6 research outputs found

    Human Post-editing in Hybrid Machine Translation Systems: Automatic and Manual Analysis and Evaluation

    Get PDF
    This study assesses, automatically and manually, the performance of two hybrid machine translation (HMT) systems, via a text corpus of questions in the Spanish and English languages. The results show that human evaluation metrics are more reliable when evaluating HMT performance. Further, there is evidence that MT can streamline the translation process for specific types of texts, such as questions; however, it does not yet rival the quality of human translations, to which post-editing is key in this process

    Latest trends in hybrid machine translation and its applications

    Get PDF
    This survey on hybrid machine translation (MT) is motivated by the fact that hybridization techniques have become popular as they attempt to combine the best characteristics of highly advanced pure rule or corpus-based MT approaches. Existing research typically covers either simple or more complex architectures guided by either rule or corpus-based approaches. The goal is to combine the best properties of each type. This survey provides a detailed overview of the modification of the standard rule-based architecture to include statistical knowl- edge, the introduction of rules in corpus-based approaches, and the hybridization of approaches within this last single category. The principal aim here is to cover the leading research and progress in this field of MT and in several related applications.Peer ReviewedPostprint (published version

    Hybrid Arabic–French machine translation using syntactic re-ordering and morphological pre-processing

    Get PDF
    This is an accepted manuscript of an article published by Elsevier BV in Computer Speech & Language on 08/11/2014, available online: https://doi.org/10.1016/j.csl.2014.10.007 The accepted version of the publication may differ from the final published version.Arabic is a highly inflected language and a morpho-syntactically complex language with many differences compared to several languages that are heavily studied. It may thus require good pre-processing as it presents significant challenges for Natural Language Processing (NLP), specifically for Machine Translation (MT). This paper aims to examine how Statistical Machine Translation (SMT) can be improved using rule-based pre-processing and language analysis. We describe a hybrid translation approach coupling an Arabic–French statistical machine translation system using the Moses decoder with additional morphological rules that reduce the morphology of the source language (Arabic) to a level that makes it closer to that of the target language (French). Moreover, we introduce additional swapping rules for a structural matching between the source language and the target language. Two structural changes involving the positions of the pronouns and verbs in both the source and target languages have been attempted. The results show an improvement in the quality of translation and a gain in terms of BLEU score after introducing a pre-processing scheme for Arabic and applying these rules based on morphological variations and verb re-ordering (VS into SV constructions) in the source language (Arabic) according to their positions in the target language (French). Furthermore, a learning curve shows the improvement in terms on BLEU score under scarce- and large-resources conditions. The proposed approach is completed without increasing the amount of training data or radically changing the algorithms that can affect the translation or training engines.This paper is based upon work supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant number 356097-08.Published versio

    Machine translation systems and quality assessment: a systematic review

    Get PDF
    This work was supported by the Spanish Ministry of Science, Innovation and Universities (MCIU) (RTI2018-093348-B-I00, FPU17/00667); the Spanish State Research Agency (AEI) (RTI2018- 093348-B-I00); and the European Regional Development Fund (ERDF) (RTI2018-093348-B-I00).Nowadays, in the globalised context in which we find ourselves, language barriers can still be an obstacle to accessing information. On occasions, it is impossible to satisfy the demand for translation by relying only in human translators, therefore, tools such as Machine Translation (MT) are gaining popularity due to their potential to overcome this problem. Consequently, research in this field is constantly growing and new MT paradigms are emerging. In this paper, a systematic literature review has been carried out in order to identify what MT systems are currently most employed, their architecture, the quality assessment procedures applied to determine how they work, and which of these systems offer the best results. The study is focused on the specialised literature produced by translation experts, linguists, and specialists in related fields that include the English-Spanish language combination. Research findings show that neural MT is the predominant paradigm in the current MT scenario, being Google Translator the most used system. Moreover, most of the analysed works used one type of evaluation-either automatic or human-to assess machine translation and only 22% of the works combined these two types of evaluation. However, more than a half of the works included error classification and analysis, an essential aspect for identifying flaws and improving the performance of MT systems.Spanish Ministry of Science, Innovation and Universities (MCIU) RTI2018-093348-B-I00 FPU17/00667Spanish State Research Agency (AEI) RTI2018-093348-B-I00European Commission RTI2018-093348-B-I0

    Hybrid machine translation using binary classification models trained on joint, binarised feature vectors

    Get PDF
    We describe the design and implementation of a system combination method for machine translation output. It is based on sentence selection using binary classification models estimated on joint, binarised feature vectors. By contrast to existing system combination methods which work by dividing candidate translations into n-grams, i.e., sequences of n words or tokens, our framework performs sentence selection which does not alter the selected, best translation. First, we investigate the potential performance gain attainable by optimal sentence selection. To do so, we conduct the largest meta-study on data released by the yearly Workshop on Statistical Machine Translation (WMT). Second, we introduce so-called joint, binarised feature vectors which explicitly model feature value comparison for two systems A, B. We compare different settings for training binary classifiers using single, joint, as well as joint, binarised feature vectors. After having shown the potential of both selection and binarisation as methodological paradigms, we combine these two into a combination framework which applies pairwise comparison of all candidate systems to determine the best translation for each individual sentence. Our system is able to outperform other state-of-the-art system combination approaches; this is confirmed by our experiments. We conclude by summarising the main findings and contributions of our thesis and by giving an outlook to future research directions.Wir beschreiben den Entwurf und die Implementierung eines Systems zur Kombination von Übersetzungen auf Basis nicht modifizierender Auswahl gegebener Kandidaten. Die zugehörigen, binären Klassifikationsmodelle werden unter Verwendung von gemeinsamen, binärisierten Merkmalsvektoren trainiert. Im Gegensatz zu anderen Methoden zur Systemkombination, die die gegebenen Kandidatenübersetzungen in n-Gramme, d.h., Sequenzen von n Worten oder Symbolen zerlegen, funktioniert unser Ansatz mit Hilfe von nicht modifizierender Auswahl der besten Übersetzung. Zuerst untersuchen wir das Potenzial eines solches Ansatzes im Hinblick auf die maximale theoretisch mögliche Verbesserung und führen die größte Meta-Studie auf Daten, welche jährlich im Rahmen der Arbeitstreffen zur Statistischen Maschinellen Übersetzung (WMT) veröffentlicht worden sind, durch. Danach definieren wir sogenannte gemeinsame, binärisierte Merkmalsvektoren, welche explizit den Merkmalsvergleich zweier Systeme A, B modellieren. Wir vergleichen verschiedene Konfigurationen zum Training binärer Klassifikationsmodelle basierend auf einfachen, gemeinsamen, sowie gemeinsamen, binärisierten Merkmalsvektoren. Abschließend kombinieren wir beide Verfahren zu einer Methodik, die paarweise Vergleiche aller Quellsysteme zur Bestimmung der besten Übesetzung einsetzt. Wir schließen mit einer Zusammenfassung und einem Ausblick auf zukünftige Forschungsthemen
    corecore