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Abstract 

 This project entails the creation of a simplified event log filterer that can be used 

by new threat hunters to the field of threat intelligence. The event log filterer employs 

three filtering options that allow the threat hunter to analyse application, system, security 

and Sysmon logs, which are the most common logs used for hunting for threats. This tool 

was created to allow new users to get to grips with threat hunting without the need go 

through the hundreds of unnecessary logs that Windows Event Viewer collects and 

displays and the array of options that may seem overwhelming to those starting out in this 

field. The tool also analyses Sysmon logs using anomaly spike detection machine learning 

to highlight any logs that may be anomalous and should be investigated further. The idea 

of this is to allow the new threat hunter to pinpoint which Sysmon logs require attention, 

whereas the conventional Windows Event Viewer approach does not afford this anomaly 

detection and is a laborious task to sift through all the logs looking for anomalies, which 

is difficult for experienced hunters, let alone novices. 

Keywords: Anomaly, Events, Detection, Logs, Machine Learning, Threat Hunting 
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1 Introduction 

This research project will necessitate the research, development and creation of an 

integrated cyber threat hunting tool that applies machine learning to enhance cyber threat 

intelligence capabilities. The final deliverable will be a C# .NET program that 

incorporates many diverse and advantageous hunting techniques, tools, and methods in 

one place for security researchers and analysts to use for a more streamlined approach to 

threat detection and hunting.  

Applying machine learning models to these tools, techniques and query processes 

will preferably allow for greater success at hunting APTs (Advanced Persistent Threats) 

in the systems and cut down the current laborious work of threat hunters, which must 

examine vast amounts of logs of data and events daily from multiple diverse sources, 

using an array of different applications. 

Threat hunting in essence is an involved and proactive defence strategy that is 

used by security analysts to detect, isolate, and analyse threats that manage to evade 

through current traditional security systems, such as firewalls, IDSs (Intrusion Detection 

Systems) and IPSs (Intrusion Prevention Systems) (Sqrrl Data, Inc., 2018). This is mainly 

done by analysing IOCs (Indicators of Compromise) on the target infrastructure. These 

IOCs are normally discovered during active hunts or are shared by security researchers 

globally for analysts to employ in their toolsets.  

There are a broad number of techniques and tools that are used in industry to 

conduct threat intelligence hunting presently, and as such, there is no one size fits all 

approach, with different tools, processes and techniques being used for different types of 

perceived threats to the individual or organisation. One organisation may perceive threats 

differently to another organisation based on internal and external factors. Threat hunting 

requires that analysts can detect and then improve on these successful detections to 

develop new processes that can be used on future successful hunts (SANS, 2021). 

This project will begin with the literature review into current research conducted 

in this field and then move onto an evaluation of current techniques, tools and processes 

that are currently used in industry in order to compare and contrast their advantages and 

disadvantages for their specified threat hunting tasks. Currently, many tools are either 

outdated or are not integrated into a single suite or application, which makes threat 

hunting a more difficult and laborious task than it needs to be. Guaranteeing that core 
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threat hunting processes are in a single application allows for greater productivity and 

collaboration of tools for threat analysts.  

Finally, the second half of this dissertation report will discuss the design and 

development phase, as well as the evaluation of the C# .NET integrated program. This 

process also includes the testing of the application against a custom virtual environment 

to measure its performance against currently used tools available to threat analysts.  
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1.1 Project Aim 

The main aim of this dissertation research project is to produce a fully functional and 

integrated threat hunting tool with the C# .NET programming language and framework 

which uses machine learning models to enhance intelligence gathering and analysis 

capabilities further than is currently limited by available open-source tools. 

1.2 Project Objectives 

To ensure that the main research project aim is achieved, there are eight objectives 

specified below that detail how the project will achieve its deliverable: 

• Conduct a literature review to examine what developments and research have 

already been made in the field. 

• Research the different threat hunting tools and understand how they are currently 

used and how effective they are. 

• Analyse current machine learning algorithms and models used by ML.NET. 

• Design and develop a draft program that collects logs and event data from the 

operating system and network. 

• Expand on the program to analyse and categorise the data and IOCs based on the 

MITRE ATT&CK™ (Adversarial Tactics, Techniques and Common Knowledge) 

framework. 

• Use the most effective machine learning algorithms from the program to 

categorise logs and events to determine system baselines and deviations. 

• Tweak the machine learning algorithm in the programme in order to optimise the 

hunting and categorisation results. 

• Test the program in a custom virtual environment by simulating custom APTs and 

standard attacks on a virtualised network infrastructure. 
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1.3 Dissertation Structure 

This master’s dissertation has been organised, excluding the previous chapter; Chapter 1 

– Introduction, into the following key chapters for clarity and convenience of reading:  

Chapter 2 – Literature Review: This chapter covers the background knowledge 

regarding the project and includes introductory theoretical analysis of the current threat 

hunting tools, current research projects and machine learning algorithms, which will be 

expanded on further in Chapter 3. 

Chapter 3 – Theory and Methodology: Presents the main theories of the project and 

analyses their application. Expands on the theories of threat hunting, machine learning 

algorithms used in this project as well as necessary network, log, and event data theory. 

Chapter 4 – Software Design and Development: Covers the steps taken to design, 

implement, and develop the C# .NET integrated threat hunting program using Visual 

Studio 2019. Discusses the stages of development and versioning control using GitHub. 

A detailed breakdown of the creation of the virtual environment will also be covered in 

this chapter. 

Chapter 5 – Analysis: This chapter will cover the results, validation, and testing of the 

program deliverable by critically analysing its effectiveness against a virtual environment 

consisting of APTs and conventional threats. This stage will also cross reference with 

existing tools to evaluate the differences between their use cases, speed and hunting 

success rates. 

Chapter 6 – Evaluation and Conclusion: Includes the project conclusion and lessons 

learnt. Discusses further research that can be carried out regarding this project’s outcomes 

and what could be done to improve on this project.  

Chapter 7 – LSEPI: A thorough discussion of the legal, social, ethical, and professional 

issues within this project and how said issues have been managed or curtailed. 
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2 Literature Review 

A literature review is a research and evaluation conducted into the current literature 

in a given topic and field, which documents the state of the art with regards to the topic 

being researched (Royal Literary Fund, 2019). This literature review will specifically 

look at current research and projects that could be expanded on in this field, as well as an 

overview of the current open-source tools that are used to conduct threat hunting. 

Alongside this, the frameworks which govern the approach and stratagem of threat 

hunting will be analysed, as they are useful in understanding how the program deliverable 

will be designed and developed to be most effective.  

Threat hunting, and the development of hunting tools, has become more and more 

beneficial and necessary for organisations as it allows them to map out adversaries and 

their actions on their infrastructure in the event that traditional security systems such as 

IDSs and firewalls are compromised or fail. In this sense, threat hunting can be considered 

to be a proactive approach to securing company networks and assets by analysing and 

understanding the TTPs (tactics, techniques and procedures) used by hostile threat actors 

to intrude, access, manipulate, obfuscate and exfiltrate data from the network or to 

achieve their specified goal (Xiong, et al., 2021).   

2.1 Current Threat Hunting Research and Projects 

The cyber security field is truly diverse and ever-changing with new discoveries 

and techniques being conceptualised daily. This literature review will therefore home in 

on an exceedingly small aspect of this colossal field by reviewing and analysing research 

and projects that have been conducted mainly with the use of open-source tools within 

the threat hunting and intelligence domain. This literature review will pay little attention 

to industry-standard or open-source tools, as these will be analysed and reviewed in the 

subsequent chapters individually. 

2.1.1 Data-driven threat hunting using Sysmon 

Successful threat hunts all use an assortment of collected system and network data 

in order determine and analyse the threats posed to them. The data that is collected is 

analysed by different tools and processes in order to categorise and prioritise them based 

on the possible modus operandi of the threat actor (Palacín, 2021). With large amounts 

of data being collected constantly, the majority of which is not necessarily useful for 

hunts, and as a consequence, does more harm than good by prolonging and potentially 
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jeopardising the threat hunting process, it is important that appropriate filtering is done to 

limit, sanitise and select the most useful data from these diverse sources.  

One of the main tools used by hunters and administrators alike that is available 

for Windows OSs (Operating System) is System Monitor, also more commonly known as 

Sysmon. The Sysmon service does not provide analysis of data or logs, however, it is a 

service that monitors and logs system activity to the Windows event log. Some of the main 

attributes of Sysmon are that it collects data on network connections, process creations, 

changes to file creation times, loading of drivers and libraries as well as other useful 

records (Garnier & Russinovich, 2021).  

