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Abstract

The goal of this project is to develop an efficient methodology for extracting features from

time-dependent variables in transaction data. Transaction data is collected at varying time

intervals making feature extraction more difficult. Unsupervised representational learning

techniques are investigated, and the results compared with those from other feature engi-

neering techniques. A successful methodology provides features that improve the accuracy of

any machine learning technique. This methodology is then applied to insurance claims data

in order to find features to predict whether a patient is at risk of overdosing on opioids. This

data covers prescription, inpatient, and outpatient transactions. Features created are input

to recurrent neural networks with long short-term memory cells. Hyperparameters are found

through Bayesian optimization. Validation data features are reduced using weights from the

best model and compared against those found using unsupervised learning techniques in

other classifiers.
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1. Introduction

Opioids are an effective pain-management tool, and can be used to treat a variety of con-

ditions with great success [1]. Unfortunately, they are not always taken appropriately, and

abuse of opioids can lead to adverse, many times fatal, events [2]. Opioids are highly addic-

tive, and incorrect prescription of opioids has been a driving factor in the national increase

of overdose-related deaths in the past 20 years [3]. In 2017 alone there were over 47,000

overdose deaths in the U.S. involving opioid [4]. Of those prescribed opioids for chronic

pain, an estimated 21 - 29% misuse them and 8 - 12% develop an opioid use disorder [5]. 4

- 6% of those who misuse prescription opioids transition to heroin and 80% of heroin users

first misused opioids [6].

Over the past few years, several changes have been made to the control of prescription

opioids that have proven effective in reducing the number of fatal overdoses. The Centers

for Disease Control and Prevention released a new, more restrictive set of guidelines for

prescribing opioids [7]. This has been at the cost, however, of an over-restriction of the drug,

which is an effective pain-management tool when prescribed appropriately [8]. The opioid

epidemic has peaked, but the battle with opioids is not yet over.

1.1 Research Motivation

Much research is available concerning which populations are most vulnerable to opioid ad-

diction. Risk factors are often measured for patients by using one of many screening tools

before prescribing them opioids. These are based on multivariate statistics on the static

attributes of opioid abusers such as age and sex. It is useful to prescribers (physicians or

nurse practitioners) to create risk screening tools based on these statistical analyses. These

tools are summarized by Lawrence et al. [9].

While many doctors use screening tools before prescribing opioids to a patient, there are

not any tools available to monitor patients after treatment begins. A patient who is not

classified as vulnerable according a risk tool may become vulnerable over time. Monitoring

for patient state changes is currently done only by the prescriber based on their knowledge
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and training. There is inevitably a degree of subjectivity in their judgement. In addition,

risk tools do not include the patient’s full history of prescriptions and doctors visits. There

may patterns in a patient’s history that can be exploited to predict their risk of addiction

on an individual basis.

Many datasets have been underutilized in combating the opioid epidemic from a data

perspective. These include Electronic Health Records (EHR), Prescription Drug Monitoring

Programs (PDMP), and Insurance Claims data, all of which are transaction datasets. Trans-

action data can be defined as any temporal sequence where a number of entities are recorded

performing different events. Transaction data is much more utilized in areas other than

healthcare, but more research is needed in order to improve usability. In the field of data

mining, association rules and sequence matching have been the target of most algorithms

utilizing transaction data [10]. Extraction of more informative features to use in prediction

models is still a budding research area [11].

Research has been done to predict other medical responses fully utilizing this type of

transaction data, but there is a dearth of research using similar methodologies for opioid-

related responses. Many times in the medical field, features are created using expert knowl-

edge. While this does not yield bad predictions, better may be obtained by exploited the

full complexity of the data. Time-dependent features created are usually relegated to small

window of the entire data. In addition, features are only created using variables of interest.

There may be complexities in the data that are not known to be related to the response

in the medical literature. Fully utilizing the time-dependent aspect of the data will allow

complex interactions in the data to be exploited for better predictions.

1.2 Research Goals

The goals of this research are to (1) develop a framework for feature extraction from transac-

tion data, (2) explore deep learning techniques using those extracted features for predicting

patients as at risk of adverse, opioid-related events (ORE).
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These goals will be accomplished through experimenting with various strategies trans-

forming raw data into usable features in combination with different modeling strategies.

This research focuses on deep learning techniques for both feature extraction and prediction.

The best combination of techniques found will be used to develop a framework for feature

extraction and prediction using transaction data.

1.3 Thesis Organization

Chapter 2 begins with a review of literature related to the prediction of ORE for individual

patients. These include studies that use both point-in-time, or cross-sectional data, as well as

those using time-dependent, or panel data. The application of the methodologies developed

in these studies is then discussed.

The literature review continues with studies related to prediction of events from transac-

tion data that use feature extraction and deep learning techniques. Although studies using

healthcare-related data are primarily looked at, studies using data from other fields are in-

vestigated as well. The focus is on prediction using machine learning and deep learning

techniques, as well as feature extraction.

Chapter 3 describes the methodology for data processing, feature extraction, and predic-

tion. The data subsection includes data sources, cohort selection, response identification, as

well as transformations used to prepare the data as an input to train different models. Trans-

formation is especially important due to the research goal of extracting appropriate features

from the data. In order to get the most informative features, different time aggregation

windows with varying sequence lengths are tested

Prediction methodology begins with using those extracted features in a recurrent neural

network with long short-term memory cells to predict ORE. Hyperparameters of each model

are tuned using Bayesian optimization. To improve predictions, autoencoders are used to

find better representations of the original inputs. Features from the autoencoders are then

input into several different prediction models for comparison. These are compared to using

the learned weights from the neural networks as input for the same models.
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Results are presented, compared, and discussed. Also discussed are potential applications

of this methodology, medical implications of the results, and limitations of this research.
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2. Literature Review

This chapter focuses on a review of the methodology used in this research. The first section

of this chapter covers previous work related to the prediction of ORE from transaction

data. These works are divided by prediction methodology and data source. The second

section covers the methodologies used in this research. It begins with a description of deep

learning and continues to describe research using deep learning models with healthcare-

related transaction data. Finally, research using representational learning to better represent

healthcare data is discussed.

2.1 Prediction of Opioid-Related Adverse Events

EHR, PDMP, and Claims data have all been used with varying degrees of success to predict

the risk of a patient of having an opioid-related adverse event. Methodologies for prediction

patient-level adverse events range from simple statistical tests to advanced deep learning

techniques. The following review is broken up by the primary prediction methodology used

in each study.

