

An Integrated Cyber Threat Hunting Program

Applying Machine Learning for Enhanced Intelligence

Capabilities

By

JOSHUA THOMAS RICHARDS

17025745

Supervised By

DR RICHARD WARD

A dissertation submitted in partial fulfilment

 of the requirements of the degree of

MSc Computer Systems Security

University of South Wales | Prifysgol De Cymru

Faculty of Computing, Engineering and Science

9th of September 2021

Word Count: 14,728

i

STATEMENT OF ORIGINALITY

This is to certify that, except where specific reference is made, the work
described within this project is the result of the investigation carried out by
myself, and that neither this project, nor any part of it, has been submitted in
candidature for any other award other than this being presently studied.

Any material taken from published texts or computerised sources have been
fully referenced, and I fully realise the consequences of plagiarising any of
these sources.

Student Name (Printed) JOSHUA THOMAS RICHARDS

Student Signature J. Richards

Registered Course of Study MSc Computer Systems Security

Date of Signing 09/09/2021

ii

Abstract

 This project entails the creation of a simplified event log filterer that can be used

by new threat hunters to the field of threat intelligence. The event log filterer employs

three filtering options that allow the threat hunter to analyse application, system, security

and Sysmon logs, which are the most common logs used for hunting for threats. This tool

was created to allow new users to get to grips with threat hunting without the need go

through the hundreds of unnecessary logs that Windows Event Viewer collects and

displays and the array of options that may seem overwhelming to those starting out in this

field. The tool also analyses Sysmon logs using anomaly spike detection machine learning

to highlight any logs that may be anomalous and should be investigated further. The idea

of this is to allow the new threat hunter to pinpoint which Sysmon logs require attention,

whereas the conventional Windows Event Viewer approach does not afford this anomaly

detection and is a laborious task to sift through all the logs looking for anomalies, which

is difficult for experienced hunters, let alone novices.

Keywords: Anomaly, Events, Detection, Logs, Machine Learning, Threat Hunting

iii

Contents

Abstract ... ii

List of Abbreviations and Acronyms ... v

List of Figures .. vi

List of Tables .. vii

List of Equations .. viii

1 Introduction ... 1

1.1 Project Aim .. 3

1.2 Project Objectives .. 3

1.3 Dissertation Structure .. 4

2 Literature Review .. 5

2.1 Current Threat Hunting Research and Projects ... 5

2.1.1 Data-driven threat hunting using Sysmon ... 5

2.1.2 Learning the Associations of MITRE ATT&CK Adversarial Techniques 8

2.2 Frameworks and Knowledge Bases ... 9

2.2.1 MITRE ATT&CK .. 9

2.2.2 Cyber Kill Chain ... 10

2.2.3 Diamond Model .. 11

3 Theory & Methodology ... 13

3.1 Threat Hunting ... 13

3.1.1 Methodologies .. 14

3.1.1.1 Hypothesis Driven Investigation ... 14

3.1.1.2 IoC Based Investigation .. 15

3.1.1.3 Analytics and Machine Learning Based Investigation 15

3.1.2 Steps and Processes .. 16

3.1.2.1 The Threat Hunting Loop .. 16

3.2 Windows Event Logs ... 18

3.2.1 Windows Event Viewer .. 18

3.2.1.1 Event Types ... 19

3.2.1.2 Event Sources .. 19

3.2.1.3 System Monitor (Sysmon) .. 20

3.3 Indicators of Compromise.. 21

3.4 Machine Learning .. 22

3.4.1 Anomaly Detection using ML.NET ... 22

iv

4 Software Design and Development ... 23

4.1 VMware ESXi Lab Environment .. 23

4.1.1 Initial Setup .. 23

4.1.2 Testing Configuration ... 25

4.1.3 Pre-installing required applications .. 27

4.2 C# .NET Threat Hunting Application .. 28

4.2.1 Initial Layout and Design ... 28

4.2.2 Visual Studio and GitHub Setup .. 29

4.2.3 Core Functionality .. 30

4.2.3.1 Processing of Windows Event Logs.. 30

4.2.3.2 Processing of Sysmon Logs .. 32

4.2.3.3 Sysmon Machine Learning Anomaly Detection 33

5 Analysis ... 37

6 Evaluation and Conclusion.. 39

7 LSEPI .. 40

7.1 Legal .. 40

7.2 Social ... 41

7.3 Ethical .. 41

7.4 Professional .. 41

8 References ... 42

9 Appendices .. 45

v

List of Abbreviations and Acronyms

AD DS Active Directory Domain Service

API Application Programming Interface

APT Advanced Persistent Threat

ATT&CK Adversarial Tactics, Techniques and Common Knowledge

C2 Command and Control

CTIO Cyber Threat Intelligence Ontology

CVE Common Vulnerabilities and Exposures

DiD Defence in Depth

DLL Dynamic-link Library

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

GUI Graphical User Interface

GUID Globally Unique Identifier

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IoA Indicator of Attack

IoC Indicator of Compromise

IP Internet Protocol

IPS Intrusion Prevention System

NVD National Vulnerability Database

OS Operating System

SIEM Security Information and Event Management

SOC Security Operations Centre

Sysmon System Monitor

UI User Interface

UTC Coordinated Universal Time

vCPU Virtual Central Processing Unit

VLAN Virtual Local Area Network

vi

List of Figures

Figure 1 – Jøsang and Mavroeidis' (2018) CTIO relationship diagram 7

Figure 2 – The Diamond Model framework for threat hunting 11

Figure 3 – Threat Hunting 'Dwell Time' timeline .. 13

Figure 4 – The Sqrrl Threat Hunting Loop... 16

Figure 5 – Windows Event Viewer layout ... 19

Figure 6 – Main screen of the VMware ESXi web portal .. 25

Figure 7 – VMware ESXi deliverable testing environment network diagram (NEEDS

UPDATING) .. 25

Figure 8 – Pinging and tracert the Pfsense firewall from the Windows Server 2019 26

Figure 9 – PowerShell script used to add CSV generated users to AD DS 27

Figure 10 – Installing Sysmon on the Windows Server 2019 VM 27

Figure 11 – Basic GUI layout for the primary WinForms deliverable application 28

Figure 12 – Deliverable application showing event logs that have been filtered 31

Figure 13 – Deliverable application showing more information for the specified event

log ... 31

Figure 14 – Non-existent and non-numerical Instance ID error messages..................... 32

Figure 15 – Comparison between EventLog and EventLogQuery classes for retrieving

logs ... 32

Figure 16 – Sysmon log showing more event information when double-clicked 33

Figure 17 – GUI layout for the machine learning window of the WinForms deliverable

application .. 34

Figure 18 – Generating a CSV file on the server using EvtxExplorer 35

vii

List of Tables

Table 1 – Jøsang and Mavroeidis' (2018) Sysmon software threat level classification ... 6

Table 2 – Associations between the Cyber Kill Chain and MITRE ATT&CK

frameworks ... 10

Table 3 – Windows Event Log Types .. 19

Table 4 – Sysmon twelve core capabilities .. 20

viii

List of Equations

Equation 1 - pValue prediction of an anomaly ... 36

1

1 Introduction

This research project will necessitate the research, development and creation of an

integrated cyber threat hunting tool that applies machine learning to enhance cyber threat

intelligence capabilities. The final deliverable will be a C# .NET program that

incorporates many diverse and advantageous hunting techniques, tools, and methods in

one place for security researchers and analysts to use for a more streamlined approach to

threat detection and hunting.

Applying machine learning models to these tools, techniques and query processes

will preferably allow for greater success at hunting APTs (Advanced Persistent Threats)

in the systems and cut down the current laborious work of threat hunters, which must

examine vast amounts of logs of data and events daily from multiple diverse sources,

using an array of different applications.

Threat hunting in essence is an involved and proactive defence strategy that is

used by security analysts to detect, isolate, and analyse threats that manage to evade

through current traditional security systems, such as firewalls, IDSs (Intrusion Detection

Systems) and IPSs (Intrusion Prevention Systems) (Sqrrl Data, Inc., 2018). This is mainly

done by analysing IOCs (Indicators of Compromise) on the target infrastructure. These

IOCs are normally discovered during active hunts or are shared by security researchers

globally for analysts to employ in their toolsets.

There are a broad number of techniques and tools that are used in industry to

conduct threat intelligence hunting presently, and as such, there is no one size fits all

approach, with different tools, processes and techniques being used for different types of

perceived threats to the individual or organisation. One organisation may perceive threats

differently to another organisation based on internal and external factors. Threat hunting

requires that analysts can detect and then improve on these successful detections to

develop new processes that can be used on future successful hunts (SANS, 2021).

This project will begin with the literature review into current research conducted

in this field and then move onto an evaluation of current techniques, tools and processes

that are currently used in industry in order to compare and contrast their advantages and

disadvantages for their specified threat hunting tasks. Currently, many tools are either

outdated or are not integrated into a single suite or application, which makes threat

hunting a more difficult and laborious task than it needs to be. Guaranteeing that core

2

threat hunting processes are in a single application allows for greater productivity and

collaboration of tools for threat analysts.

Finally, the second half of this dissertation report will discuss the design and

development phase, as well as the evaluation of the C# .NET integrated program. This

process also includes the testing of the application against a custom virtual environment

to measure its performance against currently used tools available to threat analysts.

3

1.1 Project Aim

The main aim of this dissertation research project is to produce a fully functional and

integrated threat hunting tool with the C# .NET programming language and framework

which uses machine learning models to enhance intelligence gathering and analysis

capabilities further than is currently limited by available open-source tools.

1.2 Project Objectives

To ensure that the main research project aim is achieved, there are eight objectives

specified below that detail how the project will achieve its deliverable:

• Conduct a literature review to examine what developments and research have

already been made in the field.

• Research the different threat hunting tools and understand how they are currently

used and how effective they are.