Sysmon has been around since 2014, and is free to download, as it does not come 

pre-installed on Windows OSs as standard, as there is already a basic built-in event logger. 

As stated previously, it does not analyse the data and only collects it, therefore, it is used 

in conjunction with either Windows Event Viewer, SIEM (Security Information and Event 

Management) software or custom code and APIs (Application Programming Interface) 

that can be programmed to dissect and analyse the collected logs and events. With these 

logs it is possible to detect and identify malicious activity taking place on the system as 

well as understanding how the hostile threat actor operates in particular circumstances on 

the network infrastructure where the logs were collected. 

A conference paper published by Jøsang and Mavroeidis (2018), researchers from 

the University of Oslo, discusses the use of Sysmon to create a real-time threat assessment 

system to analyse and classify software based on four devised categories: high, medium, 

low, and unknown threats. This categorisation of software is based on characteristics they 

have identified in the paper, as noted in Table 1 below. 

Threat Level Identified Software Characteristics 

Low Possibly non-malicious software 

Medium Legitimate software but vulnerable/ used by hostile threat actor to perform 

attack 

High Malicious software/ Legitimate or unknown software with relationship with 

malicious IOCs  

Unknown Unknown software without known relationships to threat actors or 

malicious IOCs 

Table 1 – Jøsang and Mavroeidis' (2018) Sysmon software threat level classification 
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 Jøsang and Mavroeidis (2018) also introduce the idea of a CTIO (Cyber Threat 

Intelligence Ontology) that is used in order to support decision making by representing a 

wide array of information such as threat actors, target infrastructure, their objectives and 

goals, their motivations, their TTPs, IOCs and vulnerabilities. This information is used to 

create the diagram (figure 1) that displays the relations and links between them. 

 

Figure 1 – Jøsang and Mavroeidis' (2018) CTIO relationship diagram 

 The main take away from Jøsang and Mavroeidis’ diagram is that it conveniently 

portrays the main relations between the malware that influences the IOCs, which are in 

turn related to the TTPs of the associated threat actor. These TTPs are then extensions of 

the information held within the MITRE ATT&CK™ knowledge base as well as the CVE 

(Common Vulnerabilities and Exposures) and NVD (National Vulnerability Database) 

databases. This diagram also implies that different threat actors use different 

infrastructure and TTPs that could provide knowledge as to who is conducting the attack 

and allows the analyst to pin-point their threat hunting further by targeting and analysing 

specific elements related to the threat actor in particular. 

 The diagram provides a useful reference as to how the threat hunting tool 

deliverable of this project should interact with the resources and logs collected by the 

system infrastructure to maximise its proficiency and overall efficacy. As this project will 

also be looking at how machine learning can assist with the integrated threat hunting 
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process, it will be useful to consider how the threat hunting program created in the 

research paper compares with the final deliverable of this project.  

Further analysis of the inner workings and use cases of Sysmon will be discussed in 

the next chapter of this dissertation (Chapter 3 – Background & Theory), with analysis 

on its effectiveness against the final deliverable being conducted in Chapter 6 – Analysis. 

2.1.2 Learning the Associations of MITRE ATT&CK Adversarial 

Techniques 

The research paper published by Al-Shaer, Christou and Spring (2020) focuses on 

the use of statistical analysis and machine learning on already collected datasets used by 

MITRE ATT&CK to determine the correlations and associations between the techniques 

used by adversarial threat actors. The results from this paper show that hierarchical 

clustering machine learning models have a confidence of 95% in explaining significant 

associations between adversarial techniques (Christou, et al., 2020). They note that 

although the MITRE ATT&CK knowledge base provides ample information on the TTPs 

that a hostile threat actor would use, it is lacking in how those different TTPs are 

combined with each other in order for the attacker to achieve their goal.  

By using machine learning models, they have shown that some technique 

associations can be predicted to help the analyst understand the adversarial behaviour of 

the threat actor based on their mixed usage of multiple TTPs. As of yet, limited research 

has been conducted specifically into the correlation between techniques, and as such, this 

paper provides a great foundation to build upon, specifically using the findings in order 

to produce a machine learning model that can be used against real-time data and log 

gathering services for enhanced threat hunting capabilities.  

There are however limitations outlined in this research paper, the main being that 

the APT and software attacks registered on the MITRE ATT&CK knowledge base are not 

representative of all possible techniques that a threat actor is capable of, and as such, is 

only a small portion of the available open-source data gathered by analysts based on 

already occurred events and incidents. Therefore, it is fairly difficult to surmise and 

determine what techniques were used for specific attacks without the supporting data, 

however, it is still possible to make fairly accurate and useful predictions that can be used 

for more effective threat hunting compared to non-machine learning analysis (Christou, 

et al., 2020).  
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2.2 Frameworks and Knowledge Bases 

Cyber threat hunting tools are inadequate unless there is a solid and continuously 

updated knowledge base for them to reference and utilise. There are various frameworks 

and knowledge bases that are used by analysts to determine and analyse the TTPs that are 

used by threat actors and how those techniques correlate and merge to form effective 

attacks against an individual entity or an organisation’s physical and logical 

infrastructure.  

2.2.1 MITRE ATT&CK 

The most globally used and respected knowledge base to date is MITRE ATT&CK 

that was conceived in 2013. It was designed in order to detail the TTPs and activities that 

attackers and adversaries may use and are capable of carrying out at different stages of 

the cyberattack to achieve their objectives within the victim environment (Palacín, 2021).  

The most important aspect of the MITRE ATT&CK framework is that it provides 

a standardised way for security researchers and analysts alike to describe the supposed 

behaviour of adversaries and threat actors. This allows for the researchers and analysts to 

share their ideas and insights with a more structured approach which overall fosters a 

better understanding of the adversarial behaviours, both between experienced and non-

industry professionals who may be interested.  

The framework is not static, in the sense that it is not immutable, it can and should 

be used to develop and support the building of custom bespoke TTPs based on in-field 

experience and analysis of uniquely observed adversarial behaviours and capabilities. In 

total there are fourteen tactics in this framework that in turn envelop multiple different 

sets of techniques and sub-techniques that a threat actor may use (Palacín, 2021). These 

techniques and sub-techniques describe the threat actor’s and adversaries’ behaviours 

while the tactics represents the goal of the threat actor’s behaviour. Finally, the ‘P’ in TTP 

refers to the procedure, which is the way in which the adversary carries out the specific 

techniques. 

The fourteen tactics used in the MITRE ATT&CK framework are as follows: 

Reconnaissance, Resource Development, Initial Access, Execution, Persistence, 

Privilege Execution, Defence Evasion, Credential Access, Discovery, Lateral Movement, 

Collection, Command and Control, Exfiltration, and Impact. Each of these tactics have 



 

10 

 

numerous techniques that can be used ranging from seven techniques all the way up to 

thirty-nine techniques (MITRE, 2021). 

2.2.2 Cyber Kill Chain 

Both the MITRE ATT&CK and the Cyber Kill Chain frameworks follow the basic 

sequence of the attacker infiltrating, conducting their activities and then exfiltrating from 

the infrastructure, ideally, without getting caught or suspected of any intrusion. The major 

difference between the two frameworks however is that the MITRE ATT&CK framework 

denotes a list of techniques that an adversary may use in any particular order to achieve 

their goals, whereas the Cyber Kill Chain primarily lists the order of operation of an 

adversarial attack without further detail as of how to conduct said attack against a victim 

(Hutchins, et al., 2011). 

The Cyber Kill Chain consists of seven distinct stages that must be completed by 

a threat actor in order for a successful cyber attack to take place. Subsequently, the Cyber 

Kill Chain also allows for system administrators and blue teams to develop an intelligence 

feedback loop which enables them to understand the adversary’s actions at specific stages 

whilst establishing a state of intelligence superiority over the threat actor. This in turn 

enables the defenders to mitigate the likelihood of success for the adversary during any 

future intrusions that may occur (Hutchins, et al., 2011).  

The seven stages of the Cyber Kill Chain are Reconnaissance, Weaponisation, 

Delivery, Exploitation, Installation, C2 (Command and Control), and Actions on 

Objectives. These seven stages can be informally and loosely associated with the fourteen 

tactics used in the MITRE ATT&CK framework as shown below in Table 2.  

