302,629 research outputs found

    Understanding Behavioral Drivers in Twitter Social Media Networks

    Get PDF
    As social media platforms facilitate user interactions, organizations increasingly use social media networks (SMNs) to build network ties. Studying user behavior on SMNs can help to uncover strategic information and improve situation awareness. However, there is a lack of understanding of behavioral drivers of SMN participants. This research developed a theoretically-based IS development framework for modeling user behavior in large evolving SMNs. To demonstrate the feasibility of our framework, we developed a proof-of-concept system for simulating user activities in the SMNs of Twitter social communities. Our system models the complex behavioral features in the SMNs by using a wide range of theoretically-driven features and machine-discovered features, and predicts user activities by using a pipeline of statistical and machine-learning techniques. Preliminary results of a simulation study provide insights of the importance of comprehensive network features to model SMN group behavior accurately and quality of commitment features to model SMN user behavior

    An Investigation of Suicidal Ideation from Social Media Using Machine Learning Approach

    Get PDF
      Despite improvements in the detection and treatment of severe mental disorders, suicide remains a significant public health concern. Suicide prevention and control initiatives can benefit greatly from a thorough comprehension and foreseeability of suicide patterns. Understanding suicide patterns, especially through social media data analysis, can help in suicide prevention and control efforts. The objective of this study is to evaluate predictors of suicidal behavior in humans using machine learning. It is crucial to create a machine learning model for detection of suicide thoughts by monitoring a user's social media posts to identify warning signs of mental health issues. Through the analysis of social media posts, our research intends to develop a machine learning model for identifying suicide ideation and probable mental health problems. This study will help immensely to comprehend the environmental risk factors that influence suicidal thoughts and conduct across time. In this research the use of machine learning on social media data is an exciting new direction for understanding the environmental risk factors that impact an individual's susceptibility to suicide ideation and conduct over time. The machine learning algorithms showed high accuracy, precision, recall, and F1-score in detecting suicide patterns on social media data whereas SVM has the highest performance with an accuracy of 0.886.    

    Theory of Minds: Understanding Behavior in Groups Through Inverse Planning

    Full text link
    Human social behavior is structured by relationships. We form teams, groups, tribes, and alliances at all scales of human life. These structures guide multi-agent cooperation and competition, but when we observe others these underlying relationships are typically unobservable and hence must be inferred. Humans make these inferences intuitively and flexibly, often making rapid generalizations about the latent relationships that underlie behavior from just sparse and noisy observations. Rapid and accurate inferences are important for determining who to cooperate with, who to compete with, and how to cooperate in order to compete. Towards the goal of building machine-learning algorithms with human-like social intelligence, we develop a generative model of multi-agent action understanding based on a novel representation for these latent relationships called Composable Team Hierarchies (CTH). This representation is grounded in the formalism of stochastic games and multi-agent reinforcement learning. We use CTH as a target for Bayesian inference yielding a new algorithm for understanding behavior in groups that can both infer hidden relationships as well as predict future actions for multiple agents interacting together. Our algorithm rapidly recovers an underlying causal model of how agents relate in spatial stochastic games from just a few observations. The patterns of inference made by this algorithm closely correspond with human judgments and the algorithm makes the same rapid generalizations that people do.Comment: published in AAAI 2019; Michael Shum and Max Kleiman-Weiner contributed equall

    Algebraic Connectivity Characterization of Ensemble Random Hypergraphs

    Full text link
    Random hypergraph is a broad concept used to describe probability distributions over hypergraphs, which are mathematical structures with applications in various fields, e.g., complex systems in physics, computer science, social sciences, and network science. Ensemble methods, on the other hand, are crucial both in physics and machine learning. In physics, ensemble theory helps bridge the gap between the microscopic and macroscopic worlds, providing a statistical framework for understanding systems with a vast number of particles. In machine learning, ensemble methods are valuable because they improve predictive accuracy, reduce overfitting, lower prediction variance, mitigate bias, and capture complex relationships in data. However, there is limited research on applying ensemble methods to a set of random hypergraphs. This work aims to study the connectivity behavior of an ensemble of random hypergraphs. Specifically, it focuses on quantifying the random behavior of the algebraic connectivity of these ensembles through tail bounds. We utilize Laplacian tensors to represent these ensemble random hypergraphs and establish mathematical theorems, such as Courant-Fischer and Lieb-Seiringer theorems for tensors, to derive tail bounds for the algebraic connectivity. We derive three different tail bounds, i.e., Chernoff, Bennett, and Bernstein bounds, for the algebraic connectivity of ensemble hypergraphs with respect to different random hypergraphs assumptions

    Predicting social anxiety in young adults with machine learning of resting-state brain functional radiomic features

    Get PDF
    Social anxiety is a symptom widely prevalent among young adults, and when present in excess, can lead to maladaptive patterns of social behavior. Recent approaches that incorporate brain functional radiomic features and machine learning have shown potential for predicting certain phenotypes or disorders from functional magnetic resonance images. In this study, we aimed to predict the level of social anxiety in young adult participants by training machine learning models with resting-state brain functional radiomic features including the regional homogeneity, fractional amplitude of low-frequency fluctuation, fractional resting-state physiological fluctuation amplitude, and degree centrality. Among the machine learning models, the XGBoost model achieved the best performance with balanced accuracy of 77.7% and F1 score of 0.815. Analysis of input feature importance demonstrated that the orbitofrontal cortex and the degree centrality were most relevant to predicting the level of social anxiety among the input brain regions and the input type of radiomic features, respectively. These results suggest potential validity for predicting social anxiety with machine learning of the resting-state brain functional radiomic features and provide further understanding of the neural basis of the symptom.ope

    Understanding the Social Context of Eating with Multimodal Smartphone Sensing: The Role of Country Diversity

    Full text link
    Understanding the social context of eating is crucial for promoting healthy eating behaviors by providing timely interventions. Multimodal smartphone sensing data has the potential to provide valuable insights into eating behavior, particularly in mobile food diaries and mobile health applications. However, research on the social context of eating with smartphone sensor data is limited, despite extensive study in nutrition and behavioral science. Moreover, the impact of country differences on the social context of eating, as measured by multimodal phone sensor data and self-reports, remains under-explored. To address this research gap, we present a study using a smartphone sensing dataset from eight countries (China, Denmark, India, Italy, Mexico, Mongolia, Paraguay, and the UK). Our study focuses on a set of approximately 24K self-reports on eating events provided by 678 college students to investigate the country diversity that emerges from smartphone sensors during eating events for different social contexts (alone or with others). Our analysis revealed that while some smartphone usage features during eating events were similar across countries, others exhibited unique behaviors in each country. We further studied how user and country-specific factors impact social context inference by developing machine learning models with population-level (non-personalized) and hybrid (partially personalized) experimental setups. We showed that models based on the hybrid approach achieve AUC scores up to 0.75 with XGBoost models. These findings have implications for future research on mobile food diaries and mobile health sensing systems, emphasizing the importance of considering country differences in building and deploying machine learning models to minimize biases and improve generalization across different populations
    corecore