Logistic regression (LR) is a very popular methodology in the literature and has been

applied to many different datasets for ORE prediction as reviewed by Turk et al. [12]. The

value of LR lies in its explanatory power. In these papers, the primary use of the model is to

learn which variables are most related to a positive response as opposed to predicting which

patients will have an ORE.

The Cox proportional hazards (CPH) model is one of the most predominately used models

in individualized patient predictions. The model is in essence a regression of survival time on

the patient variables. Its popularity is also due to the explanatory nature of the model. For

each feature used to build the model, the proportional likelihood that the level of that feature

will correspond to a response is calculated. Several papers have used this methodology to

predict adverse events related to opioids.

Decision trees are another popular classifier. Both the random forest (RF) and gradient

boosting (GB) algorithms have been used for ORE prediction. Neural networks (NN) have
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also been used, and these are detailed in the next section. A summary of ORE prediction

literature is shown below in Table 1.

Table 1. Prediction of ORE from Transaction Data

Author Data
Type

Data Source Sample
Size

Positive
Responses

Number of
Variables

Classifier

Zedler et
al. [13]

EHR Veteran’s
Health Admin-
istration

1,877,841 817 15 LR

Karhade
et al. [14]

EHR 5 Hospitals 5,507 345 4 LR

Cauley et
al. [15]

EHR Nationwide In-
patient Sample
database

11,317,958 9,458 11 LR

Ali et al.
[16]

Medicare;
Private
Claims

IBM Mar-
ketScan

4,535,623;
1,604,143

31,163;
44,994

LR

Chang et
al. [17]

PDMP Maryland 25,487 827 25 LR

Geissert
et al. [18]

PDMP Oregon 879,402 1,409 6 LR

Levin et
al. [19]

PDMP New York 881,558 1,118 LR

Cochran
et al. [20]

Private
Claims

Thomson
Reuters Mar-
ketScan Com-
mercial Claims
database

284,1793 2,913 38 LR

Sun et al.
[21]

Private
Claims

Optum Clin-
format-
ics claims
database

5,293,880 40 LR

Liang et
al. [22]

Private
Claims

Aetna Health
Maintenance
Program

206,869 1,386 LR
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Table 1 continued
Author Data

Type
Data Source Sample

Size
Positive

Responses
Number of
Variables

Classifier

Rice et al.
[23]

Private
Claims

Ingenix Em-
ployer Solu-
tions

821,916 6,380 LR

Lo et al.
[24]

Medicare
Claims

560,057 3,188 268 LR, GB,
NN

Calcaterra
et al. [25]

EHR Denver Health
Medical Cen-
ter

27,705 1,457 13 LR, RF

Shah et
al. [26]

Private
Claims

IMS Lifelink+
database

1,353,902 33,019 6 CP

Glanz et
al. [27]

Private
Claims

Kaiser Perma-
nente Colorado
health plan

42,828 121 9 CP

Li et al.
[28]

Private
Claims

IMS LifeLink
PharMet-
rics PlusTM
database

1,246,642 2,274 278 CP

Ellis et al.
[29]

EHR Mount Sinai
Medical Cen-
ter

716,533 9,518 RF

Che et al.
[30]

EHR Rochester
Epidemiology
Project

102,166 749 NN

2.2 Introduction to Deep Learning

Deep Learning is a catch-all term used to describe many different types of neural networks.

This section provides a brief description of the way neural networks are constructed and

trained. For further reading, please refer to Deep Learning by Goodfellow et al. [11]. A

neural network, at its essence, is simple a graph of nodes and weights used to transform an

input to a desired output. They are usually structured with layers of nodes so that every
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node in one layer is connected to every node in the layers on either side. The connections

between these nodes have are a assigned a weight that changes in as the network is trained.

Training a neural network begins with initializing the weights. This is most typically done

using random values from a normal distribution, but sometimes different functions are used.

The inputs are then passed through the graph. At each node, the input is passed through

an activation function that adds some nonlinearity. The most commonly used activation

function is the sigmoid function. These are prone to forcing values to become either really

big of really small in large networks, or what is commonly known as the vanishing and

exploding gradient problem. Using a rectified linear unit (ReLU) activation has recently

gained popularity to mitigate this issue. As values pass from node to node they are multiplied

by the weights between those nodes. At the last layer, the output layer, the values are

compared to the desired output using some loss function. The loss function measures the

difference between the original input and the network output. The goal is to minimize that

different for all training examples.

The weights of the network are adjusted to decrease the value of the loss function through

a process known as backpropagation. To do this, the first derivative of the loss function is

taken with respect to each of the output nodes. The derivative of each of those function

is taken with respect to each of the nodes connected to that node from the previous layer.

Then for each of those nodes, the process is repeated again until the first derivative is found

for all possible paths through the graph. The weights between each node are adjusted using

the corresponding derivative of the loss function so that the value of the loss function is

decreased. How much the weights get adjusted each iteration is referred to as the learning

rate.

Different optimizers perform backpropagation in different ways. Gradient descent is the

easiest to understand. In order to minimize the loss function, we simply want to find the

gradient (or first derivative with respect to each variable) that decreases the function the

fastest. However, this approach is susceptible to getting stuck in local minimums. Local
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minimums are relatively low compared to the surrounding points, but not the lowest point

the loss function can be in general. An alternative, stochastic gradient descent, adds an

element of randomness to the search in order to avoid the local minimum issue. The most

popular algorithm to use in deep learning research is the Adam optimizer. It takes less time

to train than stochastic gradient descent while achieving similar performance.

The forward and back propagation process is done for each observation in the training

data. One pass through all observations is referred to as an epoch. Networks are trained

using several epochs until performance is deemed adequate or shows no sign of improvement.

To speed up training, batches of observations are used to train. A batch of observations are

forward propagated through the network and the average of the loss function calculated for

the entire batch before performing backpropagation.

2.3 Individualized Healthcare Predictions Using Deep Learning

Neural networks are used in many other healthcare-related event predictions besides OREs.

The most relevant to this research are those which utilize to the most extent a similar type

of transaction type data. By utilizing the temporal nature of this type of data, the following

studies were able to make much better predictions than those predicting based on static

features. They also make use of the entirety of information available in the data by using

representational learning techniques.

2.3.1 Types of Networks Used

There are many different approaches to take when trying to classify patients. Neural networks

have the most potential according to the literature, so we focus on investigating them [31].

Neural networks have been around for a very long time, but only in the last decade become

popular due to increased computing power and data collected. The basic concept of neural

networks is briefly explained in this section

The most basic type of a neural network is the feed-forward neural network (FNN).

