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Resumo

No contexto de códigos corretores de erros, métricas são utilizadas para definir

decodificadores de máxima proximidade, uma alternativa aos decodificadores de máxima

verossimilhança. A família de métricas poset tem sido extensivamente estudada no con-

texto de teoria de códigos. Considerando a estrutura do grupo de isometrias lineares,

é obtida uma forma canônica para matrizes geradoras de códigos lineares. Esta forma

canônica permite obter expressões e limitantes analíticos para alguns invariantes clássicos

da teoria: raio de empacotamento e complexidade de síndrome. Ainda, substituindo a

probabilidade de erro pela perda esperada definida pelo desvio médio quadrático (entre a

informação original e a informação decodificada), definimos uma proposta de codificação

com ordem lexicográfica que, em algumas situações é ótima e em outras, as simulações

feitas sugerem um desempenho ao menos subótimo. Finalmente, relacionamos a medida

de perda esperada com proteção desigual de erros, fornecendo uma construção de códigos

com dois níveis de proteção desigual de erros e com perda esperada menor que a obtida

pelo produto de dois códigos ótimos, que separam as informações que são protegidas de

modo diferenciado.

Palavras-chave: Métricas Sobre Ordens Parciais, Códigos Corretores de Er-

ros (Teoria da Informação)



Abstract

In the context of error-correcting codes, metrics are used to define minimum

distance decoders, an alternative to maximum likelihood decoders. The family of poset

metrics has been extensively studied in the context of coding theory. Considering the

structure of the group of linear isometries, we obtain a canonical form for generator

matrices of linear codes. The canonical form allows to obtain analytics expressions and

bounds for classical invariants of the theory: packing radius and syndrome complexity.

By substituting the error probability by the expected loss defined by the mean square

deviation (between the original information and the decoded information), we propose

an encoder scheme which, in some situations is optimal, and in others the simulations

suggest a performance at least sub-optimal. Finally, we relate the expected loss measure

with unequal error protection, providing a construction of codes with two levels of unequal

error protection and expected loss smaller than the one obtained by the product of two

optimal codes, which divide the information that is protected differently.

Keywords: Poset Metrics, Error Correcting Codes (Information Theory).
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Introduction

Metrics are mathematical structures of interest in coding theory. Several works

are devoted to the study of metrics in the context of coding theory, and the best known

and investigated metric in this context is the Hamming metric. It was suggested by R.

W. Hamming in [25] when describing a geometric model of a code. Later, in ([28],1958)

and ([44],1957), the Lee metric was defined, and became an interesting alternative when

non-binary alphabets are used. Up to our knowledge, the first work considering metrics

in a general approach is a short communication of S. W. Golomb [22] in 1969. In that

work, it was described a family of additive metrics (metrics defined over an alphabet and

extended additively to a set of words with a fixed length) which are still being investigated

nowadays, as we can see in [41]. Recently, the interest on different and larger families

of metrics in coding theory has been increased, as can be seen, for example, in [6], [2],

[20] and [10]. This is partially motivated by the fact that metrics provide a decoding

scheme using minimum distance, which in some cases (when metrics and channels are

matched), is an alternative to Maximum a Posteriori (MAP) decoders. Also, minimum

distance decoders may be used to add manageability to the decoding process, what can

be achieved by the use of a Syndrome decoding algorithm, which is the most general and

efficient decoding algorithm presented in this dissertation.

One of those large families of metrics (with interest in coding theory) is the

family of poset metrics, they were introduced by Brualdi et al in ([6],1991) as a gen-

eralization of metrics obtained by Niederreiter in [35] and [36]. A poset metric on an

𝑛-dimensional vector space is determined by the choice of a partial order on the set

{1, 2, . . . , 𝑛}. To describe the classical parameters of coding theory for such metrics is, in

general, a difficult problem. For example, in [12], it was proved that to determining the

packing radius of an one-dimensional code is an NP-hard problem. However, as we can

see in [30], the family of hierarchical poset metrics, which is determined by the sub-family
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of hierarchical posets, is a natural generalization of the Hamming metric (which belongs

to this sub-family) and, classical coding invariants for those metrics are “easy” (as easy as

in the Hamming case) to obtain by using the canonical-systematic form for linear codes,

determined in [15].