• Analyse current machine learning algorithms and models used by ML.NET.

• Design and develop a draft program that collects logs and event data from the

operating system and network.

• Expand on the program to analyse and categorise the data and IOCs based on the

MITRE ATT&CK™ (Adversarial Tactics, Techniques and Common Knowledge)

framework.

• Use the most effective machine learning algorithms from the program to

categorise logs and events to determine system baselines and deviations.

• Tweak the machine learning algorithm in the programme in order to optimise the

hunting and categorisation results.

• Test the program in a custom virtual environment by simulating custom APTs and

standard attacks on a virtualised network infrastructure.

4

1.3 Dissertation Structure

This master’s dissertation has been organised, excluding the previous chapter; Chapter 1

– Introduction, into the following key chapters for clarity and convenience of reading:

Chapter 2 – Literature Review: This chapter covers the background knowledge

regarding the project and includes introductory theoretical analysis of the current threat

hunting tools, current research projects and machine learning algorithms, which will be

expanded on further in Chapter 3.

Chapter 3 – Theory and Methodology: Presents the main theories of the project and

analyses their application. Expands on the theories of threat hunting, machine learning

algorithms used in this project as well as necessary network, log, and event data theory.

Chapter 4 – Software Design and Development: Covers the steps taken to design,

implement, and develop the C# .NET integrated threat hunting program using Visual

Studio 2019. Discusses the stages of development and versioning control using GitHub.

A detailed breakdown of the creation of the virtual environment will also be covered in

this chapter.

Chapter 5 – Analysis: This chapter will cover the results, validation, and testing of the

program deliverable by critically analysing its effectiveness against a virtual environment

consisting of APTs and conventional threats. This stage will also cross reference with

existing tools to evaluate the differences between their use cases, speed and hunting

success rates.

Chapter 6 – Evaluation and Conclusion: Includes the project conclusion and lessons

learnt. Discusses further research that can be carried out regarding this project’s outcomes

and what could be done to improve on this project.

Chapter 7 – LSEPI: A thorough discussion of the legal, social, ethical, and professional

issues within this project and how said issues have been managed or curtailed.

5

2 Literature Review

A literature review is a research and evaluation conducted into the current literature

in a given topic and field, which documents the state of the art with regards to the topic

being researched (Royal Literary Fund, 2019). This literature review will specifically

look at current research and projects that could be expanded on in this field, as well as an

overview of the current open-source tools that are used to conduct threat hunting.

Alongside this, the frameworks which govern the approach and stratagem of threat

hunting will be analysed, as they are useful in understanding how the program deliverable

will be designed and developed to be most effective.

Threat hunting, and the development of hunting tools, has become more and more

beneficial and necessary for organisations as it allows them to map out adversaries and

their actions on their infrastructure in the event that traditional security systems such as

IDSs and firewalls are compromised or fail. In this sense, threat hunting can be considered

to be a proactive approach to securing company networks and assets by analysing and

understanding the TTPs (tactics, techniques and procedures) used by hostile threat actors

to intrude, access, manipulate, obfuscate and exfiltrate data from the network or to

achieve their specified goal (Xiong, et al., 2021).

2.1 Current Threat Hunting Research and Projects

The cyber security field is truly diverse and ever-changing with new discoveries

and techniques being conceptualised daily. This literature review will therefore home in

on an exceedingly small aspect of this colossal field by reviewing and analysing research

and projects that have been conducted mainly with the use of open-source tools within

the threat hunting and intelligence domain. This literature review will pay little attention

to industry-standard or open-source tools, as these will be analysed and reviewed in the

subsequent chapters individually.

2.1.1 Data-driven threat hunting using Sysmon

Successful threat hunts all use an assortment of collected system and network data

in order determine and analyse the threats posed to them. The data that is collected is

analysed by different tools and processes in order to categorise and prioritise them based

on the possible modus operandi of the threat actor (Palacín, 2021). With large amounts

of data being collected constantly, the majority of which is not necessarily useful for

hunts, and as a consequence, does more harm than good by prolonging and potentially

6

jeopardising the threat hunting process, it is important that appropriate filtering is done to

limit, sanitise and select the most useful data from these diverse sources.

One of the main tools used by hunters and administrators alike that is available

for Windows OSs (Operating System) is System Monitor, also more commonly known as

Sysmon. The Sysmon service does not provide analysis of data or logs, however, it is a

service that monitors and logs system activity to the Windows event log. Some of the main

attributes of Sysmon are that it collects data on network connections, process creations,

changes to file creation times, loading of drivers and libraries as well as other useful

records (Garnier & Russinovich, 2021).

Sysmon has been around since 2014, and is free to download, as it does not come

pre-installed on Windows OSs as standard, as there is already a basic built-in event logger.

As stated previously, it does not analyse the data and only collects it, therefore, it is used

in conjunction with either Windows Event Viewer, SIEM (Security Information and Event

Management) software or custom code and APIs (Application Programming Interface)

that can be programmed to dissect and analyse the collected logs and events. With these

logs it is possible to detect and identify malicious activity taking place on the system as

well as understanding how the hostile threat actor operates in particular circumstances on

the network infrastructure where the logs were collected.

A conference paper published by Jøsang and Mavroeidis (2018), researchers from

the University of Oslo, discusses the use of Sysmon to create a real-time threat assessment

system to analyse and classify software based on four devised categories: high, medium,

low, and unknown threats. This categorisation of software is based on characteristics they

have identified in the paper, as noted in Table 1 below.

Threat Level Identified Software Characteristics

Low Possibly non-malicious software

Medium Legitimate software but vulnerable/ used by hostile threat actor to perform

attack

High Malicious software/ Legitimate or unknown software with relationship with

malicious IOCs

Unknown Unknown software without known relationships to threat actors or

malicious IOCs

Table 1 – Jøsang and Mavroeidis' (2018) Sysmon software threat level classification

7

 Jøsang and Mavroeidis (2018) also introduce the idea of a CTIO (Cyber Threat

Intelligence Ontology) that is used in order to support decision making by representing a

wide array of information such as threat actors, target infrastructure, their objectives and

goals, their motivations, their TTPs, IOCs and vulnerabilities. This information is used to

create the diagram (figure 1) that displays the relations and links between them.

Figure 1 – Jøsang and Mavroeidis' (2018) CTIO relationship diagram

 The main take away from Jøsang and Mavroeidis’ diagram is that it conveniently

portrays the main relations between the malware that influences the IOCs, which are in

turn related to the TTPs of the associated threat actor. These TTPs are then extensions of

the information held within the MITRE ATT&CK™ knowledge base as well as the CVE

(Common Vulnerabilities and Exposures) and NVD (National Vulnerability Database)

databases. This diagram also implies that different threat actors use different

infrastructure and TTPs that could provide knowledge as to who is conducting the attack

and allows the analyst to pin-point their threat hunting further by targeting and analysing

specific elements related to the threat actor in particular.

 The diagram provides a useful reference as to how the threat hunting tool

deliverable of this project should interact with the resources and logs collected by the

system infrastructure to maximise its proficiency and overall efficacy. As this project will

also be looking at how machine learning can assist with the integrated threat hunting

8

process, it will be useful to consider how the threat hunting program created in the

research paper compares with the final deliverable of this project.

Further analysis of the inner workings and use cases of Sysmon will be discussed in

the next chapter of this dissertation (Chapter 3 – Background & Theory), with analysis

on its effectiveness against the final deliverable being conducted in Chapter 6 – Analysis.

2.1.2 Learning the Associations of MITRE ATT&CK Adversarial

Techniques

The research paper published by Al-Shaer, Christou and Spring (2020) focuses on

the use of statistical analysis and machine learning on already collected datasets used by

MITRE ATT&CK to determine the correlations and associations between the techniques

used by adversarial threat actors. The results from this paper show that hierarchical

clustering machine learning models have a confidence of 95% in explaining significant

associations between adversarial techniques (Christou, et al., 2020). They note that

although the MITRE ATT&CK knowledge base provides ample information on the TTPs

that a hostile threat actor would use, it is lacking in how those different TTPs are

combined with each other in order for the attacker to achieve their goal.

By using machine learning models, they have shown that some technique

associations can be predicted to help the analyst understand the adversarial behaviour of

the threat actor based on their mixed usage of multiple TTPs. As of yet, limited research

has been conducted specifically into the correlation between techniques, and as such, this

paper provides a great foundation to build upon, specifically using the findings in order

to produce a machine learning model that can be used against real-time data and log

gathering services for enhanced threat hunting capabilities.

There are however limitations outlined in this research paper, the main being that

the APT and software attacks registered on the MITRE ATT&CK knowledge base are not

representative of all possible techniques that a threat actor is capable of, and as such, is

only a small portion of the available open-source data gathered by analysts based on

already occurred events and incidents. Therefore, it is fairly difficult to surmise and

determine what techniques were used for specific attacks without the supporting data,

however, it is still possible to make fairly accurate and useful predictions that can be used

for more effective threat hunting compared to non-machine learning analysis (Christou,

et al., 2020).

9

2.2 Frameworks and Knowledge Bases

Cyber threat hunting tools are inadequate unless there is a solid and continuously

updated knowledge base for them to reference and utilise. There are various frameworks

and knowledge bases that are used by analysts to determine and analyse the TTPs that are

used by threat actors and how those techniques correlate and merge to form effective

attacks against an individual entity or an organisation’s physical and logical

infrastructure.

2.2.1 MITRE ATT&CK

The most globally used and respected knowledge base to date is MITRE ATT&CK

that was conceived in 2013. It was designed in order to detail the TTPs and activities that

attackers and adversaries may use and are capable of carrying out at different stages of

the cyberattack to achieve their objectives within the victim environment (Palacín, 2021).