Steps Cyber Kill Chain MITRE ATT&CK 

1 Reconnaissance Reconnaissance 

2 Weaponisation Resource Development 

3 Delivery Initial Access 

4 Exploitation Execution 

5 Installation Persistence  

6 C2 Privilege Execution 

Defence Evasion 

Credential Access 

Discovery 

Lateral Movement 

Collection 

Command and Control 

7 Actions on Objectives Exfiltration 

Impact 

Table 2 – Associations between the Cyber Kill Chain and MITRE ATT&CK frameworks 
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2.2.3 Diamond Model   

This model puts emphasis on the characteristics and relationships between four of 

the essential components of threat intelligence analysis, these include: Adversary, 

Capabilities, Infrastructure and Victim vectors. The paper presented by Betz et al. (2013) 

conceptualises this model and in its simplest form is described as “an adversary deploys 

a capability over some infrastructure against a victim”.  

The Adversary vector is the organisation or malignant threat actor responsible for 

carrying out an attack by carrying out a capability against the victim. The Capability 

vector is the tools, techniques and tactics used by the adversary during an attack. The 

Infrastructure vector includes the logical and physical infrastructure, such as the network, 

IP (Internet Protocol) addresses, domain names, emails, websites etc. that are used by the 

threat actor and adversary to deliver the capability. Finally, the Victim is the target, be it 

an organisation or an individual, in which the vulnerabilities are exploited, and the 

adversarial capabilities are enacted against. 

In essence, it can be determined that an intrusion event is defined as how the threat 

actor can demonstrate an attack against a target over an infrastructure using certain 

distinctive capabilities and techniques (Betz, et al., 2013). The diagram pertaining to the 

model that is presented in the paper is shown in figure 2 below. 

 

Figure 2 – The Diamond Model framework for threat hunting 

 Comparable to the Cyber Kill Chain, this model does not represent the TTPs used 

by the adversaries, as is the case with the MITRE ATT&CK framework, but instead maps 

the relations between the four core features of an event. This model allows researchers 

and analysts to build and understand the definite relationships between the four vectors 
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and how said relations act with or are restricted by each other. By doing so, threat analysts 

can understand in greater depth and clarity the intensions and TTPs of the adversarial 

threat actors throughout this process.  
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3 Theory & Methodology 

 This chapter will mainly focus on the theory of threat hunting, networking and 

IOCs, types of attacks as well as the theory behind the machine learning algorithms used 

in the final project deliverable. Furthermore, this chapter will cover the methodology used 

in order to produce the final deliverable including the software and frameworks used. 

3.1 Threat Hunting 

As discussed previously, threat hunting is a proactive and continuous approach to 

searching and analysing cyber threats that are lurking and hiding undetected on the 

network infrastructure. These threats will have bypassed conventional security 

mechanisms and apparatuses such as IDSs, IPSs, anti-viruses, and firewalls and, as such, 

pose a threat to the system and wider infrastructure if they continue to remain undetected. 

It is possible for threat actors and adversaries to remain undetected for many months, 

even years, whilst exfiltrating sensitive data from the organisation even as security 

controls are completely oblivious. A threat actor that successfully penetrates the core 

defences and front lines of the infrastructure and evades detection can be defined as an 

APT.  

The core aim of the threat hunter is to reduce what is known as the dwell time, 

which is the amount of time that passes from when the adversary has breached and 

established themselves within the environment and when the breach has been detected by 

either conventional means or by a human operator (Palacín, 2021). The dwell time can 

range from a few minutes to many weeks, with the average dwell time, according to SANS 

Institute, being more than ninety days, which has dropped considerably since 2013, where 

the average dwell time was reported to be well over six months (Lee & Lee, 2018). The 

following figure 3 illustrates the theoretical timeline from an adversary entering the 

network, being detected by conducting threat hunting and then carrying out the incidence 

response operation for recovery. 

 

Figure 3 – Threat Hunting 'Dwell Time' timeline 



 

14 

 

It is important to note that the struggle to lower the dwell time is continuous, that 

is, the threat actor is going to carry on adapting to the new faster and more advanced 

detection methods employed by the threat hunters and as such improve their infiltration 

and evasion techniques to remain undetected whilst breaching the systems quicker in their 

own right. The majority of organisations and companies lack the required skills, detection 

methods, tools, and personnel necessary to prevent an APT from taking a foot hold on the 

network infrastructure once the adversary has bypassed the defensive boundaries, 

therefore, it is important that threat intelligence and hunting play a hands-on role in the 

defence stratagem of the organisation alongside traditional security approaches and 

procedures.  

Defence in Depth (DiD), which consists of multiple layers of tailored security 

controls protecting key assets, seeks to delay rather than completely prevent an attacker 

from penetrating the network, as there will always be a way inside with new 

vulnerabilities and zero-days being discovered on a daily basis by researchers to state 

actors. This strategy can be relied upon to give time for the threat hunters and analysts to 

detect and analyse the motives as well as the TTPs that the adversaries are currently 

utilising, however, it should not be completely depended upon to entirely defend the 

environment and infrastructure. This is where threat hunting plays a significant role once 

the adversary has bypassed the typical array of defences (Lippmann, et al., 2006). 

3.1.1 Methodologies  

There are numerous different methodologies and approaches to conducting threat 

hunting investigations, each using different parameters and data to carry out the analysis 

of the threats with varying results. Among the many approaches, the three main and most 

commonly used methodologies include the hypothesis driven approach, IoC approach, 

and advanced analytics and machine learning method (Taschler, 2021). 

3.1.1.1 Hypothesis Driven Investigation 

This approach is based on using already collected data from researchers that have 

reported on novel attacks to a knowledge base and other sources to determine whether a 

particular attack, or similar, has occurred within the environment that is under 

investigation. This methodology to threat hunting relies on researchers updating and 

informing the community of the attacks and their behaviours alongside the attackers 

unique TTPs and approaches for a specific attack that has been carried out.  
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The TTPs that are composed and distributed with the community allow the threat 

hunter and investigators to create a hypothesis to identify whether the same TTPs have 

been acted upon within the infrastructure, which could lead to a successful hunt and 

investigation based on the current modus operandi of an active adversary.  

3.1.1.2 IoC Based Investigation 

The IoC based investigation approach is similar to the hypothesis driven 

investigation, however, instead of relying solely on community-based research and 

announcements of a new threat, also known as external sources, to commence a threat 

hunt, the investigation starts centred on the organisation’s threat intelligence data, known 

as internal sources, that have already been conducted as part of the organisation’s 

continuous investigative threat intelligence cycle. 

Threat intelligence can be defined as “evidence-based knowledge, including 

context, mechanisms, indicators, implications and actionable advice, about an existing 

or emerging menace or hazard to assets that can be used to inform decisions regarding 

the subject’s response to that menace or hazard” (Gartner, Inc., 2014). Threat 

intelligence is the collection of data that is processed and then analysed in order to 

understand the adversary’s behaviours, motives, targets, and goals.  

The threat hunter will leverage the analysed data collected from the threat 

intelligence stage to identify IoCs and IoAs (Indicators of Attack) associated with new 

and emerging threats. The IoCs and IoAs are used as triggers that are employed for the 

uncovering of what could be undetected hidden attacks or malicious activity taking place 

on the infrastructure as part of a wider APT. A large volume of IoCs and their 

corresponding data does not necessarily indicate that there is a threat or that a hunt will 

be carried out successfully, therefore, it is important that the threat hunter takes into 

consideration quality over quantity when collecting the data and that the data is relevant 

to the hypothesis posed. 

3.1.1.3 Analytics and Machine Learning Based Investigation 

The final methodology includes the use of both machine learning and data 

analytics to filter through vast amounts of logs and data to detect any abnormalities that 

could predict and indicate if malicious activity is taking place. The machine learning 

algorithms are used in order to learn relations and links between different parameters and 

are also trained to predict the sequencing of novel threat events based on the data of 
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previous events. These algorithms alongside their training data are used in order to create 

trained models that can be used to predict threats and allows the threat hunter to conduct 

further analysis based on the results of the prediction. 

This research project will mainly be focusing on this final methodology and will 

incorporate machine learning techniques into a threat hunting tool that can predict new 

emerging threats based on event logs collected by the computers and central server, where 

the deliverable executable will be residing and running. Reference + Example of real life 

use case. 

3.1.2 Steps and Processes 

There is no standardised universally agreed upon list of steps or processes for 

completing a successful threat hunt amongst specialists in the field, however, there are 

some useful mechanisms that highlight and lay out the iterative process of a threat hunt 

for SOC (Security Operations Centre) teams to follow.  

One of the first processes conceptualised for threat hunting is the ‘Threat Hunting 

Loop’ which contains four iterative steps in a loop that hunters should follow as quickly 

and efficiently as possible to succeed in the hunt (Sqrrl Data, Inc., 2018). The four steps 

are: Hypothesis Creation, Tool and Technique Enabled Investigation, Pattern and TTP 

Discovery, and Advanced Analytics. 