Canonical forms are obtained by using the group of linear isometries and de-

termine a standard, and relatively clean representation of codes, see [15] and [1]. Besides

the hierarchical case, the only known attempt to generalize it was made in [1], where a

standard form for a particular case (Niederreiter-Rosenbloom-Tsfasman (NRT), or orders

consisting of multiple disjoint chains of the same order) is presented. In that work, one

can see that the standard form is not unique (in any possible sense). In a matter of fact,

as we will see later, unicity of such a decomposition is a characteristic of hierarchical

posets.

Here, considering general posets, we construct a standard form, decomposing a

code as a direct sum of smaller codes, and this form is canonical with respect to the length

and dimension of the smaller codes. The choice of a particular representation for codes

(the canonical form), is motivated by the fact that it can be used to easily determine some

code parameters. For the general case, there are no closed and general expressions for

coding invariants, but using the canonical decomposition and comparing to hierarchical

posets, we obtain bounds for two important invariants: the packing radius of a code and

the complexity of syndrome decoding.

Assuming that the minimum (poset) distance decoding is a relevant decoding

criterion, despite the fact we do not explore it, we are actually assuming some underlying

situation (possibly given by a channel model). If the specific situation of interest in the

coding-decoding process was not made explicit when studying the canonical form of poset

metrics, the model of the channel and a model for evaluating the errors is the core of the

last part of this work, where we propose some alternatives to unequal error protection.

In the classical coding theory, decoders are constructed in order to minimize

both the error and refusal probabilities. In many communications scenarios, it is more

efficient to better protect only a crucial part of the information. In order to achieve

this goal, in [32], it was proposed the framework of unequal error protection (UEP). To

evaluate the performance of a coding system with an unequal error protection, Masnik

and Wolf introduced a measure called Average Error Cost (AEC). In this context, it is
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assigned, for each information bit, a value corresponding the protection level of the bit

(information bits with equal assigned value have the same importance). Then, considering

these levels of protection, a value is assigned to each bit and this determines a cost for an

error in a specific bit. The values on each bit position define a way to measure the cost

of an error: the sum of the errors in each bit, each of those weighted by the value of the

bit position. The AEC is then defined as the average of this quantity, the average being

taken over all transmitted and received codeword.

In [17], it was presented a broader framework for AEC, considering the ex-

pected loss function (ELF) of a coding-decoding scheme. Here, to each pair of codewords

it is assigned a value, representing the value of the error occurred when one information

is exchanged by the other. In this sense, the AEC may be seen as a particular case of

measure, which occurs in the instance of a ELF that is invariant by translations.

As noted by Masnik and Wolf in [32], the main difference among the classical

coding theory and the one with unequal error protection, is that the encoder is a relevant

part of systems with UEP, while in the classical theory, for a given code, the error prob-

ability depends only on the code, not on the encoder. In this context, we explore some

possibilities for encoding and decoding separately. First of all, we propose a lexicographic

encoder that in some simple situations is proved to be optimal, with some experimental

evidences of very good performance in more general situations. We also explore a possi-

bility of choice of a code and encoding process that performs a two-levels UEP, showing

also some experimental measurements for its performance. Some relevant conjectures

concerning those proposals are left open.

This work is organized as follows:

In Chapter 1 we describe the most common decoding schemes: maximum

likelihood, maximum a posteriori probability and minimum distance decoders. We start

with a very general definition of a model for a decoder as a stochastic map. With the

goal of minimizing both the error and refusal probabilities simultaneously, we prove that

we can restrict the attention to deterministic decoders, which is one of the most common

definition of decoders found in the literature. In addition to pointing out the relevance

of metrics in coding theory, this chapter also makes a connection between the concept of

error probability and expected loss, which is introduced in the last chapter.

In Chapter 2, the basics of coding theory are introduced: linear codes, code
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equivalence, packing radius and group of linear isometries. We also introduce the basic

concepts, definitions and properties concerning posets and poset metrics.

The original contributions are concentrated in the last two chapters.

Chapter 3 is devoted to the canonical form for a generator matrix of poset

codes. The decomposition of a code according to the poset metric and its canonical form

are defined and constructed. Using the maximal decomposition, we obtain bounds for the

packing radius and the complexity of syndrome decoding.

