4,634 research outputs found

    Machine learning regression on hyperspectral data to estimate multiple water parameters

    Full text link
    In this paper, we present a regression framework involving several machine learning models to estimate water parameters based on hyperspectral data. Measurements from a multi-sensor field campaign, conducted on the River Elbe, Germany, represent the benchmark dataset. It contains hyperspectral data and the five water parameters chlorophyll a, green algae, diatoms, CDOM and turbidity. We apply a PCA for the high-dimensional data as a possible preprocessing step. Then, we evaluate the performance of the regression framework with and without this preprocessing step. The regression results of the framework clearly reveal the potential of estimating water parameters based on hyperspectral data with machine learning. The proposed framework provides the basis for further investigations, such as adapting the framework to estimate water parameters of different inland waters.Comment: This work has been accepted to the IEEE WHISPERS 2018 conference. (C) 2018 IEE

    An Integrative Remote Sensing Application of Stacked Autoencoder for Atmospheric Correction and Cyanobacteria Estimation Using Hyperspectral Imagery

    Get PDF
    Hyperspectral image sensing can be used to effectively detect the distribution of harmful cyanobacteria. To accomplish this, physical- and/or model-based simulations have been conducted to perform an atmospheric correction (AC) and an estimation of pigments, including phycocyanin (PC) and chlorophyll-a (Chl-a), in cyanobacteria. However, such simulations were undesirable in certain cases, due to the difficulty of representing dynamically changing aerosol and water vapor in the atmosphere and the optical complexity of inland water. Thus, this study was focused on the development of a deep neural network model for AC and cyanobacteria estimation, without considering the physical formulation. The stacked autoencoder (SAE) network was adopted for the feature extraction and dimensionality reduction of hyperspectral imagery. The artificial neural network (ANN) and support vector regression (SVR) were sequentially applied to achieve AC and estimate cyanobacteria concentrations (i.e., SAE-ANN and SAE-SVR). Further, the ANN and SVR models without SAE were compared with SAE-ANN and SAE-SVR models for the performance evaluations. In terms of AC performance, both SAE-ANN and SAE-SVR displayed reasonable accuracy with the Nash???Sutcliffe efficiency (NSE) > 0.7. For PC and Chl-a estimation, the SAE-ANN model showed the best performance, by yielding NSE values > 0.79 and > 0.77, respectively. SAE, with fine tuning operators, improved the accuracy of the original ANN and SVR estimations, in terms of both AC and cyanobacteria estimation. This is primarily attributed to the high-level feature extraction of SAE, which can represent the spatial features of cyanobacteria. Therefore, this study demonstrated that the deep neural network has a strong potential to realize an integrative remote sensing application

    Hyper-Spectral Image Analysis with Partially-Latent Regression and Spatial Markov Dependencies

    Get PDF
    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.Comment: 12 pages, 4 figures, 3 table

    Linear vs Nonlinear Extreme Learning Machine for Spectral-Spatial Classification of Hyperspectral Image

    Get PDF
    As a new machine learning approach, extreme learning machine (ELM) has received wide attentions due to its good performances. However, when directly applied to the hyperspectral image (HSI) classification, the recognition rate is too low. This is because ELM does not use the spatial information which is very important for HSI classification. In view of this, this paper proposes a new framework for spectral-spatial classification of HSI by combining ELM with loopy belief propagation (LBP). The original ELM is linear, and the nonlinear ELMs (or Kernel ELMs) are the improvement of linear ELM (LELM). However, based on lots of experiments and analysis, we found out that the LELM is a better choice than nonlinear ELM for spectral-spatial classification of HSI. Furthermore, we exploit the marginal probability distribution that uses the whole information in the HSI and learn such distribution using the LBP. The proposed method not only maintain the fast speed of ELM, but also greatly improves the accuracy of classification. The experimental results in the well-known HSI data sets, Indian Pines and Pavia University, demonstrate the good performances of the proposed method.Comment: 13 pages,8 figures,3 tables,articl

    Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification

    Get PDF
    Despite the fact that nonlinear subspace learning techniques (e.g. manifold learning) have successfully applied to data representation, there is still room for improvement in explainability (explicit mapping), generalization (out-of-samples), and cost-effectiveness (linearization). To this end, a novel linearized subspace learning technique is developed in a joint and progressive way, called \textbf{j}oint and \textbf{p}rogressive \textbf{l}earning str\textbf{a}teg\textbf{y} (J-Play), with its application to multi-label classification. The J-Play learns high-level and semantically meaningful feature representation from high-dimensional data by 1) jointly performing multiple subspace learning and classification to find a latent subspace where samples are expected to be better classified; 2) progressively learning multi-coupled projections to linearly approach the optimal mapping bridging the original space with the most discriminative subspace; 3) locally embedding manifold structure in each learnable latent subspace. Extensive experiments are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.Comment: accepted in ECCV 201
    corecore