They are composed of an input layer (X), hidden layers (h), and an output layer (y) shown
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below in Figure 1. Every cell is connected to every cell in the next layer. The weights for

these connections are trained based on the gradient of the loss function, a process called

back-propagation. Non-linearities are introduced in each cell by an activation function [11].

Figure 1. A two-layer FNN with one output

Recurrent Neural Networks (RNNs) are more effective to use in making predictions based

on sequential inputs[32]. Unlike FNNs, they accept a sequence of inputs for each observation

where information from past sequence elements is incorporated into each cell. The structure

of a RNN with two layers of recurrent cells is illustrated in Figure 2. In the figure, X is the

input sequence, h is a dense hidden layer, y is the output, and A are the recurrent cells. They

are widely used in natural language processing tasks, but can be applied to any sequential

data as they are designed to deal with long-range temporal dependencies [33].
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Figure 2. Structure of an RNN with two layers of recurrent cells

Training ordinary RNNs is difficult as they are prone to both vanishing and exploding

gradients, but this can be remedied by using gates to restrict how much information gets

passed from cell to cell [34]. There are two popular types of gated RNNs, those using gated

recurrent units (GRU) [35] and those using long short-term memory cells (LSTM) [36]. The

difference between the two lies in the number of gates and the exact purpose they serve.

While LSTM networks have proved more effective for natural language processing tasks,

GRU networks are computationally more efficient while providing comparable results [35].

Deep learning models have many hyperparameters that must be tuned. Grid search and

random grid search are typically used, but Bayesian optimization can be used to fine the

best combinations of hyperparameters in a more efficiently [37], [38].

2.3.2 Deep Learning for ORE Prediction

The most promising methodology in ORE prediction is deep learning. Deep learning refers

to the use of neural networks with more than one hidden layer. The advantage of deep

learning models is their ability to learn representations of the data with multiple levels of

abstraction. The multiple hidden layers allow the model to discover complex interactions

that exist between variables [32].

Che et al. [30] used both FNN and LSTM to classify patients in the Rochester Epi-

demiology Project (n=102,166) as either short-term, long-term, or opioid-dependent users.
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To prepare the temporal data, they used one-hot encoding to categorical features and ag-

gregated by year. They found FNN to predict better than RNN, with 90% accuracy and

62% recall. This research will use a similar approach but with more granular time windows.

Another difference will be the response of ORE instead of opioid dependence.

Claims data (n=186,686) was used by Lo-Ciganic et al. [24] along with logistic regression,

random forest, gradient booting machine, and feed-forward neural network to predict the

risk of ORE. The neural network had the best performance of any model. They used 3 month

time windows instead of the more granular windows used in this study. In addition, features

were developed based on domain instead of the more naive approach of this research.

2.3.3 Other Deep Learning Uses in Healthcare Prediction

Choi et al. [39] used GRU to predict different diagnoses based on EHR data (n=263,706).

The model was trained on the sequence of patient visits with all corresponding information

one-hot encoded. They were able to achieve 79% recall and 64% accuracy with this model.

This work was later extended [40] by using fixed-sized time windows which aggregated events

instead of using events themselves to predict the occurrence of heart failure using a similar

EHR dataset. Esteban et al. [41] used a novel structure to incorporate static features

into an RNN network that reduced the dimensionality of the input. They found that a

GRU network outperformed LSTM and ordinary RNN networks in predicting outcomes

from kidney transplants using EHR data.

Nickerson et al. [42] predicted the occurrence of adverse post-operative events from

time-window aggregated EHR data using both FNN and LSTM networks. The DeepCare

framework proposed by Pham et al. [43] uses the sequence of admissions recorded in EHR

data, classified into diagnosis events and intervention events, in an LSTM network. Several

modifications to the traditional LSTM network were made, and in different experiments

they predicted both diabetes and mental health related outcomes with a relatively high F-

score. Razavian et al. [44] trained a LSTM on the results of lab tests recorded in claims
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data (n=298,000) in order to predict the onset of 133 different diseases. To deal with class

imbalance, they use a weighted log-likelihood function with changing weights for each batch.

LSTM cells were used by Lipton et al. [45] to predict the occurrence of any of 128

different diagnoses using irregularly sampled tests in EHR data from an intensive care unit.

They found LSTM outperformed other models, including FNN. Their best performing model

utilized an ensemble of LSTM and FNN networks. Puruchotham et al. [46] compared

different machine learning models on a publicly available EHR dataset. They also found

that an ensemble model of FNN for static features and RNN for time dependent features

consistently yielded the best predictions.

2.3.4 Methods of Information Extraction

Many machine learning techniques have a limited ability to utilize raw data. Prepossessing to

transform the raw data usually requires domain experts to manually engineer usable features.

Representational learning is a set of methods that automatically learn usable features from

the data. Deep learning methods of representational learning allow for complex functions to

be learned from the raw data, with no domain expertise needed [32].

The DeepCare algorithm developed by Pham et al. [43] involves pooling same type

features over time windows and then concatenating the different feature vectors. In this way

they embed variable number of events into a continuous distributed vector space.

Skip-gram embeddings are a popular preprocessing technique for natural language pro-

cessing tasks popularized by Mikolov et al. [47]. E. Choi et al. used skip-gram representations

of different medical codes assigned to each patients as an input to an RNN [48], [49], [40]. Y.

Choi et al. used skip-gram embedding on several different data and found that in all cases

the results conceptual similarity and medical readiness of the data was improved [50].

Autoencoders (AEs) were used by Miotto et al. [51] to improve the performance of their

prediction model. The best AE structure for their data was using three hidden layers with 500

nodes each. The advantage of AEs over standard dimensionality reduction techniques such
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as principal component analysis or singular value decomposition is their ability to capture

complex interactions between variables [33].

AEs are not the only way to develop better features with deep learning. Che et al. [52]

proposed a framework for feature extraction from heterogeneous healthcare time series data

using a form of greedy layerwise pretraining. This methodology, similar to that proposed

by Bengio et al. [53], increases the performance of a deep network by training a model with

one hidden layer, then adding a layer at a time, retraining the weights learned in the last

iteration.
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3. Data Processing and Prediction Methodology

This chapter begins by describing the data used, the cohort selection process, and the meth-

ods by which the data was cleaned and transformed. The data were divided into 20 distinct

datasets for experiments. Each of these datasets was used to train a RF classifier, a sparse

AE whose features were then used to train a RF classifier, and a RNN with LSTM cells.

