2,126 research outputs found

    Opioid Use Disorder Prediction Using Machine Learning of fMRI Data

    Get PDF
    According to the Centers for Disease Control and Prevention (CDC) more than 932,000 people in the US have died since 1999 from a drug overdose. Just about 75% of drug overdose deaths in 2020 involved Opioid, which suggests that the US is in an Opioid overdose epidemic. Identifying individuals likely to develop Opioid use disorder (OUD) can help public health in planning effective prevention, intervention, drug overdose and recovery policies. Further, a better understanding of prediction of overdose leading to the neurobiology of OUD may lead to new therapeutics. In recent years, very limited work has been done using statistical analysis of functional magnetic resonance imaging (fMRI) methods to analyze the neurobiology of Opioid addictions in humans. In this work, for the first time in the literature, we propose a machine learning (ML) framework to predict OUD users utilizing clinical fMRI-BOLD (Blood oxygen level dependent) signal from OUD users and healthy controls (HC). We first obtain the features and validate these with those extracted from selected brain subcortical areas identified in our previous statistical analysis of the fMRI-BOLD signal discriminating OUD subjects from that of the HC. The selected features from three representative brain areas such as default mode network (DMN), salience network (SN), and executive control network (ECN) for both OUD participants and HC subjects are then processed for OUD and HC subjects’ prediction. Our leave one out cross validated results with sixty-nine OUD and HC cases show 88.40% prediction accuracies. These results suggest that the proposed techniques may be utilized to gain a greater understanding of the neurobiology of OUD leading to novel therapeutic development

    Using machine learning to study the effect of medication adherence in Opioid Use Disorder

    Get PDF
    Background: Opioid Use Disorder (OUD) and opioid overdose (OD) impose huge social and economic burdens on society and health care systems. Research suggests that Medication for Opioid Use Disorder (MOUD) is effective in the treatment of OUD. We use machine learning to investigate the association between patient’s adherence to prescribed MOUD along with other risk factors in patients diagnosed with OUD and potential OD following the treatment. Methods: We used longitudinal Medicaid claims for two selected US states to subset a total of 26,685 patients with OUD diagnosis and appropriate Medicaid coverage between 2015 and 2018. We considered patient age, sex, region level socio-economic data, past comorbidities, MOUD prescription type and other selected prescribed medications along with the Proportion of Days Covered (PDC) as a proxy for adherence to MOUD as predictive variables for our model, and overdose events as the dependent variable. We applied four different machine learning classifiers and compared their performance, focusing on the importance and effect of PDC as a variable. We also calculated results based on risk stratification, where our models separate high risk individuals from low risk, to assess usefulness in clinical decision-making. Results: Among the selected classifiers, the XGBoost classifier has the highest AUC (0.77) closely followed by the Logistic Regression (LR). The LR has the best stratification result: patients in the top 10% of risk scores account for 35.37% of overdose events over the next 12 month observation period. PDC score calculated over the treatment window is one of the most important features, with better PDC lowering risk of OD, as expected. In terms of risk stratification results, of the 35.37% of overdose events that the predictive model could detect within the top 10% of risk scores, 72.3% of these cases were non-adherent in terms of their medication (PDC <0.8). Targeting the top 10% outcome of the predictive model could decrease the total number of OD events by 10.4%. Conclusions: The best performing models allow identification of, and focus on, those at high risk of opioid overdose. With MOUD being included for the first time as a factor of interest, and being identified as a significant factor, outreach activities related to MOUD can be targeted at those at highest risk

    Enhanced phenotypes for identifying opioid overdose in emergency department visit electronic health record data

    Get PDF
    Background Accurate identification of opioid overdose (OOD) cases in electronic healthcare record (EHR) data is an important element in surveillance, empirical research, and clinical intervention. We sought to improve existing OOD electronic phenotypes by incorporating new data types beyond diagnostic codes and by applying several statistical and machine learning methods. Materials and Methods We developed an EHR dataset of emergency department visits involving OOD cases or patients considered at risk for an OOD and ascertained true OOD status through manual chart reviews. We developed and validated prediction models using Random Forest, Extreme Gradient Boost, and Elastic Net models that incorporated 717 features involving primary and second diagnoses, chief complaints, medications prescribed, vital signs, laboratory results, and procedural codes. We also developed models limited to single data types. Results A total of 1718 records involving 1485 patients were manually reviewed; 541 (36.4%) patients had one or more OOD. Prediction performance was similar for all models; sensitivity varied from 94% to 97%; and area under the receiver operating characteristic curve (AUC) was 98% for all methods. The primary diagnosis and chief complaint were the most important contributors to AUC performance; primary diagnoses and medication class contributed most to sensitivity; chief complaint, primary diagnosis, and vital signs were most important for specificity. Models limited to decision support data types available in real time demonstrated robust prediction performance. Conclusions Substantial prediction performance improvements were demonstrated for identifying OODs in EHR data. Our e-phenotypes could be applied in surveillance, retrospective empirical applications, or clinical decision support systems