3.1.2.1 The Threat Hunting Loop 

 

Figure 4 – The Sqrrl Threat Hunting Loop 

The first step of the loop devised by Sqrrl is the hypothesis creation. This initial 

step involves the threat hunters devising hypotheses by approximating and making an 
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educated guess as to what sort of activity may be going on in the investigative 

environment. This hypothesis can be built on the intelligence gathered from internal or 

external sources, or both at the same time, by allowing the hunter to generate specific 

hypotheses related to the threats posed specifically to the organisation in question, which 

may be different for different organisations and individuals. The hypotheses that have 

been devised can also be split into further sub-hypotheses that can be analysed 

individually in further depth and more detail. For example, an employee may be at risk 

of being targeted and tracked by state actors if they have recently been abroad, therefore, 

setting up a hunt to determine if their equipment have been compromised would be a 

hypothesis. 

The second stage in this iterative process is the use of investigative tools and 

techniques. This step allows the hunters to propose answers to the hypotheses that have 

been prepared in the first stage using a wide array of data and logs by trying to understand 

and discover the adversaries TTPs for this specific attack or overall adversarial TTPs for 

a multitude of ATPs. These tools will use a variety of techniques such as statistical 

analysis and machine learning by analysing and combining knowledge bases and datasets 

for model learning and creation. 

The third stage involves the hunters uncovering the malicious behaviours and 

patterns that the adversaries are undergoing whilst also trying to determine their TTPs. 

This will involve collaboration between different teams and outside bodies to understand 

the tactics used by adversaries and compare whether similar tactics are being used against 

other organisations. 

Lastly, the fourth stage is the automation and reporting of hunts. There is no reason 

for the SOC team to be repeating the same hunts over and over again that produce the 

same results, therefore, automating these hunts will allow the team to concentrate on other 

activities that are vital for the overall hunting process. These automations can be created 

in many ways, by creating queries to search specific logs of significance, creating scripts 

using different programming languages and tools, as well as using supervised machine 

learning algorithms and providing them with affirmation of an identified pattern of events 

from the successful hunt to learn from to conduct further automated hunts of a similar 

nature in the future.  
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3.2 Windows Event Logs 

Every application on the Windows OS, as well as other OSs, log events such as 

errors or general information that may be useful to the system in the future, be it for 

referencing or reporting errors. These event logs can both be software or hardware events, 

however, with different applications and hardware using their own proprietary error 

reporting and logging, it is not straightforward to merge all of these different formats into 

one reporting system. This is where the event log plays a significant role to standardise, 

categorise and centralise all system logs, from the hardware, software, and the OS itself 

(Microsoft, 2018)  

These Windows event logs can be viewed and examined by the user using the 

Windows Event Viewer administrative tool that is pre-installed with Windows, by using 

PowerShell commands and scripts, or they can also be retrieved by using classes within 

the .NET framework whilst creating a custom application, as is the case with this 

dissertation’s deliverable. 

3.2.1 Windows Event Viewer 

The Windows Event Viewer can be used by administrators to view all application 

and system logs in a structured manner, with options to search and filter based on types, 

categories, sources, level and so on. Not all events that are logged in Windows Event 

Viewer are malicious, such as application crashes or services failing to start, Windows 

will log everything imaginable in order to keep a track of events for future reference or 

troubleshooting.  

The main UI (User Interface) features a rather simple-looking GUI (Graphical User 

Interface), however, it can be quite overwhelming to novice users. The composition of 

the application contains a tree structure in the left pane that lists the different type of log 

categories, such as Application, Security, and System. Clicking on one of these event logs 

will display all those events in the main pane, which includes information such as the 

level, date and time, source, and event ID (also known as instance ID).  

Below the main panel is information regarding the selected event log, such as the 

computer that generated the log as well as a more detailed message of what has happened. 

Finally, the right-most pane includes many buttons for filtering, saving, clearing, and 

refreshing event logs (Hassell & Campbell, 2007). All of these panes have been 

highlighted in figure 5 below.  
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Figure 5 – Windows Event Viewer layout 

3.2.1.1 Event Types 

There are five types of events that the Windows OS can declare and categorise. 

When the piece of software declares an event log, it will also declare the type of event 

that is being reported. Only one event type can be declared per event with the Windows 

Event Viewer displaying different icons for each of the five event types for ease of 

viewing and analysis. The five types of events are: Error, Warning, Information, Success 

Audit, and Failure Audit (Bridge, et al., 2018). Table 3 draws attention to the 

characteristics of the events that are categorised by the OS. 

Table 3 – Windows Event Log Types 

3.2.1.2 Event Sources 

Event sources are subkeys of the event logs and are named after the 

subcomponents of the application that logs the events. Within each event log there are 

multiple sources, such as different applications that are creating each individual log. The 

main event logs are the Application, System and Security logs. The security log is only 

used for system use and requires administrative privileges to access, the system log is 

primarily used for driver logs, while the application log is used for applications and 

Event Type Description and Characteristics 

Error Significant issues such as loss of data, functionality or loading failures.  

Warning Non-significant events but could cause a future issue/problem. An example would 

be low storage space. 

Information Used when an application, service, device, driver etc. is successful in operating its 

defined task. 

Success Audit This type is given to security audit attempts that are successful such as a user logon 

attempt. 

Failure Audit This type is given to security audit attempts that fail such as a logon failure. 
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services to log events (Bridge, et al., 2018). It is also possible for other unique log 

categories to be created to, such as is the case with the third-party created Sysmon logs. 

3.2.1.3 System Monitor (Sysmon) 

The Sysmon service, that is installable from the Microsoft website, remains active 

even after the OS reboots and logs all of its activities to the Windows Event Log. Once it 

has been installed on the log gathering system, normally a server, it has many useful 

capabilities, especially with regards to identifying malicious activity and trying to identify 

the TTPs of a threat actor based on how they are operating across the network 

infrastructure (Russinovich & Garnier, 2021). 

According to Microsoft (2021), Sysmon contains twelve key capabilities that assist 

threat hunters with their investigations, with details of said capabilities outlined in Table 

4. 

Table 4 – Sysmon twelve core capabilities 

The Sysmon events in the Windows Event Viewer are stored within the ‘Application 

and Services Logs/Microsoft/Windows/Sysmon/Operational’ folder of the Event 

Viewer’s folder view in the left-most pane. For clarity across systems and to avoid 

confusion, all Sysmon event logs are logged using the UTC (Coordinated Universal Time) 

The logging of process creation The logging of raw access to disk drives 

and disk volumes. 

Logs the hash of image files using MD5, 

SHA1 and SHA256. 

The logging of network connections such 

as connection source processes, IP 

addresses, port numbers, port names and 

hostnames. 

Multiple different hashes can be used 

simultaneously. 

Identify and detect any changes in file 

creation time to verify creation time. 

Hackers commonly modify file creation 

timestamps to cover the tracks of the 

malware. 

Includes process GUID (Globally Unique 

Identifier) during event creation for events 

that have been denied event IDs. 

The automatic reloading of configurations 

if the registry has changed them. 

Includes session GUIDs for every event 

for correlation between events in the same 

current session. 

The active filtering of events based on 

rules to include or exclude specific events. 

The logging of DLLs (Dynamic-link 

Library) and drivers including their 

signatures and corresponding hashes. 

Can log and capture event logs from the 

early stages of the boot process to log 

activity made by kernel-based malware. 
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time zone, this is especially important if logs are being collected from servers located in 

datacentres or offices in different countries across the globe (Russinovich & Garnier, 

2021). 

Sysmon logs include twenty-seven event IDs (1 through 26 and error ID 255) that 

cover the capabilities detailed in the aforementioned table. The event IDs for Sysmon logs 

can be used in order to filter based on different characteristics and IoCs and are not too 

exhaustive in that they can be categorised with relatively little confusion as to what the 

event is pertaining to. Filtering also allows the hunter to clear a lot of unnecessary noise 

generated by the service that may not be relevant to the investigation. Event ID 255 is an 

error event and occurs solely when there’s a problem with Sysmon, which could occur if 

there is heavy load on the system or if there is a general bug within the Sysmon service 

that is preventing it from working correctly. 

3.3 Indicators of Compromise 

The discovery of IoCs is the main way that threat hunters gather evidence and 

trails as to whether a malicious activity has taken place on the system or network. In 

essence, IoCs act as the trail of artefacts that threat actors leave behind that allow 

hunters to detect early on in the attack if anything malicious is taking place or indicate if 

an attack may take place (Lord, 2020). 