The most important aspect of the MITRE ATT&CK framework is that it provides

a standardised way for security researchers and analysts alike to describe the supposed

behaviour of adversaries and threat actors. This allows for the researchers and analysts to

share their ideas and insights with a more structured approach which overall fosters a

better understanding of the adversarial behaviours, both between experienced and non-

industry professionals who may be interested.

The framework is not static, in the sense that it is not immutable, it can and should

be used to develop and support the building of custom bespoke TTPs based on in-field

experience and analysis of uniquely observed adversarial behaviours and capabilities. In

total there are fourteen tactics in this framework that in turn envelop multiple different

sets of techniques and sub-techniques that a threat actor may use (Palacín, 2021). These

techniques and sub-techniques describe the threat actor’s and adversaries’ behaviours

while the tactics represents the goal of the threat actor’s behaviour. Finally, the ‘P’ in TTP

refers to the procedure, which is the way in which the adversary carries out the specific

techniques.

The fourteen tactics used in the MITRE ATT&CK framework are as follows:

Reconnaissance, Resource Development, Initial Access, Execution, Persistence,

Privilege Execution, Defence Evasion, Credential Access, Discovery, Lateral Movement,

Collection, Command and Control, Exfiltration, and Impact. Each of these tactics have

10

numerous techniques that can be used ranging from seven techniques all the way up to

thirty-nine techniques (MITRE, 2021).

2.2.2 Cyber Kill Chain

Both the MITRE ATT&CK and the Cyber Kill Chain frameworks follow the basic

sequence of the attacker infiltrating, conducting their activities and then exfiltrating from

the infrastructure, ideally, without getting caught or suspected of any intrusion. The major

difference between the two frameworks however is that the MITRE ATT&CK framework

denotes a list of techniques that an adversary may use in any particular order to achieve

their goals, whereas the Cyber Kill Chain primarily lists the order of operation of an

adversarial attack without further detail as of how to conduct said attack against a victim

(Hutchins, et al., 2011).

The Cyber Kill Chain consists of seven distinct stages that must be completed by

a threat actor in order for a successful cyber attack to take place. Subsequently, the Cyber

Kill Chain also allows for system administrators and blue teams to develop an intelligence

feedback loop which enables them to understand the adversary’s actions at specific stages

whilst establishing a state of intelligence superiority over the threat actor. This in turn

enables the defenders to mitigate the likelihood of success for the adversary during any

future intrusions that may occur (Hutchins, et al., 2011).

The seven stages of the Cyber Kill Chain are Reconnaissance, Weaponisation,

Delivery, Exploitation, Installation, C2 (Command and Control), and Actions on

Objectives. These seven stages can be informally and loosely associated with the fourteen

tactics used in the MITRE ATT&CK framework as shown below in Table 2.

Steps Cyber Kill Chain MITRE ATT&CK

1 Reconnaissance Reconnaissance

2 Weaponisation Resource Development

3 Delivery Initial Access

4 Exploitation Execution

5 Installation Persistence

6 C2 Privilege Execution

Defence Evasion

Credential Access

Discovery

Lateral Movement

Collection

Command and Control

7 Actions on Objectives Exfiltration

Impact

Table 2 – Associations between the Cyber Kill Chain and MITRE ATT&CK frameworks

11

2.2.3 Diamond Model

This model puts emphasis on the characteristics and relationships between four of

the essential components of threat intelligence analysis, these include: Adversary,

Capabilities, Infrastructure and Victim vectors. The paper presented by Betz et al. (2013)

conceptualises this model and in its simplest form is described as “an adversary deploys

a capability over some infrastructure against a victim”.

The Adversary vector is the organisation or malignant threat actor responsible for

carrying out an attack by carrying out a capability against the victim. The Capability

vector is the tools, techniques and tactics used by the adversary during an attack. The

Infrastructure vector includes the logical and physical infrastructure, such as the network,

IP (Internet Protocol) addresses, domain names, emails, websites etc. that are used by the

threat actor and adversary to deliver the capability. Finally, the Victim is the target, be it

an organisation or an individual, in which the vulnerabilities are exploited, and the

adversarial capabilities are enacted against.

In essence, it can be determined that an intrusion event is defined as how the threat

actor can demonstrate an attack against a target over an infrastructure using certain

distinctive capabilities and techniques (Betz, et al., 2013). The diagram pertaining to the

model that is presented in the paper is shown in figure 2 below.

Figure 2 – The Diamond Model framework for threat hunting

 Comparable to the Cyber Kill Chain, this model does not represent the TTPs used

by the adversaries, as is the case with the MITRE ATT&CK framework, but instead maps

the relations between the four core features of an event. This model allows researchers

and analysts to build and understand the definite relationships between the four vectors

12

and how said relations act with or are restricted by each other. By doing so, threat analysts

can understand in greater depth and clarity the intensions and TTPs of the adversarial

threat actors throughout this process.

13

3 Theory & Methodology

 This chapter will mainly focus on the theory of threat hunting, networking and

IOCs, types of attacks as well as the theory behind the machine learning algorithms used

in the final project deliverable. Furthermore, this chapter will cover the methodology used

in order to produce the final deliverable including the software and frameworks used.

3.1 Threat Hunting

As discussed previously, threat hunting is a proactive and continuous approach to

searching and analysing cyber threats that are lurking and hiding undetected on the

network infrastructure. These threats will have bypassed conventional security

mechanisms and apparatuses such as IDSs, IPSs, anti-viruses, and firewalls and, as such,

pose a threat to the system and wider infrastructure if they continue to remain undetected.

It is possible for threat actors and adversaries to remain undetected for many months,

even years, whilst exfiltrating sensitive data from the organisation even as security

controls are completely oblivious. A threat actor that successfully penetrates the core

defences and front lines of the infrastructure and evades detection can be defined as an

APT.

The core aim of the threat hunter is to reduce what is known as the dwell time,

which is the amount of time that passes from when the adversary has breached and

established themselves within the environment and when the breach has been detected by

either conventional means or by a human operator (Palacín, 2021). The dwell time can

range from a few minutes to many weeks, with the average dwell time, according to SANS

Institute, being more than ninety days, which has dropped considerably since 2013, where

the average dwell time was reported to be well over six months (Lee & Lee, 2018). The

following figure 3 illustrates the theoretical timeline from an adversary entering the

network, being detected by conducting threat hunting and then carrying out the incidence

response operation for recovery.

Figure 3 – Threat Hunting 'Dwell Time' timeline

14

It is important to note that the struggle to lower the dwell time is continuous, that

is, the threat actor is going to carry on adapting to the new faster and more advanced

detection methods employed by the threat hunters and as such improve their infiltration

and evasion techniques to remain undetected whilst breaching the systems quicker in their

own right. The majority of organisations and companies lack the required skills, detection

methods, tools, and personnel necessary to prevent an APT from taking a foot hold on the

network infrastructure once the adversary has bypassed the defensive boundaries,

therefore, it is important that threat intelligence and hunting play a hands-on role in the

defence stratagem of the organisation alongside traditional security approaches and

procedures.

Defence in Depth (DiD), which consists of multiple layers of tailored security

controls protecting key assets, seeks to delay rather than completely prevent an attacker

from penetrating the network, as there will always be a way inside with new

vulnerabilities and zero-days being discovered on a daily basis by researchers to state

actors. This strategy can be relied upon to give time for the threat hunters and analysts to

detect and analyse the motives as well as the TTPs that the adversaries are currently

utilising, however, it should not be completely depended upon to entirely defend the

environment and infrastructure. This is where threat hunting plays a significant role once

the adversary has bypassed the typical array of defences (Lippmann, et al., 2006).

3.1.1 Methodologies

There are numerous different methodologies and approaches to conducting threat

hunting investigations, each using different parameters and data to carry out the analysis

of the threats with varying results. Among the many approaches, the three main and most

commonly used methodologies include the hypothesis driven approach, IoC approach,

and advanced analytics and machine learning method (Taschler, 2021).

3.1.1.1 Hypothesis Driven Investigation

This approach is based on using already collected data from researchers that have

reported on novel attacks to a knowledge base and other sources to determine whether a

particular attack, or similar, has occurred within the environment that is under

investigation. This methodology to threat hunting relies on researchers updating and

informing the community of the attacks and their behaviours alongside the attackers

unique TTPs and approaches for a specific attack that has been carried out.

15

The TTPs that are composed and distributed with the community allow the threat

hunter and investigators to create a hypothesis to identify whether the same TTPs have

been acted upon within the infrastructure, which could lead to a successful hunt and

investigation based on the current modus operandi of an active adversary.

3.1.1.2 IoC Based Investigation

The IoC based investigation approach is similar to the hypothesis driven

investigation, however, instead of relying solely on community-based research and

announcements of a new threat, also known as external sources, to commence a threat

hunt, the investigation starts centred on the organisation’s threat intelligence data, known

as internal sources, that have already been conducted as part of the organisation’s

continuous investigative threat intelligence cycle.

Threat intelligence can be defined as “evidence-based knowledge, including

context, mechanisms, indicators, implications and actionable advice, about an existing

or emerging menace or hazard to assets that can be used to inform decisions regarding

the subject’s response to that menace or hazard” (Gartner, Inc., 2014). Threat

intelligence is the collection of data that is processed and then analysed in order to

understand the adversary’s behaviours, motives, targets, and goals.

The threat hunter will leverage the analysed data collected from the threat

intelligence stage to identify IoCs and IoAs (Indicators of Attack) associated with new

and emerging threats. The IoCs and IoAs are used as triggers that are employed for the

uncovering of what could be undetected hidden attacks or malicious activity taking place

on the infrastructure as part of a wider APT. A large volume of IoCs and their

corresponding data does not necessarily indicate that there is a threat or that a hunt will

be carried out successfully, therefore, it is important that the threat hunter takes into

consideration quality over quantity when collecting the data and that the data is relevant

to the hypothesis posed.

