116,586 research outputs found

    Machine Learning in Wireless Sensor Networks for Smart Cities:A Survey

    Get PDF
    Artificial intelligence (AI) and machine learning (ML) techniques have huge potential to efficiently manage the automated operation of the internet of things (IoT) nodes deployed in smart cities. In smart cities, the major IoT applications are smart traffic monitoring, smart waste management, smart buildings and patient healthcare monitoring. The small size IoT nodes based on low power Bluetooth (IEEE 802.15.1) standard and wireless sensor networks (WSN) (IEEE 802.15.4) standard are generally used for transmission of data to a remote location using gateways. The WSN based IoT (WSN-IoT) design problems include network coverage and connectivity issues, energy consumption, bandwidth requirement, network lifetime maximization, communication protocols and state of the art infrastructure. In this paper, the authors propose machine learning methods as an optimization tool for regular WSN-IoT nodes deployed in smart city applications. As per the author’s knowledge, this is the first in-depth literature survey of all ML techniques in the field of low power consumption WSN-IoT for smart cities. The results of this unique survey article show that the supervised learning algorithms have been most widely used (61%) as compared to reinforcement learning (27%) and unsupervised learning (12%) for smart city applications

    SMART CITY MANAGEMENT USING MACHINE LEARNING TECHNIQUES

    Get PDF
    In response to the growing urban population, smart cities are designed to improve people\u27s quality of life by implementing cutting-edge technologies. The concept of a smart city refers to an effort to enhance a city\u27s residents\u27 economic and environmental well-being via implementing a centralized management system. With the use of sensors and actuators, smart cities can collect massive amounts of data, which can improve people\u27s quality of life and design cities\u27 services. Although smart cities contain vast amounts of data, only a percentage is used due to the noise and variety of the data sources. Information and communication technology (ICT) and the Internet of Things (IoT) play a far more prominent role in developing smart cities when it comes to making choices, designing policies, and executing different methods. Smart city applications have made great strides thanks to recent advances in artificial intelligence (AI), especially machine learning (ML) and deep learning (DL). The applications of ML and DL have significantly increased the accuracy aspect of decision-making in smart cities, especially in analyzing the captured data using IoT-based devices and sensors. Smart cities employ algorithms that use unlabeled and labeled data to manage resources and deliver individualized services effectively. It has instantaneous practical use in many crucial areas, including smart health, smart environment, smart transportation system, energy management, and smart water distribution system in a smart city. Hence, ML and DL have become hot research topics in AI techniques in recent years and are proving to be accurate optimization techniques in smart cities. In addition, artificial intelligence algorithms enable the processing massive datasets and identify patterns and characteristics that would otherwise go unnoticed. Despite these advantages, researchers\u27 skepticism of AI\u27s sometimes mysterious inner workings has prevented it from being widely used for smart cities. This thesis\u27s primary intent is to explore the value of employing diverse AI and ML techniques in developing smart city-centric domains and investigate the efficacy of these proposed approaches in four different aspects of the smart city such as smart energy, smart transportation system, smart water distribution system and smart environment. In addition, we use these machine learning approaches to make a data analytics and visualization unit module for the smart city testbed. Internet-of-Things-based machine learning approaches in diverse aspects have repeatedly demonstrated greater accuracy, sensitivity, cost-effectiveness, and productivity, used in the built-in Virginia Commonwealth University\u27s real-time testbed

    Intelligent Technologies Supporting the Management of a Smart City. Qualitative Approach

    Get PDF
    Intelligent technologies such as Business Intelligence systems, big data, artificial intelligence including machine learning and cognitive technologies play crucial role in the process of a smart city management. The aim of the paper is to indicate the role of intelligent solutions in the management of a contemporary city, particularly focusing on the support of decision making process. The research methodology is based on a qualitative approach where six case studies were conducted in the selected big cities in Poland in 2021 year. The respondents belonged to the group of mainly managers of IT departments in the cities. The case study analyses showed that implemented intelligent solutions in the process of a smart city management positively and significantly affect efficacy, efficiency, quality, and acceleration of the decision-making process and also support the creation of a particular city development strategy. The paper puts also an emphasis on the review of AI applications within the concept of smart city in a big worldwide metropolies