For the LSTM models, hyperparameter tuning was done using Bayesian optimization. A

simple, denoising, and sparse AE was trained on each dataset and outputs used to train

other classifiers. This research utilizes Tensorflow [54], an open-source tool for applying

machine learning methodologies, using Keras [55]. All data preprocessing was completed

using Python with pandas [56] and NumPy [57]. Classifiers from Scikit-learn [58] are used to

compare models. Bayesian optimization for hyperparameter tuning was accomplished using

GPyOpt [59].

3.1 Introduction to Data and Data Processing

This section describes the dataset used and the processing techniques to transform it. Data

preprocessing is as important as, if not more important than, the prediction models tested,

since the results from the models can only be as good as the data used to train them.

Transaction data can be tricky to use effectively in machine learning. This section lays out

a framework to use transaction data to construct inputs to any classification or regression

tool.

3.1.1 Data Description

The LifeLink PharMetrics Plus database is used in this research. It contains inpatient,

outpatient, and pharmacy (RX) claims for millions of unique patients enrolled in major

healthcare insurance plans from 2006 to 2015. Of these patients, approximately 2.6 million

received at least one opioid prescription during this time frame.

3.1.2 Patient Cohort and Response Identification

The same criteria developed by Li et al. [28] was used for selecting the cohort of patients.

The cohort are those who receive their first recent opioid prescription while covered in our
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dataset. The first opioid prescription for each patient is considered the index claim. Patients

with no opioid prescriptions are excluded. We only consider patients who are continuously

enrolled in the insurance plan 6 months before and after the index claim. Patients with

cancer or in hospice care, as well as patients younger than 13 are excluded as well. The

cohort consists of 1,376,760 patients. Those patients average 134.27 events recorded after

their first opioid prescription over the course of 688.78 days. The largest gap between the

first opioid prescription and the last event was 3464 days with 9004 events in between.

The response, OREs, are identified using ICD-9 diagnoses codes. Modeled after one of

the responses used by Seal et al. [60], a patient diagnosed with one of the codes shown

in Table 2 is considered to be a positive response for ORE. This differs in the response

identified by Li et al. [28] by not considering patients who are only coded with a respiratory

depression diagnosis. The narrower definition will yield fewer false positives at the risk of

missing some OREs experienced by patients. There are 1,533 patients who exhibit an ORE

by this definition in the cohort.

Table 2. ICD-9 Codes Identifying ORE

ICD-9 Code Description

965 Poisoning by opium (alkaloids), unspecified
965.02 Poisoning by methadone
965.09 Poisoning by other opiates and related narcotics
E850.1 Accidental poisoning by methadone
E850.2 Accidental poisoning by other opiates and related narcotics
E935.1 Methadone causing adverse effects in therapeutic use
E935.2 Other opiates and related narcotics causing adverse effects in therapeutic use

3.1.3 Combining Data Sources

Inpatient, outpatient, and RX claims are recorded in separate tables, each having a distinct

set of associated variables. There also exists a table of patient information. These tables are

structured as a relational database where each table of events is connected to the patients

table by a unique identifier. This research considers each event (claim or transaction), as

an observation for a patient. As such, events in the inpatient, outpatient, and RX tables
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were all combined into one table of events. Static patient information was added to this

table of events as well. The tables had some overlapping variables. The final variables used

for modeling are shown in Table 3. The three event tables (inpatient, outpatient, and RX)

were appended together with respect to the variables they shared as shown in Figure 3. In

total, they consist of 184,852,600 events. Labels across the top of the figure are the sets of

variables included in the tables. A categorical variable indicating the source table of each

event was added which is not shown.

Figure 3. Combining Sources of Events

3.1.4 Data Cleaning and Preprocessing

For the selected cohort of patients, there were a few variables that were no longer needed

to be included. Several were removed because there was no variation throughout between

patients. For example, one variable indicated whether the claim was paid for or denied. For

the given cohort every claim was paid for, so this variable was removed. Other variables

with very low response rate or high redundancy with other variables were removed as well.

For the categorical variables remaining, many had a large number of categories that a very

small proportion of the events fell into. These categories were recoded so that any category
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containing less than 1% of events were grouped into an "other" category. This was done to

reduce dimensionality once one-hot encoded. Continuous variables, shown in Table 3, were

scaled between 0 and 1. Scaling continuous variables is a common preprocessing step that

helps avoid vanishing and exploding gradient problems [61].

Diagnosis and procedure codes for inpatient and outpatient events are both very impor-

tant to a patient’s history. They contain all information about conditions a patient was

diagnosed with and how they were treated. There are up to 11 supplementary diagnosis

codes in addition to the diagnosis code for admission. There are up to 6 procedure codes for

each event. In this data, both procedures and diagnoses are coded using the ICD-9 conven-

tion. According to this condition, there are over 15,000 possible diagnosis codes and nearly

4,000 procedure codes. If these original variables were one-hot encoded it would result in

more than 204,000 columns!

In order to reduce the high dimensionality of the ICD-9 code combinations, we used

the Agency for Healthcare Research and Quality’s Healthcare Cost and Utilization Project

(HCUP) clinical classification software (CCS). This software classifies ICD-9 codes into a

smaller number of categories. Diagnosis codes are mapped to 285 categories, and procedure

codes to 232. The HCUP’s chronic condition indicator (CCI) was also used for diagnosis

codes. This is a binary variable indicating whether a diagnosis is chronic or not. HCUP’s

procedure classes (PC) code was added as well to indicate the severity of the procedure

preformed, of which there are four categories. After recoding each of the 12 diagnosis code

columns in 2 ways (CCS and CCI) and and 6 procedure code columns in 2 ways (CCS and

PC), each of the 36 new columns were one-hot encoded. Columns for similar categories

were then summed for each event to reduce the sparsity of the data since it does not matter

which diagnosis column a diagnosis was recorded in, just that the diagnosis occurred for

that event. This resulted in adding 523 columns for diagnosis and procedure codes instead

of 204,000. 1010 total features resulted from data preprocessing after one-hot encoding

categorical variables.
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Table 3. Variable Descriptions

Variable
Type

Variable Data Type Number of
Categories

Patient Age at first opioid claim Continuous
Group or individual coverage Categorical 3
Sex Categorical 3
Enrollee relationship to patient Categorical 6
State Categorical 51

Event Event type Categorical 3
Days after first opioid prescription Continuous
Provider type flag Categorical 3
Billing provider’s primary specialty Categorical 65
Rendering provider’s primary specialty Categorical 65
Place of service code Categorical 9

RX Days of supply of the prescription Continuous
Drug Group (first two digits and first subset of
the GPI code) classifies general drug products

Categorical 69

Brand is trademark or generic Categorical 2
Prescriber’s primary specialty Categorical 63
Dispensed as written code indicating whether
or not the prescriber’s instructions regarding
generic substitution were followed