IoCs can be anything that the attacker has left behind during their activity, they 

can be something small such as metadata of files and images, to IP addresses and all the 

way to more complex bespoke malignant code. Threat hunters and analysts alike will 

try to create correlations between all the collected and informative IoCs in order to 

create a pattern by piecing all the parts together to determine the likelihood of an 

incident. 

Similar to IoCs, IoAs will instead focus on artefacts that are generated by an 

attacker whilst an attack is occurring. IoCs can be used in order to determine what has 

happened while IoAs can be used to determine what is currently happening and why. 

Ideally, threat hunts should use both IoCs and IoAs simultaneously to get near enough 

real time analysis of a security incident.  
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3.4 Machine Learning  

This project deliverable will utilise a basic machine learning algorithm in order to 

enhance the threat hunting capabilities of a threat hunter. The machine learning 

algorithm will be using the ML .NET framework specifically for C# applications. This 

machine learning algorithm and model will be incorporated into the main application 

deliverable and will complement the basic event viewer and filter that has been 

implemented using C#. 

The algorithm will be analysed against the Sysmon event logs collected by the 

application on the server and will determine whether an anomaly may be present or not.  

3.4.1 Anomaly Detection using ML.NET 

The machine learning algorithm used in this .NET application is known as a time 

series anomaly detection. This algorithm is used in order to detect anomalies from a large 

dataset of events by determining whether any of the datapoints are unexpected that could 

indicate an unknown attack. The ML.NET library allows for the usage of spike detection, 

which in essence, will indicate to the user and spikes in abnormal behaviour and 

deviations (Microsoft, 2021).  

It is important to note that this time series anomaly detection, unlike some other 

machine learning algorithms, such as supervised approaches, does not need any training 

data, as such, it uses the input data to produce a transform and uses this to produce a data 

schema to create a data view for transformation and prediction. In this sense, the data that 

has been collected from the event logs is the same data that will be analysed for any 

anomalies and spikes, there is no need for any external datasets for training as with 

supervised machine learning algorithms. Time series anomaly detection can be 

considered an unsupervised machine learning approach due to the very nature that it uses 

unlabelled raw data that has no previous classification to determine whether the log is 

anomalous or not based on a baseline and normal system behaviour. 

This unsupervised approach, however, has a few drawbacks in that it cannot know 

for certain, or to a high degree, whether a log is malicious or not, that is not the designed 

intention of this algorithm. Instead, the algorithm will determine whether it is an anomaly 

that deviates from the norm and indicate it as such. The results from this allow the threat 

hunter to analyse these logs that are anomalous further to determine whether there is any 

malicious activity. However, the main reason this unsupervised approach has been 
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selected is that creating or getting a large enough dataset for a supervised model would 

be difficult, time consuming and computationally immense, especially so is the case 

where each network environment and infrastructure set-up is different, with different 

network traffic, activity, and baselines, which would create bias for new unknown data 

that the algorithm would receive, producing unfavourable results (Landauer, et al., 2018). 

Generating a clean dataset for a supervised approach would also require an anomaly-free 

environment, which would be very difficult under most circumstances, as there is always 

traffic and events that could be considered anomalous and abnormal on all computers, be 

they small or large anomalies. 

4 Software Design and Development 

This chapter will explore the software design and development of the C# application 

using Visual Studio 2019, as well as going through the stages taken to set up the VMware 

ESXi lab environment that is used to test the effectiveness of the completed C# application 

deliverable against open-source tools. 

4.1 VMware ESXi Lab Environment 

VMware ESXi is a hypervisor product by the same company that creates VMware 

Workstation Pro. ESXi can be installed on bare metal infrastructure, such as a standalone 

server, or it can also be ran within a VM itself, which is the preferable option for this 

research dissertation as it does not require the purchasing or usage of a physical server. 

The installation process is as straightforward as it is with installing any regular VM using 

an ISO disk image file from the VMware website. 

The lab environment contains multiple machines in order to simulate a small 

company network for purposes of testing the already available hunting tools, as well as 

the project deliverable. In total, the ESXi environment will include one Pfsense firewall 

VM, one Windows Server 2019 VM, two Windows 10 client VMs, and one Ubuntu Linux 

VM. 

4.1.1 Initial Setup 

Running through the installation process takes a few minutes and is self guided, 

however, the online guide provided by VMware is helpful in ensuring that all 

configuration options have been set up correctly1. The ESXi hypervisor VM has been 

 
1 VMware ESXi (2021) available to download at: https://customerconnect.vmware.com/en/web/vmware/evalcenter?p=free-esxi7 

https://customerconnect.vmware.com/en/web/vmware/evalcenter?p=free-esxi7
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designated 8 GB of RAM for use initially, however, this may become a limitation with 

the more resource intensive VMs that are added; therefore, 10 GB of RAM may be 

required. The total amount of available RAM on the PC being used for this research 

project is 16GB, so there is enough prevision available if needed. The amount of disk 

space allocated for the hypervisor VM is 142 GB, this is being used for the hosting of the 

ESXi setup and configuration data, the ISO files on the hypervisor server for creating the 

VMs, as well as the hard disks of the individual VMs.  

Each of the two Windows 10 client VMs have been assigned 15 GB of disk space, 

2 GB of RAM and 2 vCPUs (Virtual Central Processing Unit). One vCPU is roughly 

equivalent to a single physical core on the computer’s CPU (Youngjin, et al., 2011). The 

Windows Server 2019 server VM is assigned 40 GB of storage, 2 GB of RAM and 2 

vCPUs. The requirement for more storage for the server is mandated by Microsoft as it 

contains many more system tools, configurations, an AD DS (Active Directory Domain 

Service), DNS (Domain Name System) and DHCP (Dynamic Host Configuration 

Protocol) servers, and more storage may be needed if the server will be used to host files 

or act as a web server. The Pfsense firewall VM requires the least amount of system 

resources and as such only consumes 8 GB of storage, 1 GB of RAM and 1 vCPU. The 

firewall has no GUI and is command-line only therefore can run on the minimum amount 

of resources that it requires. Finally, the Ubuntu Linux VM uses 10 GB of storage, 2 GB 

of RAM and 2 vCPUs. 

After the provisioning of the ESXi hypervisor within VMware Workstation 15, a 

crucial command is required in order to not provision too much disk space to the 

hypervisor. During first boot of the VM, holding down ‘Shift + O’ will bring up a console 

prompt, entering the value ‘autoPartitionOSDataSize=23841’ will provision 25 GB 

(equivalent to 23,841 Mebibyte) of disk space for the hypervisor while the remainder of 

the 117 GB of storage can be used for the ISO files used for VM creation as well as the 

VM disk storage themselves where the OS will reside. If this command is not used, then 

the hypervisor will consume the majority of the storage provisioned to it in Workstation 

and there will be barely any left-over disk space for the individual VMs to use for 

provisioning. 
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Figure 6 – Main screen of the VMware ESXi web portal 

A new VLAN (Virtual Local Area Network) is created within the ESXi 

environment in order to contain the VMs within a single network. The Pfsence firewall is 

connected to both the new VLAN which is named just ‘VLAN’ and the pre-configurated 

VMware VLAN which is known as ‘VM Network’, this allows the server to talk to all 

local clients that are connected to it as well as accessing the Internet via the firewall. Once 

all the VMs have had their OSs installed it is now required that all the VMs are turned on 

and are running simultaneously.  

 

Figure 7 – VMware ESXi deliverable testing environment network diagram 

4.1.2 Testing Configuration 

In order to verify that the VMs can communicate with each other, it is essential 

that the configuration of the hypervisor is tested by using simple network tests. It is 

possible to verify an established connection between two hosts by using an ICMP 

(Internet Control Message Protocol) echo request, or more commonly known as ping, 

between the two clients (Kahraman & Kocak, 2016). This method should be tested on 
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each VM to verify that they can all communicate and route to each other via the 

Windows Server 2019.  

 

Figure 8 – Pinging and tracert the Pfsense firewall from the Windows Server 2019 

 The ping tool sends and echo request from one host to another with the receiving 

host responding immediately with an echo reply once it has received the ICMP packet. 

If the host is unreachable then the ICMP packets will be dropped, and no echo reply will 

be received by the host initiating the ping. It is also useful to use tracert to verify the 

path and hops made in order to reach the destination IP address. This step is done with 

every VM on the network to verify the routes that they take are according to the 

networking diagram in figure 7. 

