkeits-FESS wĂ€hrend mehrerer Frequenzabweichungsszenarien mit Hilfe von Power Hardware-in-the-Loop-Tests beurteilt. Die Ergebnisse der PHIL-Tests zeigen, dass das Hochgeschwindigkeits-FESS sehr schnell nach einer plötzlichen Frequenzabweichung reagiert und in knapp 60 ms die erforderliche Leistung erreicht, wobei die neuesten Anforderungen der Anwendungsregeln fĂŒr die FrequenzunterstĂŒtzung auf der Niederspannungsebene erfĂŒllt werden. Um schließlich die Vorteile des schnellen Verhaltens des FESS fĂŒr Energiesysteme mit geringer TrĂ€gheit zu demonstrieren, wurde ein neuartiger adaptiver TrĂ€gheits-Emulationsregler fĂŒr das Hochgeschwindigkeits-FESS eingefĂŒhrt und seine Leistung in einem Microgrid mit geringer TrĂ€gheit durch Simulationen und Experimente validiert. Die Simulationsergebnisse zeigen, dass die Verwendung des FESS mit dem vorgeschlagenen TrĂ€gheits-Emulationsregler die maximale Änderungsrate der Frequenz um 28 % und die maximale Frequenzabweichung um 44 % wĂ€hrend der Inselbildung des untersuchten Microgrid reduzieren kann und mehrere zuvor vorgestellte adaptive Regelungskonzepte ĂŒbertrifft. Der vorgeschlagene Regler wurde auch auf einem realen 60 kW FESS mit dem Konzept des Rapid Control Prototyping implementiert, und die LeistungsfĂ€higkeit des FESS mit dem neuen Regelungsentwurf wurde mit Hilfe von PHIL-Tests des FESS validiert. Die PHIL-Ergebnisse, die die allererste experimentelle Validierung der TrĂ€gheitsemulation mit einem FESS darstellen, bestĂ€tigen die Simulationsergebnisse und zeigen die Vorteile des vorgeschlagenen Reglers

    Enhancing transient performance of microgeneration-dense low voltage distribution networks

    Get PDF
    In addition to other measures such as energy saving, the adoption of microgeneration driven by renewable and low carbon energy resources is expected to have the potential to reduce losses associated with producing and delivering electricity, combat climate change and fuel poverty, and improve the overall system performance. However, incorporating a substantial volume of microgeneration within a system that is not designed for such a paradigm could lead to conflicts in the operating strategies of the new and existing centralised generation technologies. So it becomes vital for such substantial amount of microgeneration among other decentralised resources to be controlled in the way that local constraints are mitigated and their aggregated response supports the wider system. In addition, the characteristic behaviour of connected microgeneration requires to be understood under different system conditions to ascertain measures of risk and resilience, and to ensure the benefits of microgeneration to be delivered. Therefore, this thesis provides three main valuable contributions of future attainment of sustainable power systems. Firstly, a new conceptual control structure for a system incorporating a high penetration of microgeneration and dynamic load is developed. Secondly, the resilience level of the host distribution network as well as the resilience levels of microgeneration during large transient disturbances is evaluated and quantified. Thirdly, a technical solution that can support enhanced transient stability of a large penetration of LV connected microgeneration is introduced and demonstrated. A control system structure concept based on “a cell concept” is introduced to manage the spread of heavy volumes of distributed energy resources (DERs) including microgeneration such that the useful features of DER units in support of the wider system can be exploited, and the threats to system performance presented by significant connection of passive and unpredictable DERs can be mitigated. The structure also provides simpler and better coordinated communication with DERs by allowing the inputs from DERs and groups of cells to be transferred as collective actions when it moves from a local to a wider system level. The anticipated transient performance problems surrounding the integration of microgeneration on a large basis within a typical urban distribution network are addressed. Three areas of studies are tackled; the increased fault level due to the present of microgeneration, the collective impact of LV connected microgeneration on traditional LV protection performance, and the system fault ride through capabilities of LV connected microgeneration interfaced by different technologies. The possible local impacts of unnecessary disconnection of large amount of microgeneration on the performance of the host distribution network are also quantified. The thesis proposes a network solution based on using resistive-type superconducting fault current limiters (RSFCLs) to prevent the impact of local transient disturbances from expanding and enhance the fault ride through capabilities of a high penetration of microgeneration connected to low voltage distribution networks. A new mathematical approach is developed within the thesis to identify at which condition RSFCL can be used as a significant device to maintain the transient stability of large numbers of LV connected microgeneration. The approach is based on equation solution to determine the minimum required value of the resistive element of RSFCL to maintain microgeneration transient stability, and at the same time additional headroom against switchgear short-circuit ratings is provided. Remote disturbances or a failure to clear remote faults quickly are shown to no longer result in complete unnecessary disconnection of substantial amount of microgeneration
    • 

    corecore