3.1.1.3 Analytics and Machine Learning Based Investigation

The final methodology includes the use of both machine learning and data

analytics to filter through vast amounts of logs and data to detect any abnormalities that

could predict and indicate if malicious activity is taking place. The machine learning

algorithms are used in order to learn relations and links between different parameters and

are also trained to predict the sequencing of novel threat events based on the data of

16

previous events. These algorithms alongside their training data are used in order to create

trained models that can be used to predict threats and allows the threat hunter to conduct

further analysis based on the results of the prediction.

This research project will mainly be focusing on this final methodology and will

incorporate machine learning techniques into a threat hunting tool that can predict new

emerging threats based on event logs collected by the computers and central server, where

the deliverable executable will be residing and running. Reference + Example of real life

use case.

3.1.2 Steps and Processes

There is no standardised universally agreed upon list of steps or processes for

completing a successful threat hunt amongst specialists in the field, however, there are

some useful mechanisms that highlight and lay out the iterative process of a threat hunt

for SOC (Security Operations Centre) teams to follow.

One of the first processes conceptualised for threat hunting is the ‘Threat Hunting

Loop’ which contains four iterative steps in a loop that hunters should follow as quickly

and efficiently as possible to succeed in the hunt (Sqrrl Data, Inc., 2018). The four steps

are: Hypothesis Creation, Tool and Technique Enabled Investigation, Pattern and TTP

Discovery, and Advanced Analytics.

3.1.2.1 The Threat Hunting Loop

Figure 4 – The Sqrrl Threat Hunting Loop

The first step of the loop devised by Sqrrl is the hypothesis creation. This initial

step involves the threat hunters devising hypotheses by approximating and making an

17

educated guess as to what sort of activity may be going on in the investigative

environment. This hypothesis can be built on the intelligence gathered from internal or

external sources, or both at the same time, by allowing the hunter to generate specific

hypotheses related to the threats posed specifically to the organisation in question, which

may be different for different organisations and individuals. The hypotheses that have

been devised can also be split into further sub-hypotheses that can be analysed

individually in further depth and more detail. For example, an employee may be at risk

of being targeted and tracked by state actors if they have recently been abroad, therefore,

setting up a hunt to determine if their equipment have been compromised would be a

hypothesis.

The second stage in this iterative process is the use of investigative tools and

techniques. This step allows the hunters to propose answers to the hypotheses that have

been prepared in the first stage using a wide array of data and logs by trying to understand

and discover the adversaries TTPs for this specific attack or overall adversarial TTPs for

a multitude of ATPs. These tools will use a variety of techniques such as statistical

analysis and machine learning by analysing and combining knowledge bases and datasets

for model learning and creation.

The third stage involves the hunters uncovering the malicious behaviours and

patterns that the adversaries are undergoing whilst also trying to determine their TTPs.

This will involve collaboration between different teams and outside bodies to understand

the tactics used by adversaries and compare whether similar tactics are being used against

other organisations.

Lastly, the fourth stage is the automation and reporting of hunts. There is no reason

for the SOC team to be repeating the same hunts over and over again that produce the

same results, therefore, automating these hunts will allow the team to concentrate on other

activities that are vital for the overall hunting process. These automations can be created

in many ways, by creating queries to search specific logs of significance, creating scripts

using different programming languages and tools, as well as using supervised machine

learning algorithms and providing them with affirmation of an identified pattern of events

from the successful hunt to learn from to conduct further automated hunts of a similar

nature in the future.

18

3.2 Windows Event Logs

Every application on the Windows OS, as well as other OSs, log events such as

errors or general information that may be useful to the system in the future, be it for

referencing or reporting errors. These event logs can both be software or hardware events,

however, with different applications and hardware using their own proprietary error

reporting and logging, it is not straightforward to merge all of these different formats into

one reporting system. This is where the event log plays a significant role to standardise,

categorise and centralise all system logs, from the hardware, software, and the OS itself

(Microsoft, 2018)

These Windows event logs can be viewed and examined by the user using the

Windows Event Viewer administrative tool that is pre-installed with Windows, by using

PowerShell commands and scripts, or they can also be retrieved by using classes within

the .NET framework whilst creating a custom application, as is the case with this

dissertation’s deliverable.

3.2.1 Windows Event Viewer

The Windows Event Viewer can be used by administrators to view all application

and system logs in a structured manner, with options to search and filter based on types,

categories, sources, level and so on. Not all events that are logged in Windows Event

Viewer are malicious, such as application crashes or services failing to start, Windows

will log everything imaginable in order to keep a track of events for future reference or

troubleshooting.

The main UI (User Interface) features a rather simple-looking GUI (Graphical User

Interface), however, it can be quite overwhelming to novice users. The composition of

the application contains a tree structure in the left pane that lists the different type of log

categories, such as Application, Security, and System. Clicking on one of these event logs

will display all those events in the main pane, which includes information such as the

level, date and time, source, and event ID (also known as instance ID).

Below the main panel is information regarding the selected event log, such as the

computer that generated the log as well as a more detailed message of what has happened.

Finally, the right-most pane includes many buttons for filtering, saving, clearing, and

refreshing event logs (Hassell & Campbell, 2007). All of these panes have been

highlighted in figure 5 below.

19

Figure 5 – Windows Event Viewer layout

3.2.1.1 Event Types

There are five types of events that the Windows OS can declare and categorise.

When the piece of software declares an event log, it will also declare the type of event

that is being reported. Only one event type can be declared per event with the Windows

Event Viewer displaying different icons for each of the five event types for ease of

viewing and analysis. The five types of events are: Error, Warning, Information, Success

Audit, and Failure Audit (Bridge, et al., 2018). Table 3 draws attention to the

characteristics of the events that are categorised by the OS.

Table 3 – Windows Event Log Types

3.2.1.2 Event Sources

Event sources are subkeys of the event logs and are named after the

subcomponents of the application that logs the events. Within each event log there are

multiple sources, such as different applications that are creating each individual log. The

main event logs are the Application, System and Security logs. The security log is only

used for system use and requires administrative privileges to access, the system log is

primarily used for driver logs, while the application log is used for applications and

Event Type Description and Characteristics

Error Significant issues such as loss of data, functionality or loading failures.

Warning Non-significant events but could cause a future issue/problem. An example would

be low storage space.

Information Used when an application, service, device, driver etc. is successful in operating its

defined task.

Success Audit This type is given to security audit attempts that are successful such as a user logon

attempt.

Failure Audit This type is given to security audit attempts that fail such as a logon failure.

Event Log

Selection

Tree

(Folder

View)

List of Events

Event Information

Quick Access

20

services to log events (Bridge, et al., 2018). It is also possible for other unique log

categories to be created to, such as is the case with the third-party created Sysmon logs.

3.2.1.3 System Monitor (Sysmon)

The Sysmon service, that is installable from the Microsoft website, remains active

even after the OS reboots and logs all of its activities to the Windows Event Log. Once it

has been installed on the log gathering system, normally a server, it has many useful

capabilities, especially with regards to identifying malicious activity and trying to identify

the TTPs of a threat actor based on how they are operating across the network

infrastructure (Russinovich & Garnier, 2021).

According to Microsoft (2021), Sysmon contains twelve key capabilities that assist

threat hunters with their investigations, with details of said capabilities outlined in Table

4.

Table 4 – Sysmon twelve core capabilities

The Sysmon events in the Windows Event Viewer are stored within the ‘Application

and Services Logs/Microsoft/Windows/Sysmon/Operational’ folder of the Event

Viewer’s folder view in the left-most pane. For clarity across systems and to avoid

confusion, all Sysmon event logs are logged using the UTC (Coordinated Universal Time)

The logging of process creation The logging of raw access to disk drives

and disk volumes.

Logs the hash of image files using MD5,

SHA1 and SHA256.

The logging of network connections such

as connection source processes, IP

addresses, port numbers, port names and

hostnames.

Multiple different hashes can be used

simultaneously.

Identify and detect any changes in file

creation time to verify creation time.

Hackers commonly modify file creation

timestamps to cover the tracks of the

malware.

Includes process GUID (Globally Unique

Identifier) during event creation for events

that have been denied event IDs.

The automatic reloading of configurations

if the registry has changed them.

Includes session GUIDs for every event

for correlation between events in the same

current session.

The active filtering of events based on

rules to include or exclude specific events.

The logging of DLLs (Dynamic-link

Library) and drivers including their

signatures and corresponding hashes.

Can log and capture event logs from the

early stages of the boot process to log

activity made by kernel-based malware.

21

time zone, this is especially important if logs are being collected from servers located in

datacentres or offices in different countries across the globe (Russinovich & Garnier,

2021).

Sysmon logs include twenty-seven event IDs (1 through 26 and error ID 255) that

cover the capabilities detailed in the aforementioned table. The event IDs for Sysmon logs

can be used in order to filter based on different characteristics and IoCs and are not too

exhaustive in that they can be categorised with relatively little confusion as to what the

event is pertaining to. Filtering also allows the hunter to clear a lot of unnecessary noise

generated by the service that may not be relevant to the investigation. Event ID 255 is an

error event and occurs solely when there’s a problem with Sysmon, which could occur if

there is heavy load on the system or if there is a general bug within the Sysmon service

that is preventing it from working correctly.

3.3 Indicators of Compromise

The discovery of IoCs is the main way that threat hunters gather evidence and

trails as to whether a malicious activity has taken place on the system or network. In

essence, IoCs act as the trail of artefacts that threat actors leave behind that allow

hunters to detect early on in the attack if anything malicious is taking place or indicate if

an attack may take place (Lord, 2020).

IoCs can be anything that the attacker has left behind during their activity, they

can be something small such as metadata of files and images, to IP addresses and all the

way to more complex bespoke malignant code. Threat hunters and analysts alike will

try to create correlations between all the collected and informative IoCs in order to

create a pattern by piecing all the parts together to determine the likelihood of an

incident.