Categorical 4

Route of administration - how the medication’s
dosage form is administered to the patient

Categorical 7

Whether the prescription drug was paid as in-
cluded in the plan’s formulary at the record
level

Categorical 2

Submission type code Categorical 5
Inpatient
and Out-
patient

Admitting diagnosis; ICD-9 diagnosis patient
was admitted with

Categorical ~15,000

Diagnosis codes 1–11; ICD-9 diagnosis codes of
the event

Categorical ~15,000

Procedure codes 1–6; ICD-9 procedure codes of
the event

Categorical ~4,000

Specialty of the attending provider. For
non-physicians, this reflects the type of
provider/facility

Categorical 56

Specialty of the primary care physician Categorical 43
Inpatient
Only

Length of stay (only for inpatient events) Continuous

19



3.1.5 Transforming the Data to Inputs

There are multiple ways to transform our original dataset into features for prediction. The

simplest way is to strictly consider a patient’s transaction history as a sequence of events.

This is already how the data is structured, with each transaction (event) having a number

of descriptive variables. The other approach is to aggregate the sequence of events over time

windows. This strategy essentially collapses the events into one observation for each time

window. Time windows could be of either fixed or variable length, but for simplicity of

replication with other data, this study only uses fixed-length time windows. Each patient’s

set of time windows ends the day before the last non-ORE event in their event sequence.

Time aggregates are calculated for each monthly, bi-weekly, weekly, and daily windows.

Aggregates are found by summing both continuous variables and one-hot encoded categorical

variables over each time window. One-hot encoded categorical variables are then clipped to

be either 0 or 1. Clipping categorical variables reduces the amount of redundant information

in the data. For example, consider a patient who has three outpatient events during a time

window and receives the same diagnosis all three times. Once the patient has been diag-

nosed with a condition during the time window, subsequent diagnoses of the same condition

should not matter. The one-hot encoded variable indicating source table (RX, Inpatient,

Outpatient) was not clipped after aggregating in order to inform the model of the number of

event transpiring during the time window. For example, it would be important information

to know if a patient went to the pharmacy 10 times in a month. Static variables about

the patient remain the same with aggregation. If a patient had no events occur during a

time window, those variables are filled with 0s. There are 5 datasets being investigated:

time window aggregates of monthly, bi-weekly, weekly, and daily events, as well as using the

events with no aggregation.

The length of the sequence used in prediction is also important to consider. The sequence

of data for every patient must be the same length. Events occurring closer to the ORE re-

sponse are hypothesized to have more influence on the ORE than those events occurring
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farther in the past. For this reason, the sequences are aligned by the last event for each pa-

tient, the event directly preceding an ORE for positive responses and the last event recorded

for negative responses. Then, the sequence is trimmed to the desired length from the left,

excluding the earlier events for patients with sequences longer than that length. This process

is illustrated in Figure 4 below, where the sequence length is chose to be 4. Patients with

less than 4 events are excluded. For each of time aggregate datasets, only patients having

events covering the entire time window will be included in the dataset for that time window.

In this experiment, sequence lengths of 5, 10, 20, and 40 observations were tested. These

lengths were chosen to encompass a broad range of sequence lengths. Combining these with

the 5 time aggregation methods yields a total of 20 sets of data to test.

Figure 4. Visualization of Sequence Alignment and Trimming

Only transactions recorded on the day of or after the date of a patient’s first opioid

prescription are used. The transactions of patients with an ORE are only included up until

the day before the first ORE identified. All transactions of patients without an ORE are

included. Transactions are also only included for a patient’s continuous enrollment period.

That is, if the patient becomes dis-enrolled from the insurance plan, transactions after that

time are excluded from the data.

3.1.6 Batch Processing

Given the large size of this data, special techniques had to be used for processing. There are

over 184 million rows of 1010 columns in the final dataset. That is 185 billion data points.

This is way to much data to be held in memory so a data chunking technique was used for

processing. Data was queried in chunks from the combined events table, taking care not to
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break a patient’s data between chunks. Events for each patient were cropped to the specified

sequence length. The min and max of continuous columns were updated and the data chunk

stored in hdf5 format [62]. After the query was complete, each chunk was then reopened for

processing. Continuous variables were scaled between zero and one and categorical variables

were one hot encoded. All possible categories for each categorical column were hard coded

so that each chunk would be one hot encoded to the same number of columns. The events

for each patient were then aggregated for each time window as described in the previous

subsection. Time windows with no events were filled with zeros.

3.2 Deep Learning

Each dataset is split into train, validation, and testing sets. First, a random 20% of the data

was selected as the test set. The remaining data was split 80% training and 20% validation

as shown in Figure 5. For each split, the data was stratified so that the same proportion of

ORE patients where in each set.

In order to see how well different models work, we must start out with a simple model

to get a baseline for prediction. Random forest was chosen due to its popularity of use in

medical research [25], [29]. RNNs with LSTM cells were then trained for each dataset. The

hyperparameters of each model are found using Bayesian optimization and the validation

data. Models are then trained on both training and validation data and tested on the

remaining testing data. A sparse AEs was trained, and the outputs fed into the same

baseline model.

Figure 5. Visualization of Training, Validation, and Testing Split

22



Given the size of the data, it cannot be all kept in memory. Neural networks can be

trained online and do not need to be input all the data at once. The other classifiers used

are not online and all training data must be loaded into memory at one time. It is not possible

to train on the entire dataset due to computational limitations. Classifiers are trained on

the validation data, 16% of the entire dataset, and tested on the same holdout testing data,

20% of the entire dataset. This is done 5 times, each with a different portion of the training

data so that all training observations are using in training a model.

3.2.1 Models Tested

RNN with LSTM cells will were tested using all 20 datasets. A basic structure of two layers of

recurrent nodes and two layers of dense nodes was chosen. This number of layers was chosen

because having more hidden layers allows the model to learn higher level abstractions from

the input data [11].

To train the RNN, we used log loss, otherwise known as binary cross-entropy in Keras.

Since the data is incredibly imbalanced, class weighting was used to weight the loss function

[63]. Rectified linear unit (ReLU) activation functions were used as it reduced the exploding

and vanishing gradient problem [11]. Dropout method was used to help prevent overfitting

of the training data [64], [65]. Batch normalization is used as well [66].

Good combinations of hyperparameters for training with each dataset were found using

Bayesian optimization [37], [38], [67]. Hyperparameters considered were the number of nodes

in each layer, dropout rate of each layer, learning rate, batch size, and number of epochs to

train for. The model is trained using the training set and tuned using the validation set in

each iteration of the algorithm. Once the best hyperparameters are found, they are used to

train the model on both the training and validation set and tested with the testing set that

was held out.