The AD DS on the Windows Server 2019 also contains 3,000 users that have been 

created using a fake name generator and custom PowerShell script. The CSV (Comma-

Separated Values) file that was generated has been attached as Appendix A. The CSV 

file contains the following fields so that the AD DS can add those users to the directory 

for use across the network computers: GivenName, Surname, StreetAddress, City, Title, 

Country, and TelephoneNumber. Every user is given the password ‘Password1!’ and are 

prompted and forced to change the password upon first login. These users have been 

added to different security groups in order to emulate a company’s infrastructure with 

some of these users also having administrative privileges. Testing a sample of users to 

verify if they can log in on the two separate Windows 10 client VMs is also past of the 

testing stage to determine if those devices are indeed establishing a connection with the 

AD DS hosted on the Windows Server. The PowerShell script that was used to add the 

users to the AD DS is shown in figure 7 which includes all minimum necessary 

variables required by the server to register a new user. 
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Figure 9 – PowerShell script used to add CSV generated users to AD DS 

4.1.3 Pre-installing required applications 

In order for the deliverable to run on the server, it is required that Sysmon as well 

as EvtxExplorer be installed on the system. EvtxExplorer is an open-source tool 

developed by Eric Zimmerman that parses event log files (evtx) to a standardised CSV 

output2. This CSV file will be used for the anomaly detection stage of the application, 

which requires a CSV file as input for the ML.NET spike detection. 

Once Sysmon has been downloaded and extracted from the Microsoft website, it is 

installed using the following command shown in figure 10 which also starts the Sysmon 

service immediately in the background. The Sysmon service will automatically run 

when the system starts, however, as this is on the server it will be on continuously due 

to the nature of servers rarely shutting down besides for maintenance.  

 

Figure 10 – Installing Sysmon on the Windows Server 2019 VM 

 
2 EvtxExplorer available to download at: https://github.com/EricZimmerman/evtx  

Import-module activedirectory 

$UserList = Import-Csv -Path 'C:\Users\Administrator\Downloads\FakeNameGenerator.csv'  

foreach ($User in $UserList) { 

 $Values = @{ 

 Enabled = $true 

 #Password must be changed as soon as the user logs in for the first time 

 ChangePasswordAtLogon = $true 

 Path = "OU=$($User.Country),OU=Users,OU=LAB-ENVIRONMENT,DC=southwales,DC=ac,DC=uk" 

 #Sets the user's names and username for logging in 

 Name = "$($User.GivenName) $($User.Surname)" 

 UserPrincipalName = "$($User.GivenName).$($User.Surname)@southwales.ac.uk" 

 Email = "$($User.GivenName).$($User.Surname)@southwales.ac.uk" 

 SamAccountName = "$($User.GivenName).$($User.Surname)" 

 Title = $User.Title 

 GivenName = $User.GivenName 

 Surname = $User.Surname 

 #Sets the City, Occupation, Country and phone number of the user 

 City = $User.City 

 StreetAddress = $User.StreetAddress 

 OfficePhone = $User.TelephoneNumber 

 Country = $User.Country 

 #Password is set to 'Password1!' for all users until login where they have to change it 

 AccountPassword = "Password1!" | ConvertTo-SecureString -AsPlainText -Force 

 } 

 New-ADUser @Values 

} 

https://github.com/EricZimmerman/evtx
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 The EvtxExplorer application does not need installing and is used as a standalone 

executable. A detailed explanation of how this application is used in conjunction with the 

deliverable is illustrated in chapter 4.2.3.3 of this dissertation. 

4.2 C# .NET Threat Hunting Application 

The C# application consists of different features that will assist a threat hunter in 

their role of carrying out a hunt on event logs. The core foundation of the application 

mainly features the event viewer with basic event type, source, and instance ID filtering 

capabilities. The hypothesis is that this event log viewer will be faster than the 

standalone Windows Event Viewer used currently as it does not need to load in all logs 

that may be unnecessary for a threat hunter. The secondary functionality of the 

application includes the machine learning aspect where the filtering can be used against 

a machine learning model to detect any anomalies that may occur in the logs of the 

Sysmon event logs in particular. Any anomalies detected by the machine learning 

algorithm will be highlighted to the user for further analysis. 

4.2.1 Initial Layout and Design 

The C# application consists of a basic Winforms GUI that features a menu bar, 

tool strip with various options, the main event log data grid view and a progress bar 

anchored towards the bottom of the form. 

  

Figure 11 – Basic GUI layout for the primary WinForms deliverable application 

 The user can access the Windows Event Viewer and Performance Monitor directly 

from the main application as well as being able to filter based on type, source, and instance 

ID of the event they are trying to query. The event logs for that particular query will be 

displayed in a DataGridView in the lower three-quarters of the UI. Double-clicking on 

cells within the UI allows the user to view more information as well as auto-populating 
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the filter boxes in the tool strip for ease of convenience for the next filter they may want 

to conduct.  

 The second form within this application is the machine learning form. This form 

will be used in order to gather the Sysmon CSV file created using the EvtxExplorer 

application on the target infrastructure while processing and analysing it using the spike 

detection time-series anomaly detection algorithm. The results of the analysis are 

displayed in a similar format to the event logs retrieved in the main form, however, a final 

column ‘Anomaly Detected?’ will denote whether the algorithm believes an anomaly 

exists for that particular log or not. 

4.2.2 Visual Studio and GitHub Setup 

The Visual Studio version used for this application is Visual Studio Community 

2019 which includes the necessary tools to create an interactive GUI with the backend 

code to conduct the event log collection and analysis. For this application to work, there 

are a few libraries that need installing. The installation of the libraries can be done via the 

in-build NuGet Package Manager which keeps track of the versions and whether any 

updates are required to keep the application safe and up to date. The NuGet libraries 

required for the machine learning element of this application are: 

• Microsoft.ML 

• Microsoft.ML.CpuMath 

• Microsoft.ML.DataView 

• Microsoft.ML.Mkl.Redist 

• Microsoft.ML.TimeSeries 

The aforementioned frameworks contain the necessary classes, components and 

dependencies needed for the machine learning algorithms to work. The 

Microsoft.ML.TimeSeries specifically contains the algorithms for the anomaly detection 

whilst the other packages contain the core functionality of machine learning. 

A GitHub repository, which is used for software development and version control, 

was also set up for this project in order to track changes and issues with ease. The 

repository allows for recovery of files in case of any bugs that may occur further down 

the line and keeps a record of the progress made. Not all saves are uploaded to the GitHub 

repository, but significant milestones are saved locally and are then committed and 

pushed to the repository. By using GitHub, it also allows for the source code to be shared 

with the public and is downloadable by anyone who has the correct access. 
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4.2.3 Core Functionality 

This section is split into three parts in which the application functionality is 

outlined: the creation of the Windows Event Logs filterer and viewer, the addition of the 

Sysmon logs being collected to the filterer and viewer, and finally the implementation of 

the machine learning algorithm in the second form using Sysmon. Each section will cover 

aspects of the design and development of these core functionalities; however, this section 

is not exhaustive to the whole application. The source files for the application are 

available on GitHub for further analysis of the C# code which includes detailed comments 

for each functionality. The link for the source code is available at Appendix B.  

4.2.3.1 Processing of Windows Event Logs 

In order for the application to collect logs, it is required that the threat hunter use 

the filters provided in the tool strip to narrow down the search criteria. The reason these 

filters were chosen in this way is that they only allow the logs that the threat hunter 

requires to be loaded instead of loading all possible, often unnecessary, logs specifically 

for the hunt. The user can select the type of log: Application, System, Security and 

Sysmon, which will then auto populate the ‘Source’ filter based on the sources that those 

event logs are attached to.  

The application iterates through the event logs of that type and will gather the 

sources and add them to the ‘Source’ filter upon the ‘Type’ filter being closed. This 

process takes a few seconds as it is an iterative step. There is no need for the user to use 

a source, however, this will narrow down the query and produce results faster and more 

focused. Finally, the last filter ‘Instance ID’ takes a numerical value which correlates to 

the event ID of an event log. This ‘Instance ID’ filter provides a more granular search to 

the query which in total provides three ways of retrieving event logs. As with the source 

filter, there is no requirement to set an instance ID for a query to take place.  

Once the values for the filters have been set, the user can then press the ‘filter’ 

button to the right of the ‘bin’ button that will gather the latest event logs of that type, as 

well as source or instance ID if they have been set. This process takes a few moments and 

may take up to and over a minute in cases where there are many thousands of logs being 

queried. An example of the search process and subsequent populated results are shown in 

figure 12. 
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Figure 12 – Deliverable application showing event logs that have been filtered 

 Within the DataGridView, where the event log results are shown, it is possible to 

click on the cells for further functionality. Double-clicking on the ‘Log No’ will display 

further information about the log which cannot be stored within the table due to its length, 

while double-clicking on an ‘Instance/Event ID’ or ‘Source’ cell will auto populate the 

filter textbox with its value for the next search respectively. An example of the detailed 

information shown to the user after double-clicking a ‘Log No’ cell for a particular event 

log is outlined in figure 13. 