    Extracting Patterns in Medical Claims Data for Predicting Opioid Overdose

    Get PDF
    The goal of this project is to develop an efficient methodology for extracting features from time-dependent variables in transaction data. Transaction data is collected at varying time intervals making feature extraction more difficult. Unsupervised representational learning techniques are investigated, and the results compared with those from other feature engineering techniques. A successful methodology provides features that improve the accuracy of any machine learning technique. This methodology is then applied to insurance claims data in order to find features to predict whether a patient is at risk of overdosing on opioids. This data covers prescription, inpatient, and outpatient transactions. Features created are input to recurrent neural networks with long short-term memory cells. Hyperparameters are found through Bayesian optimization. Validation data features are reduced using weights from the best model and compared against those found using unsupervised learning techniques in other classifiers

    Enhancing Drug Overdose Mortality Surveillance through Natural Language Processing and Machine Learning

    Get PDF
    Epidemiological surveillance is key to monitoring and assessing the health of populations. Drug overdose surveillance has become an increasingly important part of public health practice as overdose morbidity and mortality has increased due in large part to the opioid crisis. Monitoring drug overdose mortality relies on death certificate data, which has several limitations including timeliness and the coding structure used to identify specific substances that caused death. These limitations stem from the need to analyze the free-text cause-of-death sections of the death certificate that are completed by the medical certifier during death investigation. Other fields, including clinical sciences, have utilized natural language processing (NLP) methods to gain insight from free-text data, but thus far, adoption of NLP methods in epidemiological surveillance has been limited. Through a narrative review of NLP methods currently used in public health surveillance and the integration of two NLP tasks, classification and named entity recognition, this dissertation enhances the capabilities of public health practitioners and researchers to perform drug overdose mortality surveillance. This dissertation advances both surveillance science and public health practice by integrating methods from bioinformatics into the surveillance pipeline which provides more timely and increased quality overdose mortality surveillance, which is essential to guiding effective public health response to the continuing drug overdose epidemic

    Data science strategy for injury and violence prevention

    Get PDF
    Injuries and violence are the leading causes of death in the United States for children, adolescents, and adults ages 18 to 44 years and rank in the top 10 causes of death for persons 45 years or older. In recent years, rates of deaths due to many forms of injury and violence\u2014drug overdose, suicide, homicide, road traffic crashes, and falls\u2014have increased, leading to recent declines in life expectancy in the United States. Beyond rising mortality, injuries and violence contribute to substantial morbidity as well as social and economic costs each year.Preventing injury and violence is a public health imperative given the significant impact on individuals, families, and communities across the United States. However, primary challenges to rapidly addressing these public health problems include limitations of both public health data as well as prevention and response capabilities. Lack of timely information, inability to identify emerging health threats, limited capacity to target services, increasingly prevalent health misinformation, declining participation in and lack of representativeness of traditional data systems, and fragmentation of electronic health records and clinical data systems are examples of the challenges facing contemporary public health efforts.A growing body of research now indicates that application of novel data and data science tools, methods, and techniques can help address critical public health needs, including injury and violence prevention and related issues such as social determinants of health and health equity. Academic research has focused, for example, on the use of novel data sources such as internet search queries to assess disease-related trends in real-time, natural language processing to study electronic health records and other systems with unstructured text, machine learning to improve prevention programming, network analysis to better understand mortality risk, online surveys to improve data timeliness and response rates, and interactive data visualization to improve communication and dissemination of scientific findings.Although data science is an emerging field, academic, industry, and governmental organizations have typically defined it by two consistent features: 1) a multidisciplinary approach that blends methodological techniques from computer science, statistics, and various subject matter domains and 2) a focus on large, complex, or otherwise novel data sources.For the purposes of public health and injury and violence prevention, the National Center for Injury Prevention and Control (Injury Center) defines population-health data science as a multidisciplinary approach combining traditional epidemiologic methods and contemporary computer science techniques, with a particular focus on large and complex data sources, to improve the measurement and prevention of injury and violence in communities.Suggested Citation: Centers for Disease Control and Prevention. Data Science Strategy for Injury and Violence Prevention. Atlanta, GA: National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, 2020.Data-Science-Strategy_FINAL_508.pdf20201140
    • …
    corecore