Similar to IoCs, IoAs will instead focus on artefacts that are generated by an

attacker whilst an attack is occurring. IoCs can be used in order to determine what has

happened while IoAs can be used to determine what is currently happening and why.

Ideally, threat hunts should use both IoCs and IoAs simultaneously to get near enough

real time analysis of a security incident.

22

3.4 Machine Learning

This project deliverable will utilise a basic machine learning algorithm in order to

enhance the threat hunting capabilities of a threat hunter. The machine learning

algorithm will be using the ML .NET framework specifically for C# applications. This

machine learning algorithm and model will be incorporated into the main application

deliverable and will complement the basic event viewer and filter that has been

implemented using C#.

The algorithm will be analysed against the Sysmon event logs collected by the

application on the server and will determine whether an anomaly may be present or not.

3.4.1 Anomaly Detection using ML.NET

The machine learning algorithm used in this .NET application is known as a time

series anomaly detection. This algorithm is used in order to detect anomalies from a large

dataset of events by determining whether any of the datapoints are unexpected that could

indicate an unknown attack. The ML.NET library allows for the usage of spike detection,

which in essence, will indicate to the user and spikes in abnormal behaviour and

deviations (Microsoft, 2021).

It is important to note that this time series anomaly detection, unlike some other

machine learning algorithms, such as supervised approaches, does not need any training

data, as such, it uses the input data to produce a transform and uses this to produce a data

schema to create a data view for transformation and prediction. In this sense, the data that

has been collected from the event logs is the same data that will be analysed for any

anomalies and spikes, there is no need for any external datasets for training as with

supervised machine learning algorithms. Time series anomaly detection can be

considered an unsupervised machine learning approach due to the very nature that it uses

unlabelled raw data that has no previous classification to determine whether the log is

anomalous or not based on a baseline and normal system behaviour.

This unsupervised approach, however, has a few drawbacks in that it cannot know

for certain, or to a high degree, whether a log is malicious or not, that is not the designed

intention of this algorithm. Instead, the algorithm will determine whether it is an anomaly

that deviates from the norm and indicate it as such. The results from this allow the threat

hunter to analyse these logs that are anomalous further to determine whether there is any

malicious activity. However, the main reason this unsupervised approach has been

23

selected is that creating or getting a large enough dataset for a supervised model would

be difficult, time consuming and computationally immense, especially so is the case

where each network environment and infrastructure set-up is different, with different

network traffic, activity, and baselines, which would create bias for new unknown data

that the algorithm would receive, producing unfavourable results (Landauer, et al., 2018).

Generating a clean dataset for a supervised approach would also require an anomaly-free

environment, which would be very difficult under most circumstances, as there is always

traffic and events that could be considered anomalous and abnormal on all computers, be

they small or large anomalies.

4 Software Design and Development

This chapter will explore the software design and development of the C# application

using Visual Studio 2019, as well as going through the stages taken to set up the VMware

ESXi lab environment that is used to test the effectiveness of the completed C# application

deliverable against open-source tools.

4.1 VMware ESXi Lab Environment

VMware ESXi is a hypervisor product by the same company that creates VMware

Workstation Pro. ESXi can be installed on bare metal infrastructure, such as a standalone

server, or it can also be ran within a VM itself, which is the preferable option for this

research dissertation as it does not require the purchasing or usage of a physical server.

The installation process is as straightforward as it is with installing any regular VM using

an ISO disk image file from the VMware website.

The lab environment contains multiple machines in order to simulate a small

company network for purposes of testing the already available hunting tools, as well as

the project deliverable. In total, the ESXi environment will include one Pfsense firewall

VM, one Windows Server 2019 VM, two Windows 10 client VMs, and one Ubuntu Linux

VM.

4.1.1 Initial Setup

Running through the installation process takes a few minutes and is self guided,

however, the online guide provided by VMware is helpful in ensuring that all

configuration options have been set up correctly1. The ESXi hypervisor VM has been

1 VMware ESXi (2021) available to download at: https://customerconnect.vmware.com/en/web/vmware/evalcenter?p=free-esxi7

https://customerconnect.vmware.com/en/web/vmware/evalcenter?p=free-esxi7

24

designated 8 GB of RAM for use initially, however, this may become a limitation with

the more resource intensive VMs that are added; therefore, 10 GB of RAM may be

required. The total amount of available RAM on the PC being used for this research

project is 16GB, so there is enough prevision available if needed. The amount of disk

space allocated for the hypervisor VM is 142 GB, this is being used for the hosting of the

ESXi setup and configuration data, the ISO files on the hypervisor server for creating the

VMs, as well as the hard disks of the individual VMs.

Each of the two Windows 10 client VMs have been assigned 15 GB of disk space,

2 GB of RAM and 2 vCPUs (Virtual Central Processing Unit). One vCPU is roughly

equivalent to a single physical core on the computer’s CPU (Youngjin, et al., 2011). The

Windows Server 2019 server VM is assigned 40 GB of storage, 2 GB of RAM and 2

vCPUs. The requirement for more storage for the server is mandated by Microsoft as it

contains many more system tools, configurations, an AD DS (Active Directory Domain

Service), DNS (Domain Name System) and DHCP (Dynamic Host Configuration

Protocol) servers, and more storage may be needed if the server will be used to host files

or act as a web server. The Pfsense firewall VM requires the least amount of system

resources and as such only consumes 8 GB of storage, 1 GB of RAM and 1 vCPU. The

firewall has no GUI and is command-line only therefore can run on the minimum amount

of resources that it requires. Finally, the Ubuntu Linux VM uses 10 GB of storage, 2 GB

of RAM and 2 vCPUs.

After the provisioning of the ESXi hypervisor within VMware Workstation 15, a

crucial command is required in order to not provision too much disk space to the

hypervisor. During first boot of the VM, holding down ‘Shift + O’ will bring up a console

prompt, entering the value ‘autoPartitionOSDataSize=23841’ will provision 25 GB

(equivalent to 23,841 Mebibyte) of disk space for the hypervisor while the remainder of

the 117 GB of storage can be used for the ISO files used for VM creation as well as the

VM disk storage themselves where the OS will reside. If this command is not used, then

the hypervisor will consume the majority of the storage provisioned to it in Workstation

and there will be barely any left-over disk space for the individual VMs to use for

provisioning.

25

Figure 6 – Main screen of the VMware ESXi web portal

A new VLAN (Virtual Local Area Network) is created within the ESXi

environment in order to contain the VMs within a single network. The Pfsence firewall is

connected to both the new VLAN which is named just ‘VLAN’ and the pre-configurated

VMware VLAN which is known as ‘VM Network’, this allows the server to talk to all

local clients that are connected to it as well as accessing the Internet via the firewall. Once

all the VMs have had their OSs installed it is now required that all the VMs are turned on

and are running simultaneously.

Figure 7 – VMware ESXi deliverable testing environment network diagram

4.1.2 Testing Configuration

In order to verify that the VMs can communicate with each other, it is essential

that the configuration of the hypervisor is tested by using simple network tests. It is

possible to verify an established connection between two hosts by using an ICMP

(Internet Control Message Protocol) echo request, or more commonly known as ping,

between the two clients (Kahraman & Kocak, 2016). This method should be tested on

26

each VM to verify that they can all communicate and route to each other via the

Windows Server 2019.

Figure 8 – Pinging and tracert the Pfsense firewall from the Windows Server 2019

 The ping tool sends and echo request from one host to another with the receiving

host responding immediately with an echo reply once it has received the ICMP packet.

If the host is unreachable then the ICMP packets will be dropped, and no echo reply will

be received by the host initiating the ping. It is also useful to use tracert to verify the

path and hops made in order to reach the destination IP address. This step is done with

every VM on the network to verify the routes that they take are according to the

networking diagram in figure 7.

The AD DS on the Windows Server 2019 also contains 3,000 users that have been

created using a fake name generator and custom PowerShell script. The CSV (Comma-

Separated Values) file that was generated has been attached as Appendix A. The CSV

file contains the following fields so that the AD DS can add those users to the directory

for use across the network computers: GivenName, Surname, StreetAddress, City, Title,

Country, and TelephoneNumber. Every user is given the password ‘Password1!’ and are

prompted and forced to change the password upon first login. These users have been

added to different security groups in order to emulate a company’s infrastructure with

some of these users also having administrative privileges. Testing a sample of users to

verify if they can log in on the two separate Windows 10 client VMs is also past of the

testing stage to determine if those devices are indeed establishing a connection with the

AD DS hosted on the Windows Server. The PowerShell script that was used to add the

users to the AD DS is shown in figure 7 which includes all minimum necessary

variables required by the server to register a new user.

27

Figure 9 – PowerShell script used to add CSV generated users to AD DS

4.1.3 Pre-installing required applications

In order for the deliverable to run on the server, it is required that Sysmon as well

as EvtxExplorer be installed on the system. EvtxExplorer is an open-source tool

developed by Eric Zimmerman that parses event log files (evtx) to a standardised CSV

output2. This CSV file will be used for the anomaly detection stage of the application,

which requires a CSV file as input for the ML.NET spike detection.

Once Sysmon has been downloaded and extracted from the Microsoft website, it is

installed using the following command shown in figure 10 which also starts the Sysmon

service immediately in the background. The Sysmon service will automatically run

when the system starts, however, as this is on the server it will be on continuously due

to the nature of servers rarely shutting down besides for maintenance.