 

Figure 13 – Deliverable application showing more information for the specified event log 

 This simplified approach to filtering based on three variables provides new users 

and novices to threat hunting with a great opportunity to learn and discover the art of the 

field without being overwhelmed with logs and an array of different options in tools such 

as the Windows Event Viewer, which hasn’t had any considerable upgrades, especially to 

its UI and UX (User Experience) since Windows Vista (Petri, 2009). 



 

32 

 

The instance ID filter contains necessary try/catch exception handlers as it is a 

source of user input. If an instance ID of the user specified filter value does not exist, 

then the program will throw and error message detailing that no such value exists. 

Alternatively, if a user inputs a non-numerical value into the filter, then another error 

message will display stating such. The error messages produced by the application in 

these instances are in figure 14.  

       

Figure 14 – Non-existent and non-numerical Instance ID error messages 

4.2.3.2 Processing of Sysmon Logs 

On the surface, the Sysmon logs appear to be collected in the same way. However, 

there are a few dissimilarities on how and what is possible with the Sysmon filtering. 

Firstly, it is only possible to filter Sysmon logs based on the event ID as Sysmon event 

logs do not contain any sources as they are their own source from the Sysmon service 

being utilised to produce the logs.  

Secondly, in order to collect non-Windows event logs, such as those by third 

parties as is the case with Sysmon, it is required to use the EventLogQuery class as 

opposed to the EventLog class that was used for retrieving Application, System and 

Security logs. In this sense, it was required to create a separate method for collecting 

Windows and non-Windows (Sysmon) logs.  

A comparison between EventLog and EventLogQuery is shown in figure 15 

below. 

 

Figure 15 – Comparison between EventLog and EventLogQuery classes for retrieving logs 
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 As with the Windows logs, it is also possible for the threat hunter to double-click 

on the cell of the ‘Log No’ for Sysmon logs and retrieve further information regarding 

that particular event. All the log messages for each filter iteration and stored in a 

List<string> using and are then accessed when the user double-clicks on the cell as 

highlighted in figure 16.  

The pop-up message which retrieves the string from the logMessage list contains 

information such as what sort of event is it (such as process creation, network creation, 

process access, driver loaded etc.), the time the event was logged, the unique GUID of 

the process, name of the file name executed, hashes as well as a description among other 

interesting features valuable to a threat hunter. 

 

Figure 16 – Sysmon log showing more event information when double-clicked 

 The logs upon being filtered to the DataGridView are automatically hardcoded to 

be sorted by the time stamp hence, in figure 16, the last log number is shown first as it 

was the latest Sysmon event log of event ID 1 – Process Creation to be logged to the .evtx 

file. 

4.2.3.3 Sysmon Machine Learning Anomaly Detection 

The final section of the deliverable application is the use of anomaly detection to 

identify anomalous activity within the Sysmon events. The GUI of this form follows a 

very similar design as the event log retriever form covered in sections 4.2.3.1 and 4.2.3.2, 

however, there are notable features that are missing or have been added. Firstly, this 

window will only allow for the collection and analysis of Sysmon logs for this proof-of-

concept. Secondly, the user must supply the CSV file using an external open-source tool. 

Thirdly, the filtering textboxes have been removed as they are not applicable for this 

section of the application. 
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The reason why this proof-of-concept deliverable has solely concentrated on the use 

of Sysmon logs for analysis is that allowing all logs to be analysed for a proof-of-concept 

would be exhaustive and would take a long time to implement correctly without any 

mistakes. The Sysmon logs only consist of twenty-six different events that can ever be 

logged, making the collection and analysis process much more straightforward. It is 

important to note however that although Sysmon only collects twenty-six events, it 

provides a lot of important information, especially for anomalous activity detection 

(Garnier & Russinovich, 2021). The majority of the time however, the most common logs 

that are collected for Sysmon are event IDs 1 – Process Creation, 3 – Network Connection 

and 5 – Process Terminated with the occasional error with event ID 5. 

The threat hunter is required to use the previously mentioned tool, EvtxExplorer, to 

parse the .evtx event log files to the readable CSV format. The anomaly spike detection 

within ML.NET requires that the format be CSV and that there be two columns. This is 

part of the data processing stage required before using any machine learning algorithm. 

It is important that data is sanitised and of the correct format, this can be done by hand or 

within the program. Once the user presses the tool strip CSV button, as shown in figure 

17, the application will run a sequence of events to collect, analyse and print the results, 

including any anomalous results, to the DataGridView. 

 

Figure 17 – GUI layout for the machine learning window of the WinForms deliverable application 

 The threat hunter can create a CSV of the Sysmon event logs by going to the 

directory of the EvtxExplorer executable and executing the following command in figure 

18. This command was executed on the server in order to create the CSV file necessary 

for the deliverable application to process where -f is equal to the location of the Sysmon 



 

35 

 

.evtx log file, --csv is equal to the full path of the location to save and –csvf is equal to 

the name of the CSV file to save (Elshaer, 2020). 

 

Figure 18 – Generating a CSV file on the server using EvtxExplorer 

The user can use this newly created and up-to-date CSV file to pass it into the 

application by pressing on the CSV button on the machine learning form. The user will 

be prompted to select the CSV file with an OpenFileDialog which will store the CSV 

contents in a variable called csvFileName. 

 

Figure 19 – Populated anomaly analysis results with Sysmon spike detection 

 The ‘Anomaly Detected?’ column will highlight if there is an anomaly detected 

by the algorithm, however, this is not to say that there is any malicious activity taking 

place, just that the logged event has deviated from the norm and required further human 

analysis. In order to use the Microsoft.ML.TimeSeries algorithms, in particular, Spike 

Detection, it is required that two classes are created: SysmonData and SysmonPrediction. 

Spike Detection requires a time series input data class to store the values of the CSV to 

be analysed (Alexander, et al., 2020). Within the SysmonData class are two properties: 

public string TimeCreated, and public float EventID. This algorithm only takes one input, 

which in this case will be the Event ID. This input is contrasted against the time stamp to 

predict anomalies. No other variables are used in calculating the anomaly, and as such, 
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this is a fairly straightforward algorithm containing only two features. Data preprocessing 

also occurs here, where the program will only select those two columns values and will 

convert the integer to a float, which is needed for this particular algorithm. 

 The second class, SysmonPrediction, contains a double array that stores the 

prediction results from the algorithm later as an object for adding to the DataGridView 

for viewing. Every machine learning project using ML.NET requires something which is 

known as an MLContext, which is a class that once instantiated allows for data 

preparation, feature engineering, training, prediction, analysis, and evaluation of the 

machine learning model among other things within its own environment (Microsoft, 

2021). The data that is retrieved from the CSV file is stored and loaded as an IDataView 

interface, which is an efficient method of portraying tabular data for the algorithm to use. 

 Once the data has been stored in the interface, the application creates an empty 

DataView alongside the one which has the data, as it is used to create the schema for the 

model fitting. Model fitting is a measure used to determine how well a machine model 

matches real-world data (Khan & Jabbar, 2015). With all of the preparation mainly done 

to the variables and interfaces, the DetectSpike method is created which uses the 

aforementioned data to train the model on the same data that will be analysed. A transform 

is then made, which makes the CSV data useable and useful by joining it together, making 

it dimensionally modelled and de-normalised before prediction (Chan, 2019). This 

transformed data is then used to create a strongly typed IEnumerable called predictions 

that will store the results. The results stored in predictions includes the alert, score/Event 

ID and the P-Value. The alert is used to indicate whether a spike is at this event log, and 

is denoted by a 1 or 0, 1 being a spike. The score/Event ID will display the numerical 

value of the event ID while the P-Value will display the probability of an anomaly. The 

closer that this value is to 1 the likelihood that the entry is not an anomaly, where an entry 

nearer to 0 would indicate a higher probability of being an anomaly. The p-value is 

calculated by using the following equation: 

𝑝𝑉𝑎𝑙𝑢𝑒 = 1 −
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

100
 

Equation 1 - pValue prediction of an anomaly 

 Confidence in this equation is defined as the signatured produced by the spike 

estimator that predicts the anomaly spikes. In this program, the confidence has been set 
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to 95, which means that the model requires a high degree of confidence before deciding 

and making the call if the event log is a spiked anomaly or not. Lowering this value would 

produce more spikes, therefore, it is good to tune the value depending on how many 

anomalies are being detected, that are known not to be anomalies.  