    Deep learning and internet of things for beach monitoring: An experimental study of beach attendance prediction at Castelldefels beach

    Get PDF
    Smart seaside cities can fully exploit the capabilities brought by Internet of Things (IoT) and artificial intelligence to improve the efficiency of city services in traditional smart city applications: smart home, smart healthcare, smart transportation, smart surveillance, smart environment, cyber security, etc. However, smart coastal cities are characterized by their specific application domain, namely, beach monitoring. Beach attendance prediction is a beach monitoring application of particular importance for coastal managers to successfully plan beach services in terms of security, rescue, health and environmental assistance. In this paper, an experimental study that uses IoT data and deep learning to predict the number of beach visitors at Castelldefels beach (Barcelona, Spain) was developed. Images of Castelldefels beach were captured by a video monitoring system. An image recognition software was used to estimate beach attendance. A deep learning algorithm (deep neural network) to predict beach attendance was developed. The experimental results prove the feasibility of Deep Neural Networks (DNNs) for beach attendance prediction. For each beach, a classification of occupancy was estimated, depending on the number of beach visitors. The proposed model outperforms other machine learning models (decision tree, k-nearest neighbors, and random forest) and can successfully classify seven beach occupancy levels with the Mean Absolute Error (MAE), accuracy, precision, recall and F1-score of 0.03, 92.7%, 92.9%, 92.7%, and 92.7%, respectively.Postprint (published version

    Disease diagnosis in smart healthcare: Innovation, technologies and applications

    Get PDF
    To promote sustainable development, the smart city implies a global vision that merges artificial intelligence, big data, decision making, information and communication technology (ICT), and the internet-of-things (IoT). The ageing issue is an aspect that researchers, companies and government should devote efforts in developing smart healthcare innovative technology and applications. In this paper, the topic of disease diagnosis in smart healthcare is reviewed. Typical emerging optimization algorithms and machine learning algorithms are summarized. Evolutionary optimization, stochastic optimization and combinatorial optimization are covered. Owning to the fact that there are plenty of applications in healthcare, four applications in the field of diseases diagnosis (which also list in the top 10 causes of global death in 2015), namely cardiovascular diseases, diabetes mellitus, Alzheimer’s disease and other forms of dementia, and tuberculosis, are considered. In addition, challenges in the deployment of disease diagnosis in healthcare have been discussed

    Machine learning for Internet of Things data analysis: A survey

    Get PDF
    Rapid developments in hardware, software, and communication technologies have allowed the emergence of Internet-connected sensory devices that provide observation and data measurement from the physical world. By 2020, it is estimated that the total number of Internet-connected devices being used will be between 25 and 50 billion. As the numbers grow and technologies become more mature, the volume of data published will increase. Internet-connected devices technology, referred to as Internet of Things (IoT), continues to extend the current Internet by providing connectivity and interaction between the physical and cyber worlds. In addition to increased volume, the IoT generates Big Data characterized by velocity in terms of time and location dependency, with a variety of multiple modalities and varying data quality. Intelligent processing and analysis of this Big Data is the key to developing smart IoT applications. This article assesses the different machine learning methods that deal with the challenges in IoT data by considering smart cities as the main use case. The key contribution of this study is presentation of a taxonomy of machine learning algorithms explaining how different techniques are applied to the data in order to extract higher level information. The potential and challenges of machine learning for IoT data analytics will also be discussed. A use case of applying Support Vector Machine (SVM) on Aarhus Smart City traffic data is presented for a more detailed exploration.Comment: Digital Communications and Networks (2017
    corecore