Figure 10 – Installing Sysmon on the Windows Server 2019 VM

2 EvtxExplorer available to download at: https://github.com/EricZimmerman/evtx

Import-module activedirectory

$UserList = Import-Csv -Path 'C:\Users\Administrator\Downloads\FakeNameGenerator.csv'

foreach ($User in $UserList) {

 $Values = @{

 Enabled = $true

 #Password must be changed as soon as the user logs in for the first time

 ChangePasswordAtLogon = $true

 Path = "OU=$($User.Country),OU=Users,OU=LAB-ENVIRONMENT,DC=southwales,DC=ac,DC=uk"

 #Sets the user's names and username for logging in

 Name = "$($User.GivenName) $($User.Surname)"

 UserPrincipalName = "$($User.GivenName).$($User.Surname)@southwales.ac.uk"

 Email = "$($User.GivenName).$($User.Surname)@southwales.ac.uk"

 SamAccountName = "$($User.GivenName).$($User.Surname)"

 Title = $User.Title

 GivenName = $User.GivenName

 Surname = $User.Surname

 #Sets the City, Occupation, Country and phone number of the user

 City = $User.City

 StreetAddress = $User.StreetAddress

 OfficePhone = $User.TelephoneNumber

 Country = $User.Country

 #Password is set to 'Password1!' for all users until login where they have to change it

 AccountPassword = "Password1!" | ConvertTo-SecureString -AsPlainText -Force

 }

 New-ADUser @Values

}

https://github.com/EricZimmerman/evtx

28

 The EvtxExplorer application does not need installing and is used as a standalone

executable. A detailed explanation of how this application is used in conjunction with the

deliverable is illustrated in chapter 4.2.3.3 of this dissertation.

4.2 C# .NET Threat Hunting Application

The C# application consists of different features that will assist a threat hunter in

their role of carrying out a hunt on event logs. The core foundation of the application

mainly features the event viewer with basic event type, source, and instance ID filtering

capabilities. The hypothesis is that this event log viewer will be faster than the

standalone Windows Event Viewer used currently as it does not need to load in all logs

that may be unnecessary for a threat hunter. The secondary functionality of the

application includes the machine learning aspect where the filtering can be used against

a machine learning model to detect any anomalies that may occur in the logs of the

Sysmon event logs in particular. Any anomalies detected by the machine learning

algorithm will be highlighted to the user for further analysis.

4.2.1 Initial Layout and Design

The C# application consists of a basic Winforms GUI that features a menu bar,

tool strip with various options, the main event log data grid view and a progress bar

anchored towards the bottom of the form.

Figure 11 – Basic GUI layout for the primary WinForms deliverable application

 The user can access the Windows Event Viewer and Performance Monitor directly

from the main application as well as being able to filter based on type, source, and instance

ID of the event they are trying to query. The event logs for that particular query will be

displayed in a DataGridView in the lower three-quarters of the UI. Double-clicking on

cells within the UI allows the user to view more information as well as auto-populating

29

the filter boxes in the tool strip for ease of convenience for the next filter they may want

to conduct.

 The second form within this application is the machine learning form. This form

will be used in order to gather the Sysmon CSV file created using the EvtxExplorer

application on the target infrastructure while processing and analysing it using the spike

detection time-series anomaly detection algorithm. The results of the analysis are

displayed in a similar format to the event logs retrieved in the main form, however, a final

column ‘Anomaly Detected?’ will denote whether the algorithm believes an anomaly

exists for that particular log or not.

4.2.2 Visual Studio and GitHub Setup

The Visual Studio version used for this application is Visual Studio Community

2019 which includes the necessary tools to create an interactive GUI with the backend

code to conduct the event log collection and analysis. For this application to work, there

are a few libraries that need installing. The installation of the libraries can be done via the

in-build NuGet Package Manager which keeps track of the versions and whether any

updates are required to keep the application safe and up to date. The NuGet libraries

required for the machine learning element of this application are:

• Microsoft.ML

• Microsoft.ML.CpuMath

• Microsoft.ML.DataView

• Microsoft.ML.Mkl.Redist

• Microsoft.ML.TimeSeries

The aforementioned frameworks contain the necessary classes, components and

dependencies needed for the machine learning algorithms to work. The

Microsoft.ML.TimeSeries specifically contains the algorithms for the anomaly detection

whilst the other packages contain the core functionality of machine learning.

A GitHub repository, which is used for software development and version control,

was also set up for this project in order to track changes and issues with ease. The

repository allows for recovery of files in case of any bugs that may occur further down

the line and keeps a record of the progress made. Not all saves are uploaded to the GitHub

repository, but significant milestones are saved locally and are then committed and

pushed to the repository. By using GitHub, it also allows for the source code to be shared

with the public and is downloadable by anyone who has the correct access.

30

4.2.3 Core Functionality

This section is split into three parts in which the application functionality is

outlined: the creation of the Windows Event Logs filterer and viewer, the addition of the

Sysmon logs being collected to the filterer and viewer, and finally the implementation of

the machine learning algorithm in the second form using Sysmon. Each section will cover

aspects of the design and development of these core functionalities; however, this section

is not exhaustive to the whole application. The source files for the application are

available on GitHub for further analysis of the C# code which includes detailed comments

for each functionality. The link for the source code is available at Appendix B.

4.2.3.1 Processing of Windows Event Logs

In order for the application to collect logs, it is required that the threat hunter use

the filters provided in the tool strip to narrow down the search criteria. The reason these

filters were chosen in this way is that they only allow the logs that the threat hunter

requires to be loaded instead of loading all possible, often unnecessary, logs specifically

for the hunt. The user can select the type of log: Application, System, Security and

Sysmon, which will then auto populate the ‘Source’ filter based on the sources that those

event logs are attached to.

The application iterates through the event logs of that type and will gather the

sources and add them to the ‘Source’ filter upon the ‘Type’ filter being closed. This

process takes a few seconds as it is an iterative step. There is no need for the user to use

a source, however, this will narrow down the query and produce results faster and more

focused. Finally, the last filter ‘Instance ID’ takes a numerical value which correlates to

the event ID of an event log. This ‘Instance ID’ filter provides a more granular search to

the query which in total provides three ways of retrieving event logs. As with the source

filter, there is no requirement to set an instance ID for a query to take place.

Once the values for the filters have been set, the user can then press the ‘filter’

button to the right of the ‘bin’ button that will gather the latest event logs of that type, as

well as source or instance ID if they have been set. This process takes a few moments and

may take up to and over a minute in cases where there are many thousands of logs being

queried. An example of the search process and subsequent populated results are shown in

figure 12.

31

Figure 12 – Deliverable application showing event logs that have been filtered

 Within the DataGridView, where the event log results are shown, it is possible to

click on the cells for further functionality. Double-clicking on the ‘Log No’ will display

further information about the log which cannot be stored within the table due to its length,

while double-clicking on an ‘Instance/Event ID’ or ‘Source’ cell will auto populate the

filter textbox with its value for the next search respectively. An example of the detailed

information shown to the user after double-clicking a ‘Log No’ cell for a particular event

log is outlined in figure 13.

Figure 13 – Deliverable application showing more information for the specified event log

 This simplified approach to filtering based on three variables provides new users

and novices to threat hunting with a great opportunity to learn and discover the art of the

field without being overwhelmed with logs and an array of different options in tools such

as the Windows Event Viewer, which hasn’t had any considerable upgrades, especially to

its UI and UX (User Experience) since Windows Vista (Petri, 2009).

32

The instance ID filter contains necessary try/catch exception handlers as it is a

source of user input. If an instance ID of the user specified filter value does not exist,

then the program will throw and error message detailing that no such value exists.

Alternatively, if a user inputs a non-numerical value into the filter, then another error

message will display stating such. The error messages produced by the application in

these instances are in figure 14.

Figure 14 – Non-existent and non-numerical Instance ID error messages

4.2.3.2 Processing of Sysmon Logs

On the surface, the Sysmon logs appear to be collected in the same way. However,

there are a few dissimilarities on how and what is possible with the Sysmon filtering.

Firstly, it is only possible to filter Sysmon logs based on the event ID as Sysmon event

logs do not contain any sources as they are their own source from the Sysmon service

being utilised to produce the logs.

Secondly, in order to collect non-Windows event logs, such as those by third

parties as is the case with Sysmon, it is required to use the EventLogQuery class as

opposed to the EventLog class that was used for retrieving Application, System and

Security logs. In this sense, it was required to create a separate method for collecting

Windows and non-Windows (Sysmon) logs.

A comparison between EventLog and EventLogQuery is shown in figure 15

below.

Figure 15 – Comparison between EventLog and EventLogQuery classes for retrieving logs

33

 As with the Windows logs, it is also possible for the threat hunter to double-click

on the cell of the ‘Log No’ for Sysmon logs and retrieve further information regarding

that particular event. All the log messages for each filter iteration and stored in a

List<string> using and are then accessed when the user double-clicks on the cell as

highlighted in figure 16.

The pop-up message which retrieves the string from the logMessage list contains

information such as what sort of event is it (such as process creation, network creation,

process access, driver loaded etc.), the time the event was logged, the unique GUID of

the process, name of the file name executed, hashes as well as a description among other

interesting features valuable to a threat hunter.

Figure 16 – Sysmon log showing more event information when double-clicked

 The logs upon being filtered to the DataGridView are automatically hardcoded to

be sorted by the time stamp hence, in figure 16, the last log number is shown first as it

was the latest Sysmon event log of event ID 1 – Process Creation to be logged to the .evtx

file.

4.2.3.3 Sysmon Machine Learning Anomaly Detection

The final section of the deliverable application is the use of anomaly detection to

identify anomalous activity within the Sysmon events. The GUI of this form follows a

very similar design as the event log retriever form covered in sections 4.2.3.1 and 4.2.3.2,

however, there are notable features that are missing or have been added. Firstly, this

window will only allow for the collection and analysis of Sysmon logs for this proof-of-

concept. Secondly, the user must supply the CSV file using an external open-source tool.

Thirdly, the filtering textboxes have been removed as they are not applicable for this

section of the application.

