9 research outputs found

    Machine learning approaches for early DRG classification and resource allocation

    Get PDF
    Recent research has highlighted the need for upstream planning in healthcare service delivery systems, patient scheduling, and resource allocation in the hospital inpatient setting. This study examines the value of upstream planning within hospital-wide resource allocation decisions based on machine learning (ML) and mixed-integer programming (MIP), focusing on prediction of diagnosis-related groups (DRGs) and the use of these predictions for allocating scarce hospital resources. DRGs are a payment scheme employed at patients’ discharge, where the DRG and length of stay determine the revenue that the hospital obtains. We show that early and accurate DRG classification using ML methods, incorporated into an MIP-based resource allocation model, can increase the hospital’s contribution margin, the number of admitted patients, and the utilization of resources such as operating rooms and beds. We test these methods on hospital data containing more than 16,000 inpatient records and demonstrate improved DRG classification accuracy as compared to the hospital’s current approach. The largest improvements were observed at and before admission, when information such as procedures and diagnoses is typically incomplete, but performance was improved even after a substantial portion of the patient’s length of stay, and under multiple scenarios making different assumptions about the available information. Using the improved DRG predictions within our resource allocation model improves contribution margin by 2.9% and the utilization of scarce resources such as operating rooms and beds from 66.3% to 67.3% and from 70.7% to 71.7%, respectively. This enables 9.0% more nonurgent elective patients to be admitted as compared to the baseline

    E-HOSPITAL – A digital workbench for hospital operations and services planning using information technology and algebraic languages

    Get PDF
    In this paper, we describe the development of a unified framework and a digital workbench for the strategic, tactical and operational hospital management plan driven by information technology and analytics. The workbench can be used not only by multiple stakeholders in the healthcare delivery setting, but also for pedagogical purposes on topics such as healthcare analytics, services management, and information systems. This tool combines the three classical hierarchical decision-making levels in one integrated environment. At each level, several decision problems can be chosen. Extensions of mathematical models from the literature are presented and incorporated into the digital platform. In a case study using real-world data, we demonstrate how we used the workbench to inform strategic capacity planning decisions in a multi-hospital, multi-stakeholder setting in the United Kingdom

    Flexible hospital-wide elective patient scheduling

    Get PDF
    In this paper, we build on and extend Gartner and Kolisch (2014)’s hospital-wide patient scheduling problem. Their contribution margin maximizing model decides on the patients' discharge date and therefore the length of stay. Decisions such as the allocation of scarce hospital resources along the clinical pathways are taken. Our extensions which are modeled as a mathematical program include admission decisions and flexible patient-to-specialty assignments to account for multi-morbid patients. Another flexibility extension is that one out of multiple surgical teams can be assigned to each patient. Furthermore, we consider overtime availability of human resources such as residents and nurses. Finally, we include these extensions in the rolling-horizon approach and account for lognormal distributed recovery times and remaining resource capacity for elective patients. Our computational study on real-world instances reveals that, if overtime flexibility is allowed, up to 5% increase in contribution margin can be achieved by reducing length of stay by up to 30%. At the same time, allowing for overtime can reduce waiting times by up to 33%. Our model can be applied in and generalized towards other patient scheduling problems, for example in cancer care where patients may follow defined cancer pathways

    Near real-time bed modelling feasibility study

    Get PDF
    Hospital bed management is crucial to ensure that patients do not have to wait for the right bed for their care. A simulation model has been developed that mimics the bed management rules applied to the Trauma & Orthopaedic wards of a busy Welsh hospital. The model includes forecasting methodologies to predict the number of emergency admissions, split by gender. The model uses near real-time admission data to see whether patients will be admitted to a given ward on a given day in a 7-day planning horizon. The one-week feasibility pilot study examined the accuracy and usability of the tool. The study has shown that it is possible to correctly predict the short-term processes of a Trauma & Orthopaedic bed management system by accurately forecasting arrivals, using known data and statistical distributions to predict patient length of stay, and applying generic bed management rules to dictate their placement
    corecore