The output of each model comes from a sigmoid function and is between 0 and 1. The

threshold for which the model classifies an observation as either positive or negative is very

important. For each model, the threshold that maximizes weighted accuracy metric is used
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to determine the final model. Mathews correlation coefficient [68] was also considered as a

metric to maximize.

3.2.2 Representation Learning

The raw inputs to the models listed above should produce fairly well performing classifiers

due to the size of the raw input and the power of neural networks to find hidden dependencies

in the data. The goal, however, is to create features that can be used in other classifiers that

will achieve an even better performance.

Supervised representation is where observation labels are used to help create the features.

One supervised feature representation technique is to use the learned weights from a neural

network. After the network is trained, the prediction layer is removed and the outputs from

the last hidden layer are used as the new features.

A similar unsupervised feature representation technique is to use AEs [69]. These are

neural networks that are designed to encode information from the input to a lower dimension.

The simplest versions have one hidden layer, but deep AEs with multiple hidden layers may

be more effective. AEs can be stacked, oftentimes making them more effective [70]. The

method of training stacked AEs, greedy layerwise unsupervised pretraining, is very similar to

greedy layerwise supervised pretraining in that each layer of the AE is trained with weights

initialized as the weights learned from training the previous layer. Unsupervised feature

representation yields better results in many cases [71].

In this research, we train a sparse AE using each dataset. A sparse AE with 5 layers is

used to find higher level abstractions in the data. These five layers consist of 1250, 2500,

5000, 2500, and 1250 nodes respectively. Its output has the same dimension as the original

data. Our loss function to train the sparse AE is mean squared error between the inputs

and outputs. The outputs from this method was tested using a random forest classifier.
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4. Results

4.1 Data

The number of patients in each of the datasets tested is shown below in Table 4. These differ

because of the exclusion criteria applied when creating different datasets. Patients whose

sequence of events is not as long as the sequence length are excluded. Patients who have no

events recorded during that time window are also excluded.

Table 4. Size of Dataset Used

Sequence Length
Time Aggregate 5 10 20 40
Events 1,265,087 1,309,926 1,207,803 1,005,234
Days 302,643 481,942 684,805 955,942
Weeks 904,586 1,081,934 1,205,549 1,259,576
Bi-Weeks 1,081,934 1,205,549 1,259,576 1,198,651
Months 1,213,888 1,260,371 1,183,033 879,132
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4.2 Random Forest Classifier

Random forest classifiers were trained as a baseline for comparison. For each dataset, 5 mod-

els where trained using different portions of the training set. Average results models trained

using each dataset are shown in Table 5. This methodology had a relatively high accuracy

and area under the receiver operating characteristic curve (AUC). For most datasets, recall

was poor.

Table 5. Random Forest Classifier Results

Time Aggregate Sequence Length Accuracy Recall Precision AUC
Events 5 0.718 0.733 0.002 0.725
Events 10 0.783 0.483 0.003 0.633
Events 20 0.781 0.395 0.003 0.588
Events 40 0.702 0.392 0.002 0.547
Days 5 0.638 0.417 0.004 0.527
Days 10 0.592 0.503 0.003 0.548
Days 20 0.805 0.303 0.003 0.555
Days 40 0.854 0.261 0.002 0.558
Weeks 5 0.755 0.477 0.003 0.616
Weeks 10 0.781 0.405 0.002 0.593
Weeks 20 0.717 0.418 0.002 0.568
Weeks 40 0.762 0.373 0.002 0.567
Bi-Weeks 5 0.76 0.424 0.002 0.592
Bi-Weeks 10 0.789 0.355 0.002 0.572
Bi-Weeks 20 0.764 0.361 0.002 0.563
Bi-Weeks 40 0.741 0.409 0.001 0.575
Months 5 0.765 0.437 0.002 0.601
Months 10 0.837 0.28 0.002 0.559
Months 20 0.701 0.443 0.001 0.572
Months 40 0.815 0.258 0.001 0.537
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4.3 Sparse Autoencoder

An AE that expands the input to 5000 nodes in order to uncover abstractions is trained.

The output was fed into a random forest classifier. Results are shown below in Table 6.

For each dataset, this methodology performed worse than the baseline classifier. This is a

substantially worse methodology than only using RF.

Table 6. Random Forest using Sparse AE with 5000 nodes

Time Aggregate Sequence Length Accuracy Recall Precision AUC
Events 5 0.903 0.416 0.003 0.66
Events 10 0.941 0.343 0.006 0.643
Events 20 0.966 0.212 0.007 0.589
Days 5 0.919 0.104 0.003 0.513
Days 10 0.893 0.133 0.003 0.514
Days 20 0.827 0.229 0.002 0.529
Weeks 5 0.913 0.189 0.003 0.552
Weeks 10 0.973 0.092 0.004 0.533
Weeks 20 0.986 0.048 0.004 0.518
Bi-Weeks 5 0.986 0.046 0.004 0.517
Bi-Weeks 10 0.989 0.019 0.002 0.505
Bi-Weeks 20 0.991 0.024 0.003 0.508
Months 5 0.961 0.093 0.003 0.528
Months 10 0.983 0.024 0.001 0.504
Months 20 0.991 0.015 0.002 0.503
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4.4 LSTM RNN Predictions

Before performing Bayesian Optimization to tune the hyperparameters, arbitrary hyperpa-

rameters were chosen to see how well the tuning improved training the models. The dropout

rate parameter was set to 0 and 0.2 for the two recurrent layers, respectively, and 0.1 for

the dense layer. There were 128 nodes in the recurrent layers and 64 nodes in the dense

layer. Batch size of 500 with a learning rate of 0.001 was used to train the each model for

10 epochs. The results are shown below in Table 7.