34

The reason why this proof-of-concept deliverable has solely concentrated on the use

of Sysmon logs for analysis is that allowing all logs to be analysed for a proof-of-concept

would be exhaustive and would take a long time to implement correctly without any

mistakes. The Sysmon logs only consist of twenty-six different events that can ever be

logged, making the collection and analysis process much more straightforward. It is

important to note however that although Sysmon only collects twenty-six events, it

provides a lot of important information, especially for anomalous activity detection

(Garnier & Russinovich, 2021). The majority of the time however, the most common logs

that are collected for Sysmon are event IDs 1 – Process Creation, 3 – Network Connection

and 5 – Process Terminated with the occasional error with event ID 5.

The threat hunter is required to use the previously mentioned tool, EvtxExplorer, to

parse the .evtx event log files to the readable CSV format. The anomaly spike detection

within ML.NET requires that the format be CSV and that there be two columns. This is

part of the data processing stage required before using any machine learning algorithm.

It is important that data is sanitised and of the correct format, this can be done by hand or

within the program. Once the user presses the tool strip CSV button, as shown in figure

17, the application will run a sequence of events to collect, analyse and print the results,

including any anomalous results, to the DataGridView.

Figure 17 – GUI layout for the machine learning window of the WinForms deliverable application

 The threat hunter can create a CSV of the Sysmon event logs by going to the

directory of the EvtxExplorer executable and executing the following command in figure

18. This command was executed on the server in order to create the CSV file necessary

for the deliverable application to process where -f is equal to the location of the Sysmon

35

.evtx log file, --csv is equal to the full path of the location to save and –csvf is equal to

the name of the CSV file to save (Elshaer, 2020).

Figure 18 – Generating a CSV file on the server using EvtxExplorer

The user can use this newly created and up-to-date CSV file to pass it into the

application by pressing on the CSV button on the machine learning form. The user will

be prompted to select the CSV file with an OpenFileDialog which will store the CSV

contents in a variable called csvFileName.

Figure 19 – Populated anomaly analysis results with Sysmon spike detection

 The ‘Anomaly Detected?’ column will highlight if there is an anomaly detected

by the algorithm, however, this is not to say that there is any malicious activity taking

place, just that the logged event has deviated from the norm and required further human

analysis. In order to use the Microsoft.ML.TimeSeries algorithms, in particular, Spike

Detection, it is required that two classes are created: SysmonData and SysmonPrediction.

Spike Detection requires a time series input data class to store the values of the CSV to

be analysed (Alexander, et al., 2020). Within the SysmonData class are two properties:

public string TimeCreated, and public float EventID. This algorithm only takes one input,

which in this case will be the Event ID. This input is contrasted against the time stamp to

predict anomalies. No other variables are used in calculating the anomaly, and as such,

36

this is a fairly straightforward algorithm containing only two features. Data preprocessing

also occurs here, where the program will only select those two columns values and will

convert the integer to a float, which is needed for this particular algorithm.

 The second class, SysmonPrediction, contains a double array that stores the

prediction results from the algorithm later as an object for adding to the DataGridView

for viewing. Every machine learning project using ML.NET requires something which is

known as an MLContext, which is a class that once instantiated allows for data

preparation, feature engineering, training, prediction, analysis, and evaluation of the

machine learning model among other things within its own environment (Microsoft,

2021). The data that is retrieved from the CSV file is stored and loaded as an IDataView

interface, which is an efficient method of portraying tabular data for the algorithm to use.

 Once the data has been stored in the interface, the application creates an empty

DataView alongside the one which has the data, as it is used to create the schema for the

model fitting. Model fitting is a measure used to determine how well a machine model

matches real-world data (Khan & Jabbar, 2015). With all of the preparation mainly done

to the variables and interfaces, the DetectSpike method is created which uses the

aforementioned data to train the model on the same data that will be analysed. A transform

is then made, which makes the CSV data useable and useful by joining it together, making

it dimensionally modelled and de-normalised before prediction (Chan, 2019). This

transformed data is then used to create a strongly typed IEnumerable called predictions

that will store the results. The results stored in predictions includes the alert, score/Event

ID and the P-Value. The alert is used to indicate whether a spike is at this event log, and

is denoted by a 1 or 0, 1 being a spike. The score/Event ID will display the numerical

value of the event ID while the P-Value will display the probability of an anomaly. The

closer that this value is to 1 the likelihood that the entry is not an anomaly, where an entry

nearer to 0 would indicate a higher probability of being an anomaly. The p-value is

calculated by using the following equation:

𝑝𝑉𝑎𝑙𝑢𝑒 = 1 −
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

100

Equation 1 - pValue prediction of an anomaly

 Confidence in this equation is defined as the signatured produced by the spike

estimator that predicts the anomaly spikes. In this program, the confidence has been set

37

to 95, which means that the model requires a high degree of confidence before deciding

and making the call if the event log is a spiked anomaly or not. Lowering this value would

produce more spikes, therefore, it is good to tune the value depending on how many

anomalies are being detected, that are known not to be anomalies.

 Once the prediction has been made, the results are iterated through and are

displayed to the DataGridView. The code for doing this is shown in figure 20 below.

Figure 20 - Iterating through predicted results and displaying logs with anomalies to DataGridView

5 Analysis

There are a few tests that will be carried out in order to verify the effectiveness of the

deliverable. The first test is to check the speed of the deliverable in retrieving logs from

the event log and comparing its time with the native Windows Event Viewer.

The first test will run five times, opening Windows Event Viewer, searching for

Sysmon, sorting by Event ID and then repeating by closing the application and trying

again. Then the deliverable application will do the exact same test. This test will measure

the efficiency of lowering the dwell time, that is, which application can load the logs the

fastest for the quickest analysis by a human threat hunter.

Running Windows Event Viewer five times and opening Sysmon via the folder tree

takes around 2s to filter from lowest to highest Event ID on average. The same test with

the deliverable takes around 5s to filter those logs based on lowest to highest Event ID on

average. There is a slightly disappointing result in that the deliverable application takes

longer than the Windows Event Viewer to load Sysmon results, however, this is not the

38

case for Application, System and Security event logs where the loading time is around the

same or even faster in some cases. This is also dependent on the resources being currently

consumed by the computer doing the task. This could also be due to the fact that the

deliverable has not been compiled fully into an executable prior to testing. The same logs

are loaded by both the Windows Event Viewer and the deliverable. The deliverable

requires a single double-click to view all the log’s descriptions and messages, whereas

the standard Windows Event Viewer requires the user to scroll down to view more details

about the log in question.

Windows Event Viewer does not include an anomaly detector, and as such, cannot be

compared to the system build in the deliverable to detect Sysmon anomalies. The user

using the conventional approach would have to scroll through all the logs and determine

whether an anomaly may be taking place, this increases the dwell time and the time the

attacker has to carry out their APT and attacks. The deliverable highlights which logs

have an anomaly, and can be incorporated with the Windows Event Viewer to verify those

specific logs with more detailed information.

Due to the very nature of this novel Sysmon log analyser using anomaly spike

detection, there is no way to compare it against an existing tool that is available to the

public, as such a tool does not exist in the current domain for Sysmon logs in particular.

However, ELK using Ubuntu was also used to determine how practical it is to analyse

Sysmon logs versus the anomaly detection provided by the deliverable. ELK is a logging

tool for search and analysis which can ingest data from multiple sources.

The advantage of this deliverable is that it can accompany both Windows Event

Viewer, ELK and other SIEMs to enhance the intelligence capabilities of a new threat

hunter who has entered the field. The tool can be used as the first stop of a training threat

hunter to understand logs, how they work, how they are sequenced and if there are any

anomalies that could be present. ELK is incredibly complicated and contains many

configurations, which is mainly used for large infrastructures and networks. ELK would

be an overkill for many threat hunts where the network environments only contain a few

computers.

39

6 Evaluation and Conclusion

The event log collector and analyser created in this dissertation is great tool for

newcomers to cyber threat hunting to understand the basic ideas and principles behind

the techniques used for log collection and analysis. The tool provides novices to threat

hunting with a way to analyse these logs in a visually appealing format without too much

distraction from excessive options and numerous other miscellaneous logs that have no

bearing on threat hunting. This application acts as a first-step for new threat hunters and

can be used for training new SOC team members or those completely new to cyber or

computing. The application that has been created limits the logs that are collected to the

3 core Windows logs as well as the custom Sysmon logs. These are the 4 main log sources

that a threat hunter should be utilising and having them all in one place for quick analysis

without having to worry about complicated filtering is a great tool for anyone starting off

in the field. The usage of anomaly detection for determining spikes of anomalous logs in

the Sysmon event logs is a powerful feature that will lower the dwell time of threat hunts

by point threat hunters in the right direction towards which logs should be analysed and

given priority before others.

With every project, however, there are limitations and lessons learned. The main

limitation with this project is time. The time constraints put on this project does not allow

for it to grow to its full potential if it had much longer to develop. The Sysmon anomaly

detection uses a basic machine learning algorithm only and will not notify if a log is

malicious or not, only anomalous. This is very useful, however, a longer development

time could allow for more advanced machine algorithms to be utilised and adapted. It

could also be possible for deep learning algorithms to play a substantial role in this

application. Due to the very nature of machine learning needing large datasets to work at

its most effective, another limitation with this approach is that the computing power to

analyse in real-time the Sysmon logs of a larger environment from a commercial computer

sold to the public is limiting and would require immense deep learning computational

power the likes of only large corporations have. This application will continue to be

developed on with time, more features will be added, more analysis will be made on non-

Sysmon logs with different machine learning techniques and hopefully with more time

this application can become a practical learning and instructional tool for teaching the

techniques of threat hunting to a new audience with little experience.