 Once the prediction has been made, the results are iterated through and are 

displayed to the DataGridView. The code for doing this is shown in figure 20 below. 

 

Figure 20 - Iterating through predicted results and displaying logs with anomalies to DataGridView 

5 Analysis  

There are a few tests that will be carried out in order to verify the effectiveness of the 

deliverable. The first test is to check the speed of the deliverable in retrieving logs from 

the event log and comparing its time with the native Windows Event Viewer.  

The first test will run five times, opening Windows Event Viewer, searching for 

Sysmon, sorting by Event ID and then repeating by closing the application and trying 

again. Then the deliverable application will do the exact same test. This test will measure 

the efficiency of lowering the dwell time, that is, which application can load the logs the 

fastest for the quickest analysis by a human threat hunter. 

Running Windows Event Viewer five times and opening Sysmon via the folder tree 

takes around 2s to filter from lowest to highest Event ID on average. The same test with 

the deliverable takes around 5s to filter those logs based on lowest to highest Event ID on 

average. There is a slightly disappointing result in that the deliverable application takes 

longer than the Windows Event Viewer to load Sysmon results, however, this is not the 
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case for Application, System and Security event logs where the loading time is around the 

same or even faster in some cases. This is also dependent on the resources being currently 

consumed by the computer doing the task. This could also be due to the fact that the 

deliverable has not been compiled fully into an executable prior to testing. The same logs 

are loaded by both the Windows Event Viewer and the deliverable. The deliverable 

requires a single double-click to view all the log’s descriptions and messages, whereas 

the standard Windows Event Viewer requires the user to scroll down to view more details 

about the log in question. 

Windows Event Viewer does not include an anomaly detector, and as such, cannot be 

compared to the system build in the deliverable to detect Sysmon anomalies. The user 

using the conventional approach would have to scroll through all the logs and determine 

whether an anomaly may be taking place, this increases the dwell time and the time the 

attacker has to carry out their APT and attacks. The deliverable highlights which logs 

have an anomaly, and can be incorporated with the Windows Event Viewer to verify those 

specific logs with more detailed information. 

Due to the very nature of this novel Sysmon log analyser using anomaly spike 

detection, there is no way to compare it against an existing tool that is available to the 

public, as such a tool does not exist in the current domain for Sysmon logs in particular. 

However, ELK using Ubuntu was also used to determine how practical it is to analyse 

Sysmon logs versus the anomaly detection provided by the deliverable. ELK is a logging 

tool for search and analysis which can ingest data from multiple sources.  

The advantage of this deliverable is that it can accompany both Windows Event 

Viewer, ELK and other SIEMs to enhance the intelligence capabilities of a new threat 

hunter who has entered the field. The tool can be used as the first stop of a training threat 

hunter to understand logs, how they work, how they are sequenced and if there are any 

anomalies that could be present. ELK is incredibly complicated and contains many 

configurations, which is mainly used for large infrastructures and networks. ELK would 

be an overkill for many threat hunts where the network environments only contain a few 

computers. 
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6 Evaluation and Conclusion 

The event log collector and analyser created in this dissertation is great tool for 

newcomers to cyber threat hunting to understand the basic ideas and principles behind 

the techniques used for log collection and analysis. The tool provides novices to threat 

hunting with a way to analyse these logs in a visually appealing format without too much 

distraction from excessive options and numerous other miscellaneous logs that have no 

bearing on threat hunting. This application acts as a first-step for new threat hunters and 

can be used for training new SOC team members or those completely new to cyber or 

computing. The application that has been created limits the logs that are collected to the 

3 core Windows logs as well as the custom Sysmon logs. These are the 4 main log sources 

that a threat hunter should be utilising and having them all in one place for quick analysis 

without having to worry about complicated filtering is a great tool for anyone starting off 

in the field. The usage of anomaly detection for determining spikes of anomalous logs in 

the Sysmon event logs is a powerful feature that will lower the dwell time of threat hunts 

by point threat hunters in the right direction towards which logs should be analysed and 

given priority before others. 

With every project, however, there are limitations and lessons learned. The main 

limitation with this project is time. The time constraints put on this project does not allow 

for it to grow to its full potential if it had much longer to develop. The Sysmon anomaly 

detection uses a basic machine learning algorithm only and will not notify if a log is 

malicious or not, only anomalous. This is very useful, however, a longer development 

time could allow for more advanced machine algorithms to be utilised and adapted. It 

could also be possible for deep learning algorithms to play a substantial role in this 

application. Due to the very nature of machine learning needing large datasets to work at 

its most effective, another limitation with this approach is that the computing power to 

analyse in real-time the Sysmon logs of a larger environment from a commercial computer 

sold to the public is limiting and would require immense deep learning computational 

power the likes of only large corporations have. This application will continue to be 

developed on with time, more features will be added, more analysis will be made on non-

Sysmon logs with different machine learning techniques and hopefully with more time 

this application can become a practical learning and instructional tool for teaching the 

techniques of threat hunting to a new audience with little experience. 
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7 LSEPI 

For every research project, the Legal, Social, Ethical and Professional Issues 

(LSEPI) need to be discussed and addressed prior to conducting any studies. In some 

cases, there may not be any issues whatsoever, however, it is vital that all consideration 

is given in determining whether there are any LSEPI problems that may arise that need 

managing, no matter how small they are. The next 4 subchapters will discuss what issues 

this project will be dealing with and how those issues can be alleviated. 

 

7.1 Legal 

There are some legal aspects regarding this research project that needs addressing. 

In the UK, computer professionals are bound by legislation, guidelines and standards 

which must be adhered to. This research project will mainly need to comply with the 

Computer Misuse Act 1990 (CMA 1990), Data Protection Act 2018 (DPA 2018) and the 

General Data Protection Regulation (GDPR). Besides legislation, frameworks and codes 

of conduct of the British Computer Society (BCS) must also be followed, however, this 

can also be considered as part of the Professional aspect of LSEPI.  

This project requires that data be used to test and analyse the effectiveness of the 

threat hunting programme that will be created against data logs and events. The data 

collected will be subject to the DPA 2018 as it may contain sensitive information such as 

names, addresses, websites etc, however, upmost attention has been taken to ensure that 

all data is pseudonymised before use in the project. Open-source datasets are used by 

threat hunters in order to simulate hunts and are therefore pseudonymised out-of-the-box. 

This project will also explore creating personalised threats and attack data logs and events 

using a virtual machine (VM) over a virtual network. This virtual network will be locked 

down from the internet and external network and will only be used for carrying out attack 

simulations in order to test and evaluate the program deliverable. 

The CMA is also valid in this project as there must not be any unauthorised access, 

unauthorised access with intent to commit further crime or unauthorised modification to 

computers or networks during this research (Computer Misuse Act, 1990). There will be 

no unauthorised access or modification to any computer or network besides the 

modification conducted within the VMs themselves, which will be disconnected from the 

internet and cannot inadvertently harm other network users. The utmost care must be 

taken to ensure that the necessary legislation is adhered to, however, the case of breaking 
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any legislation in this research project is minimal due to the closed nature of the work 

which won’t be exposed to anybody besides those working closely on the project. 

While writing the report as well as conducting research, all care must be taken to 

ensure that all sources are referenced correctly. This is to prevent any accusations of 

plagiarism as well as adhering to the Copyright, Designs and Patents Act 1988 while 

using other organisations or peoples work. 

7.2 Social 

Due to the nature of this project, there will be minimal social interaction compared 

to other projects i.e. there will be no surveys nor questionnaires collected with personal 

information.  

7.3 Ethical 

During this research, there must be no bias presented towards any authors, 

researchers, lecturers or organisations that have produced articles, journals or research 

papers. All material and sources must be treated fairly and critically analysed to remove 

any underlying bias from them. As mentioned above, data will be anonymised during 

collection and storage and will not be shared with third parties without prior consent by 

said individual.  

7.4 Professional 

The research project will adhere to the guidelines and codes of ethics, practice and 

conduct set out by the BCS and other relevant bodies.  
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9 Appendices 

Appendix A – AD user creation CSV file (FakeNameGenerator.csv) 

Appendix B – GitHub source code (https://github.com/joshua-richards/Integrated-

Threat-Hunting-Tool) 

https://github.com/joshua-richards/Integrated-Threat-Hunting-Tool
https://github.com/joshua-richards/Integrated-Threat-Hunting-Tool