Table 7. LSTM Classifier Before Tuning Hyperparameters

Time Aggregate Sequence Length Accuracy Recall Precision AUC
Events 5 0.895 0.571 0.003 0.839
Events 10 0.795 0.819 0.004 0.869
Events 20 0.857 0.723 0.005 0.857
Events 40 0.337 0.796 0.001 0.566
Days 5 0.412 0.896 0.004 0.753
Days 10 0.514 0.774 0.003 0.698
Days 20 0.437 0.805 0.002 0.675
Days 40 0.001 1 0.001 0.5
Weeks 5 0.725 0.716 0.003 0.792
Weeks 10 0.809 0.637 0.004 0.763
Weeks 20 0.775 0.603 0.003 0.731
Weeks 40 0.849 0.553 0.004 0.752
Bi-Weeks 5 0.778 0.625 0.003 0.752
Bi-Weeks 10 0.872 0.532 0.005 0.74
Bi-Weeks 20 0.835 0.545 0.003 0.722
Bi-Weeks 40 0.999 0 0 0.5
Months 5 0.842 0.532 0.004 0.733
Months 10 0.84 0.538 0.003 0.757
Months 20 0.872 0.522 0.004 0.742
Months 40 0.839 0.5 0.002 0.715
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Using the best hyperparameters found from 25 iterations of Bayesian optimization, a

model is trained using the both the training and validation data, and tested using the

holdout set. Results from selected models are shown below in Table 8.

Table 8. LSTM Classifier After Tuning Hyperparameters

Time Aggregate Sequence Length Accuracy Recall Precision AUC
Events 5 0.854 0.652 0.003 0.822
Events 10 0.999 0 0 0.303
Events 20 0.793 0.788 0.004 0.823
Events 40 0.999 0 0 0.5
Days 5 0.187 0.993 0.003 0.712
Days 10 0.075 0.979 0.002 0.409
Days 20 0.003 1 0.002 0.579
Days 40 0.023 0.984 0.001 0.514
Weeks 5 0.187 0.872 0.001 0.531
Weeks 10 0.001 1 0.001 0.331
Weeks 20 0.001 1 0.001 0.5
Weeks 40 0.999 0 0 0.5
Bi-Weeks 5 0.701 0.683 0.003 0.758
Bi-Weeks 10 0.806 0.58 0.003 0.707
Bi-Weeks 20 0.846 0.518 0.003 0.722
Bi-Weeks 40 0.999 0 0 0.5
Months 5 0.735 0.632 0.003 0.728
Months 10 0.905 0.369 0.004 0.67
Months 20 0.999 0 0 0.5
Months 40 0.999 0 0 0.5

The 10 best RNN models are summarized below in Table 9. Around half of these models

were trained using the baseline hyperparameters as opposed to those found through Bayesian

optimization hyperparameter tuning. The AUC for most of the datasets is much higher than

the baseline model. The smaller sequence lengths did better for most of the datasets. The

only dataset that was not time-aggregated performed the best as well.
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Table 9. Comparison of the best LSTM Models

Time Aggregate Sequence Length Accuracy Recall Precision AUC
Events 10 0.795 0.819 0.004 0.869
Events 20 0.857 0.723 0.005 0.857
Events 5 0.895 0.571 0.003 0.839
Weeks 5 0.725 0.716 0.003 0.792
Weeks 10 0.809 0.637 0.004 0.763
Bi-Weeks 5 0.701 0.683 0.003 0.758
Months 10 0.84 0.538 0.003 0.757
Days 5 0.412 0.896 0.004 0.753
Weeks 40 0.849 0.553 0.004 0.752
Months 20 0.872 0.522 0.004 0.742

4.5 Comparison of Classifier Results

The recall and accuracy of all models is plotted below in Figure 6. It is easy to see from this

graph that LSTM RNNs give the best balance between accuracy and recall out of the three

methodologies tested. It is most important to have a high recall in order to not miss many

patients who are at risk of experiencing of experiencing an ORE. It is clear that LSTM is

the best classifier for this task.

Figure 6. Recall vs Accuracy for all Models
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4.6 Variable Importance

Variable importance can be easily calculated from random forest models. For the sake of

brevity, only the best model’s variable importances are shown. There are a few different

ways to look at the importance of each variable. It is important to remember that for

this model each patient’s sequence of events must be flattened so that the two-dimensional

sequence becomes one long vector. Each variable importance then is the importance of a

variable at a certain step in the sequence. The top variable importances are shown in Table

10. These are averaged over each of the five models trained during cross-validation. Since

each feature really appears a sequence length number of times in the variables, we can get

total importance for that feature by summing its importance for each sequence step. The

top variables from this method are shown in Table 11. Conversely, we can sum over all

the variable importances for each sequence step in order to see which sequence step is most

important, as shown in 12.

Table 10. Variable Importance for Random Forest with 5 Events Data

Variable Sequence
Number

Average
Importance

Standard
Deviation

Attending Provider Specialty: Anesthesiology 3 0.036 0.044
Attending Provider Specialty: Nephrology 5 0.025 0.02
Attending Provider Specialty: Other 3 0.02 0.039
Procedure Code: NG tube 3 0.019 0.027
Billing Provider’s Specialty: Psychiatry 3 0.019 0.038
Diagnosis Code: Other eye dx 3 0.019 0.037
Diagnosis Code: Natural/environment 3 0.018 0.037
Diagnosis Code: Oth skin dx 4 0.018 0.036
Diagnosis Code: Other eye dx 4 0.016 0.032
Diagnosis Code: Ot dx kidney 3 0.016 0.031
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Table 11. Average Variable Importance for each Feature for Random Forest 5 Events Data

Variable Average
Importance

Standard
Deviation

Attending Provider Specialty: Anesthesiology 0.037 0.044
Diagnosis Code: Other eye dx 0.035 0.043
Attending Provider Specialty: Nephrology 0.029 0.028
Diagnosis Code: Ot dx kidney 0.024 0.03
Attending Provider Specialty: Ambulatory Surgery Center 0.022 0.041
Attending Provider Specialty: Other 0.022 0.042
Diagnosis Code: Ot infl skin 0.021 0.029
Procedure Code: NG tube 0.019 0.027
Diagnosis Code: Natural/environment 0.019 0.036
Procedure Code: No Procedure 0.019 0.038

Table 12. Total Variable Importance for each Sequence Step for Random Forest 5 Events
Data

Sequence Step Importance
1 0.000
2 0.000
3 0.274
4 0.428
5 0.298

We also looked at which variables were the most informative for other models. Table 13

shows the variables that were on average the most important across all models.

Table 13. Average Variable Importance for each Feature for All Models

Variable Average
Importance

Standard
Deviation

Age at First Opioid RX Claim 0.017 0.016
Quantity of RX Claim 0.017 0.012
Procedure Code: No Procedure 0.016 0.014
Attending Provider Specialty: Other 0.015 0.016
Days Supply of RX Claim 0.015 0.017
No RX Drug Goup 0.014 0.016
Is an RX Claim 0.014 0.013
Dispensed as Written Code Blank 0.014 0.012
Diagnosis Code: No Diagnosis 0.014 0.013
Diagnosis Code: Chronic condition 0.013 0.012
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5. Discussions

The main contribution of this research is the framework laid out to extract features from

transaction data. This framework can be applied to any set of data, not just healthcare-

related data, where entities are recorded preforming events. Extracting features this way

allows machine learning models the ability to fully learn from the time-dependent aspect of

the data instead of point-in-time predictions.

