74 research outputs found

    Machine Learning at Microsoft with ML .NET

    Full text link
    Machine Learning is transitioning from an art and science into a technology available to every developer. In the near future, every application on every platform will incorporate trained models to encode data-based decisions that would be impossible for developers to author. This presents a significant engineering challenge, since currently data science and modeling are largely decoupled from standard software development processes. This separation makes incorporating machine learning capabilities inside applications unnecessarily costly and difficult, and furthermore discourage developers from embracing ML in first place. In this paper we present ML .NET, a framework developed at Microsoft over the last decade in response to the challenge of making it easy to ship machine learning models in large software applications. We present its architecture, and illuminate the application demands that shaped it. Specifically, we introduce DataView, the core data abstraction of ML .NET which allows it to capture full predictive pipelines efficiently and consistently across training and inference lifecycles. We close the paper with a surprisingly favorable performance study of ML .NET compared to more recent entrants, and a discussion of some lessons learned

    PRETZEL: Opening the Black Box of Machine Learning Prediction Serving Systems

    Full text link
    Machine Learning models are often composed of pipelines of transformations. While this design allows to efficiently execute single model components at training time, prediction serving has different requirements such as low latency, high throughput and graceful performance degradation under heavy load. Current prediction serving systems consider models as black boxes, whereby prediction-time-specific optimizations are ignored in favor of ease of deployment. In this paper, we present PRETZEL, a prediction serving system introducing a novel white box architecture enabling both end-to-end and multi-model optimizations. Using production-like model pipelines, our experiments show that PRETZEL is able to introduce performance improvements over different dimensions; compared to state-of-the-art approaches PRETZEL is on average able to reduce 99th percentile latency by 5.5x while reducing memory footprint by 25x, and increasing throughput by 4.7x.Comment: 16 pages, 14 figures, 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI), 201

    Network Traffic Analysis Framework For Cyber Threat Detection

    Get PDF
    The growing sophistication of attacks and newly emerging cyber threats requires advanced cyber threat detection systems. Although there are several cyber threat detection tools in use, cyber threats and data breaches continue to rise. This research is intended to improve the cyber threat detection approach by developing a cyber threat detection framework using two complementary technologies, search engine and machine learning, combining artificial intelligence and classical technologies. In this design science research, several artifacts such as a custom search engine library, a machine learning-based engine and different algorithms have been developed to build a new cyber threat detection framework based on self-learning search and machine learning engines. Apache Lucene.Net search engine library was customized in order to function as a cyber threat detector, and Microsoft ML.NET was used to work with and train the customized search engine. This research proves that a custom search engine can function as a cyber threat detection system. Using both search and machine learning engines in the newly developed framework provides improved cyber threat detection capabilities such as self-learning and predicting attack details. When the two engines run together, the search engine is continuously trained by the machine learning engine and grow smarter to predict yet unknown threats with greater accuracy. While customizing the search engine to function as a cyber threat detector, this research also identified and proved the best algorithms for the search engine based cyber threat detection model. For example, the best scoring algorithm was found to be the Manhattan distance. The validation case study also shows that not every network traffic feature makes an equal contribution to determine the status of the traffic, and thus the variable-dimension Vector Space Model (VSM) achieves better detection accuracy than n-dimensional VSM. Although the use of different technologies and approaches improved detection results, this research is primarily focused on developing techniques rather than building a complete threat detection system. Additional components such as those that can track and investigate the impact of network traffic on the destination devices make the newly developed framework robust enough to build a comprehensive cyber threat detection appliance

    DETECTION OF SOURCE CODE IN INTERNET TEXTS USING AUTOMATICALLY GENERATED MACHINE LEARNING MODELS

    Get PDF
    In the paper, the authors are presenting the outcome of web scraping software allowing for the automated classification of source code. The software system was prepared for a discussion forum for software developers to find fragments of source code that were published without marking them as code snippets. The analyzer software is using a Machine Learning binary classification model for differentiating between a programming language source code and highly technical text about software. The analyzer model was prepared using the AutoML subsystem without human intervention and fine-tuning and its accuracy in a described problem exceeds 95%. The analyzer based on the automatically generated model has been deployed and after the first year of continuous operation, its False Positive Rate is less than 3%. The similar process may be introduced in document management in software development process, where automatic tagging and search for code or pseudo-code may be useful for archiving purposes

    A practical implementation of machine learning in predicting breast cancer

    Get PDF
    Cancer is the leading disease in the world by the increasing number of new patients and deaths every year. Hence, it is the most feared disease of our time. It is believed that lung cancer and breast cancer are most common types of cancer and they both are subtypes of the same group of cancer – carcinoma. With this type of cancer early detection is of great importance for patient survival. As it is the disease that has unfortunately been around for many years, today we have datasets with all necessary information for diagnosing and predicting cancer. Predicting cancer means deciding if the cancer is malignant or benign. The key to this answer lays in different values of parameters that have been stored when the disease was discovered. Machine learning plays the crucial role in predicting cancer, given the fact that algorithms such as Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and etc. are designed to find the pattern that occurs in large sets of data and based on that make a decision. In this paper, author's goal is to see how machine learning and its practical implementation on public datasets can help with early breast cancer diagnosis and hopefully help save more lives
    corecore