40

7 LSEPI

For every research project, the Legal, Social, Ethical and Professional Issues

(LSEPI) need to be discussed and addressed prior to conducting any studies. In some

cases, there may not be any issues whatsoever, however, it is vital that all consideration

is given in determining whether there are any LSEPI problems that may arise that need

managing, no matter how small they are. The next 4 subchapters will discuss what issues

this project will be dealing with and how those issues can be alleviated.

7.1 Legal

There are some legal aspects regarding this research project that needs addressing.

In the UK, computer professionals are bound by legislation, guidelines and standards

which must be adhered to. This research project will mainly need to comply with the

Computer Misuse Act 1990 (CMA 1990), Data Protection Act 2018 (DPA 2018) and the

General Data Protection Regulation (GDPR). Besides legislation, frameworks and codes

of conduct of the British Computer Society (BCS) must also be followed, however, this

can also be considered as part of the Professional aspect of LSEPI.

This project requires that data be used to test and analyse the effectiveness of the

threat hunting programme that will be created against data logs and events. The data

collected will be subject to the DPA 2018 as it may contain sensitive information such as

names, addresses, websites etc, however, upmost attention has been taken to ensure that

all data is pseudonymised before use in the project. Open-source datasets are used by

threat hunters in order to simulate hunts and are therefore pseudonymised out-of-the-box.

This project will also explore creating personalised threats and attack data logs and events

using a virtual machine (VM) over a virtual network. This virtual network will be locked

down from the internet and external network and will only be used for carrying out attack

simulations in order to test and evaluate the program deliverable.

The CMA is also valid in this project as there must not be any unauthorised access,

unauthorised access with intent to commit further crime or unauthorised modification to

computers or networks during this research (Computer Misuse Act, 1990). There will be

no unauthorised access or modification to any computer or network besides the

modification conducted within the VMs themselves, which will be disconnected from the

internet and cannot inadvertently harm other network users. The utmost care must be

taken to ensure that the necessary legislation is adhered to, however, the case of breaking

41

any legislation in this research project is minimal due to the closed nature of the work

which won’t be exposed to anybody besides those working closely on the project.

While writing the report as well as conducting research, all care must be taken to

ensure that all sources are referenced correctly. This is to prevent any accusations of

plagiarism as well as adhering to the Copyright, Designs and Patents Act 1988 while

using other organisations or peoples work.

7.2 Social

Due to the nature of this project, there will be minimal social interaction compared

to other projects i.e. there will be no surveys nor questionnaires collected with personal

information.

7.3 Ethical

During this research, there must be no bias presented towards any authors,

researchers, lecturers or organisations that have produced articles, journals or research

papers. All material and sources must be treated fairly and critically analysed to remove

any underlying bias from them. As mentioned above, data will be anonymised during

collection and storage and will not be shared with third parties without prior consent by

said individual.

7.4 Professional

The research project will adhere to the guidelines and codes of ethics, practice and

conduct set out by the BCS and other relevant bodies.

42

8 References
Alexander, J. et al., 2020. Tutorial: Detect anomalies in product sales with ML.NET.

Available at: https://docs.microsoft.com/en-us/dotnet/machine-learning/tutorials/sales-

anomaly-detection

(Accessed: 29 July 2021)

Betz, C., Caltagirone, S. & Pendergast, A., 2013. The Diamond Model of Intrusion

Analysis, Hanover (MD): Center For Cyber Intelligence Analysis and Threat Research.

Bridge, K., Sharkey, K. & Satran, M., 2018. Event Sources.

Available at: https://docs.microsoft.com/en-us/windows/win32/eventlog/event-sources

(Accessed: 23 August 2021)

Bridge, K., Sharkey, K. & Satran, M., 2018. Event Types.

Available at: https://docs.microsoft.com/en-us/windows/win32/eventlog/event-types

(Accessed: 11 August 2021)

Chan, D., 2019. Why You Need Data Transformation in Machine Learning.

Available at: https://www.datanami.com/2019/11/08/why-you-need-data-

transformation-in-machine-learning/

(Accessed: 22 August 2021)

Christou, E., Spring, J. M. & Al-Shaer, R., 2020. Learning the Associations of MITRE

ATT & CK Adversarial Techniques. Avignon, IEEE, pp. 1-9.

Computer Misuse Act, 1990.

Available at: http://www.legislation.gov.uk/ukpga/1990/18/contents

Elshaer, A., 2020. Introduction to EvtxEcmd (Evtx Explorer).

Available at: https://isc.sans.edu/forums/diary/25858

(Accessed: 2 August 2021)

Garnier, T. & Russinovich, M., 2021. Sysmon v13.22.

Available at: https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

(Accessed: 1 July 2021)

Gartner, Inc., 2014. Threat Intelligence: What is it, and How Can it Protect You from

Today’s Advanced Cyber-Attacks?, Broomfield (CO): Webroot.

Hutchins, E. M., Cloppert, J. M. & Amin, R. M., 2011. Intelligence-Driven Computer

Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill

Chain, Bethesda (MD): Lockheed Martin Corp..

Jøsang, A. & Mavroeidis, V., 2018. Data-Driven Threat Hunting Using Sysmon.

Guiyang, ICCSP, pp. 82-88.

Kahraman, Z. & Kocak, C., 2016. Performance analysis of IP network using two-way

active measurement protocol (TWAMP) and comparison with ICMP (ping) protocol in

a saturated condition.. Antalya, 4th International Symposium on Innovative

Technologies in Engineering and Science (ISITES2016).

43

Khan, R. Z. & Jabbar, H., 2015. Methods to avoid over-fitting and under-fitting in

supervised machine learning (comparative study). Computer Science, Communication

and Instrumentation Devices, pp. 163-172.

Landauer, M. et al., 2018. Time Series Analysis: Unsupervised Anomaly Detection

Beyond Outlined Detection. International Conference on Information Security Practice

and Experience, pp. 19-36.

Lee, R. M. & Lee, R. T., 2018. Threat Hunting Survey Results, Bethesda (MD): SANS.

Lippmann, R. et al., 2006. Validating and restoring defense in depth using attack

graphs.. Washington (D.C.), MILCOM IEEE Military Communications Conference.

Lord, N., 2020. What are indicators of compromise.

Available at: https://digitalguardian.com/blog/what-are-indicators-compromise

(Accessed: 21 July 2021)

McHugh, J., 2000. ACM Transactions on Information and System Security. Testing

Intrusion Detection Systems: A Critique of the 1998 and 1999 DARPA Intrusion

Detection System Evaluations as Performed by Lincoln Labratory, 3(4).

Microsoft, 2007. Troubleshooting. In: Windows Vista: Beyond the Manual. New York

City (NY): Apress, pp. 439-448.

Microsoft, 2018. Event Logging.

Available at: https://docs.microsoft.com/en-us/windows/win32/eventlog/event-logging

(Accessed: 20 August 2021)

Microsoft, 2021. IidSpikeEstimator Class.

Available at: https://docs.microsoft.com/en-

us/dotnet/api/microsoft.ml.transforms.timeseries.iidspikeestimator?view=ml-dotnet

(Accessed: 28 August 2021)

Microsoft, 2021. MLContext Class.

Available at: https://docs.microsoft.com/en-

us/dotnet/api/microsoft.ml.mlcontext?view=ml-dotnet

(Accessed: 25 August 2021)

Mitchell, T. M., 1997. Machine Learning. 1st ed. New York: McGraw Hill.

MITRE, 2021. ATT&CK Matrix for Enterprise.

Available at: https://attack.mitre.org/

(Accessed: 30 June 2021)

Müller, A. C. & Guido, S., 2017. Introduction to Machine Learning with Python.

Sebastopol(CA): O'Reilly.

Palacín, V., 2021. Practical Threat Intelligence and Data-Driven Threat Hunting. 1st

ed. Birmingham: Packt.

Petri, D., 2009. Working with Vista's new Event Viewer.

Available at: https://petri.com/vista-event-viewer

(Accessed: 15 August 2021)

44

Robbins, A., Schroeder, W. & Vazarkar, R., 2021.

https://github.com/BloodHoundAD/BloodHound.

Available at: https://github.com/BloodHoundAD/BloodHound

(Accessed: 2 August 2021)

Royal Literary Fund, 2019. What is a Literature Review.

Available at: https://www.rlf.org.uk/resources/what-is-a-literature-review/

Russinovich, M. & Garnier, T., 2021. Sysmon v13.24.

Available at: https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

(Accessed: 28 July 2021)

SANS, 2021. A Practical Model for Conducting Cyber Threat Hunting, Bethesda (MD):

SANS.

Sharafaldin, I., Lashkari, A. H. & Ghorbani, A. A., 2016. Toward Generating a New

Intrusion Detection Dataset and Intrusion Traffic Characterization, New Brunswick:

Canadian Institute for Cybersecurity.

Sqrrl Data, Inc., 2018. A Framework for Cyber Threat Hunting, Cambridge (MA):

Sqrrl.

Taschler, S., 2021. What is Cyber Threat Hunting?.

Available at: https://www.crowdstrike.com/cybersecurity-101/threat-hunting/

(Accessed: 9 August 2021)

Topi, H. & Brown, C. V., 2005. IS Management Handbook. New York: Taylor &

Francis.

Xiong, W., Legrand, E., Åberg, O. & Lagerström, R., 2021. Cyber security threat

modeling based on the MITRE Enterprise ATT&CK Matrix. Software and Systems

Modeling, pp. 1-21.

Youngjin, K., Kim, C., Maeng, S. & Huh, J., 2011. Virtualizing performance

asymmetric multi-core systems. San Jose (CA), IEEE.

45

9 Appendices

Appendix A – AD user creation CSV file (FakeNameGenerator.csv)

Appendix B – GitHub source code (https://github.com/joshua-richards/Integrated-

Threat-Hunting-Tool)

https://github.com/joshua-richards/Integrated-Threat-Hunting-Tool
https://github.com/joshua-richards/Integrated-Threat-Hunting-Tool

