7 research outputs found

    MacWilliams' Extension Theorem for Bi-Invariant Weights over Finite Principal Ideal Rings

    Full text link
    A finite ring R and a weight w on R satisfy the Extension Property if every R-linear w-isometry between two R-linear codes in R^n extends to a monomial transformation of R^n that preserves w. MacWilliams proved that finite fields with the Hamming weight satisfy the Extension Property. It is known that finite Frobenius rings with either the Hamming weight or the homogeneous weight satisfy the Extension Property. Conversely, if a finite ring with the Hamming or homogeneous weight satisfies the Extension Property, then the ring is Frobenius. This paper addresses the question of a characterization of all bi-invariant weights on a finite ring that satisfy the Extension Property. Having solved this question in previous papers for all direct products of finite chain rings and for matrix rings, we have now arrived at a characterization of these weights for finite principal ideal rings, which form a large subclass of the finite Frobenius rings. We do not assume commutativity of the rings in question.Comment: 12 page

    The extension problem for Lee and Euclidean weights

    Get PDF
    The extension problem is solved for the Lee and Euclidean weights over three families of rings of the form Z/NZ\Z/N\Z: N=2+1N=2^{\ell + 1}, N=3+1N=3^{\ell + 1}, or N=p=2q+1N=p=2q+1 with pp and qq prime. The extension problem is solved for the Euclidean PSK weight over Z/NZ\Z/N\Z for all NN

    A transform approach to polycyclic and serial codes over rings

    Get PDF
    Producción CientíficaIn this paper, a transform approach is used for polycyclic and serial codes over finite local rings in the case that the defining polynomials have no multiple roots. This allows us to study them in terms of linear algebra and invariant subspaces as well as understand the duality in terms of the transform domain. We also make a characterization of when two polycyclic ambient spaces are Hamming-isometric.Ministerio de Ciencia, Innovación y Universidades / Agencia Estatal de Investigación / 0.13039/501100011033 (grant PGC2018-096446-B-C21

    Canonical form for poset codes and coding-decoding schemes for expected loss

    Get PDF
    Orientador: Marcelo FirerTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação CientíficaResumo: No contexto de códigos corretores de erros, métricas são utilizadas para definir decodificadores de máxima proximidade, uma alternativa aos decodificadores de máxima verossimilhança. A família de métricas poset tem sido extensivamente estudada no contexto de teoria de códigos. Considerando a estrutura do grupo de isometrias lineares, é obtida uma forma canônica para matrizes geradoras de códigos lineares. Esta forma canônica permite obter expressões e limitantes analíticos para alguns invariantes clássicos da teoria: raio de empacotamento e complexidade de síndrome. Ainda, substituindo a probabilidade de erro pela perda esperada definida pelo desvio médio quadrático (entre a informação original e a informação decodificada), definimos uma proposta de codificação com ordem lexicográfica que, em algumas situações é ótima e em outras, as simulações feitas sugerem um desempenho ao menos subótimo. Finalmente, relacionamos a medida de perda esperada com proteção desigual de erros, fornecendo uma construção de códigos com dois níveis de proteção desigual de erros e com perda esperada menor que a obtida pelo produto de dois códigos ótimos, que separam as informações que são protegidas de modo diferenciadoAbstract: In the context of error-correcting codes, metrics are used to define minimum distance decoders, an alternative to maximum likelihood decoders. The family of poset metrics has been extensively studied in the context of coding theory. Considering the structure of the group of linear isometries, we obtain a canonical form for generator matrices of linear codes. The canonical form allows to obtain analytics expressions and bounds for classical invariants of the theory: packing radius and syndrome complexity. By substituting the error probability by the expected loss defined by the mean square deviation (between the original information and the decoded information), we propose an encoder scheme which, in some situations is optimal, and in others the simulations suggest a performance at least sub-optimal. Finally, we relate the expected loss measure with unequal error protection, providing a construction of codes with two levels of unequal error protection and expected loss smaller than the one obtained by the product of two optimal codes, which divide the information that is protected differentlyDoutoradoMatematicaDoutor em Matemática141586/2014-1CNPQCAPE
    corecore