This feature extraction and modeling process developed can be used to predict any event.

ORE was our chosen response in this research, but any event of interest can have be chosen.

The success of this approach is promising that the methodology might be implemented in

the real world.

5.1 Quality of Results and Implications

The extremely imbalanced nature of this data brings an added layer of difficulty in making

good predictions. The datasets on average had a 1000 to 1 ratio of negative to positive

responses. Given this, it would be very easy to have a near 100% accuracy by classifying all

patients as negative responses. Due to the nature of the response, however, it is important

to keep the false negative rate low. If a patient has any perceptible risk of an ORE they

should be flagged as such by the model as intervening for a patient is in most cases much less

costly than an ORE. To keep the false positive rate low, the metric we focus on improving

is recall, the proportion of true positives to ground-truth positives. Precision was very poor

for everyone model due to the extreme imbalance.

The best predictions made on the test set were with using the dataset with no time

aggregation. With a sequence of 10 events a LSTM network had 81.9% recall while keeping

accuracy at 79.5%. Comparatively to other research, this is a useful model. This model

will be especially useful to healthcare insurance providers. Using their data in this model

will allow them to predict with high confidence who is at the most immediate risk or an

ORE. Ideally, this model would be run for a patient every time there had a new transaction

recorded.
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The downside to this approach is the black box nature of neural networks. The impact

each variable has on the output can be calculated, but its interactions with other variables

cannot be. Other models can be interpreted more easily. Interpretation is important in the

medical field because prescribers need to know what variables to be aware of in patients

that could lead to an ORE. This model is solely good for predicting ORE likelihood given a

sequence of claims.

A shorter series of events was found to make better predictions. This is most likely due

to a couple of different reasons. Events closer to an ORE are more likely to influence the

outcome. Leaving in a large number of data points that had little to do with the ORE

since they occurred so far before that event. This extra dimensionality hindered model

performance. The greater the sequence length, the less useful information is recorded in the

data.

The sparse AE performed worse than using the original features in a classifier. This is

most likely due to the important features of the data being considered noise. Sparse AEs are

good at finding abstractions, but they also remove outliers in a set of data by smoothing all

observations to be more similar. The goal of this research is the opposite - to detect outliers.

It stands to reason that sparse AEs gave poor results.

5.2 The State of Healthcare Data

There as a data-connectivity hurdle that must be jumped on the track to more accurate

personalized healthcare. State prescription monitoring programs are a great start and lead

to life saving interventions, but they alone are not enough. Prescription history is just one

part of a patient’s medical history. Data concerning diagnoses and procedures are siloed in

separate EHR systems. Outcomes are hard to track due to this. Separate systems results in

a lack of standardization across patient records. Fast Healthcare Interoperability Resources

(FHIR) specification was developed in an attempt to standardized EHR data [72]. Higher

adoption rates of the FHIR standard will improve researchers ability to develop more accurate
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predictions. Higher data quality and connectivity will lead to a revolution in personalized

healthcare.

Data quality was detrimental to this study. Patients come in and out of the data as they

are enrolled and disenrolled in the health insurance plan. Important events may occur while

a patient is disenrolled which may have a significant impact on whether they will have an

ORE. There also could be an ORE before or after the time they appear in the data. This

is related to the issue of right-censoring of the response. Since the sequence of events for a

patient inevitably ends, either due to disenrollment or the ending of the data’s time frame,

there is an issue with right-censoring of the response. This means many of the patients

classified as negative responses actually should be labeled as positive responses.

5.3 Limitations of Research

Using Bayesian optimization to tune the hyperparameters did not yield the best results.

Many of the models trained using the hyperparameters found after 25 iterations of Bayesian

optimization predicted every observation as the majority class. It might be that more than

25 iterations are needed to tune the hyperparameters. 25 iterations is very computationally

expensive. This might have been better done using a random grid search methodology. A

smarter selection of the hyperparameter space to search might have also improved results.

Using a validation method for time series data would have been prudent. Walkforward

validation is one of the simplest. In this method, a patient would have a sequence of events

created for each time step. This was not done due to the size of the data.

Using a smaller subset of patients may have been a better technique. A smaller cohort

would have sped up computation times and possibly led to a more accurate model. In a

similar vein, stratifying the cohort based on different demographics and training a separate

model for each strata might have yielded more accurate results as well.

Even the best model found is not well calibrated. Though not included in this paper,

the calibration curve (sometimes referred to as a reliability plot) is very poor. A majority

of test set predictions for positive responses are around 0.5, with no observations around 0
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or 1. Even though a threshold was found that showed relatively good accuracy and recall,

the model needs to be calibrated. Both Platt’s scaling [73] and isotonic regression [74] are

common calibration techniques that could improve the model. Temperature scaling is a

simple variant of Platt’s scaling that has been shown to work well for neural networks [75].

5.4 Future Work

While the results are very good, it does not mean that the best strategy for modeling this

data has been found. There are several strategies that still need to be investigated to improve

results further.

Variable length time windows may provide better results in certain situations. In partic-

ular, using an expanding time windows that get larger for events further in the past may be

useful. This research only focused on fixed length time windows and it would be interesting

to see if predictions could be improving by varying the sizes of the windows.

Patient data was static throughout the sequence of events for each patient. There is no

reason to input static data into a RNN; FNNs are much more appropriate for handling data

that is not sequence dependent. It might give better results to separate static and event data,

train a FNN using the static and a RNN using events, then ensemble the two. Similarly, it

may help to split up events. We treated every event as equal in this research. In reality this

is not the case. There is a reason the data was broken up into prescription, inpatient, and

outpatient event tables. We could keep these tables separate, train and model for each, and

ensemble the resulting models.

Combining the sparse AE and RNN methods by adding a few layers of sparsity before

the recurrent layers might improve results as well. Training them at the same time might

have more computational expense, but could generate better results. Similarly, we could use

a supervised learning approach to train the AE alone before combining the models. In this

method a final output layer would be added to the AE for training, so that it would be a

prediction model minimizing a log loss function. Both of these methods are opposed to the
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previous unsupervised approach in which the goal of training was to minimize mean squared

error between the input and output sequences.

Given the success of the methodology, it should be used for predicting a number of

other healthcare events using the same data. The methodology should be used with other

transaction data as well to test the how well it generalizes to other domains.
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