Chapter 4 starts exploring the framework of expected loss in the same gener-

ality used in the first chapter to introduce the error and refusal probabilities. We show

that, considering the expected loss, it is possible to exchange a probabilistic decoder by

a deterministic one and, on the encoding side, the problem of minimizing the ELF may

be translated into a problem of minimizing the trace of some matrices. The ELF of an

average encoder is determined as the ELF concerning an equal valued system of informa-

tion (the most usual instance in coding theory) and comparison to this average encoder

can be used as a performance measure of an encoding scheme. The last two sections are

devoted to particular cases, one regarding encoders and the other regarding decoders. In

these sections, some conjectures are presented and a practical example is described.
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Chapter 1

Metrics in Coding Theory

This chapter is a brief introduction on decoders and the role of metrics in

coding theory. As a complementary reading we cite the recent survey of Gabidulin [20].

Even though we introduce the concepts of information theory in a slightly different way

from Gabidulin’s survey, the survey can also be used as a supplementary reading.

The stochastic map notation will be used in order to define channels and

decoders. The stochastic maps approach simplifies the notations of channels and allows

us to justify the usual definition for decoder. Thus, before we discuss information and

coding theory, we shall define the two basic mathematical concepts that underlie this

work:

Definition 1. (Stochastic Map) Let 𝒫𝒴 be the set of all probability distributions over a

finite set 𝒴 . A stochastic map 𝒫 : 𝒳 → 𝒫𝒴 is a map from a finite set 𝒳 to a probability

distribution over 𝒴 .

Given 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 , the expression 𝑦 ∼ 𝒫(𝑥) means that the element

𝑦 was sampled from the probability distribution 𝒫(𝑥). We will write 𝒫(𝑦|𝑥) = 𝑃𝑟(𝑦 =

𝑦′|𝑦′ ∼ 𝒫(𝑥)) to express the conditional probability for the occurrence of the event 𝑦 given

that 𝑥 has occurred.

Definition 2. (Metric) A metric 𝑑 over 𝒳 is a function 𝑑 : 𝒳 × 𝒳 → R satisfying the

following conditions:

(a) 𝑑(𝑥, 𝑦) ≥ 0 and 𝑑(𝑥, 𝑦) = 0 if, and only if, 𝑥 = 𝑦;

(b) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);

(c) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝒳 .
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1.1 Decoders over Discrete Channels

The first geometric model of a code was suggested by R. W. Hamming in ([25],

1950). This model gave rise to the well-known Hamming metric, the most investigated

metric in coding theory. Just after this Hamming contribution, motivated by the cyclic

structure of non-binary alphabets, the Lee model was introduced in ([44], 1957) and

([28], 1958). The Hamming metric is important for two reasons: it matches with one of

the most studied channels in information theory, the Binary Symmetric Channel (BSC);

and it is simple enough to allow the design of “good” decoding algorithms for specific

types of codes. New geometric models of codes have been studied in coding theory and,

consequently, new families of metrics fitting these models have been proposed, see [40],

[6], [2] and [10]. In order to establish the precise relation between metrics and coding

theory, we will first give a brief description of a communication system.

The Shannon model of a point-to-point communication system, as shown in

figure 1.1, breaks the process of communication down into a handful of components. It is

a minimalist abstraction of the reality; actually, in the “real world”, most of the communi-

cation systems are much more complex. Each component of the model has its importance

in the transmission process which may vary according to the system application.

x = x1 · · ·xk

Message Source Encoder Decoder

Channel

Receiver

message

c = c1 · · · cn
codeword

y = c+ e
received word

e = e1 · · · en
error from noise

x̂
estimate of message

Figure 1.1: Communication System

Basically, the functioning of this communication system is as follows: The

Message Source generates messages with length 𝑘 in order to send them to the Receiver.

This generator is modeled by a random variable and in most of the cases it is assumed to

be uniformly distributed. The Encoder adds redundancy in each message following math-

ematical rules, increasing the block of data from length 𝑘 to length 𝑛. This redundancy

will provide structure in the ambient space in order to allow the Decoder to detect and

correct some errors that eventually occur when a noisy channel is used. Each component

described here will be formally defined since they are necessary to the comprehension of
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the main objects of this work: the decoders.

Definition 1.1.1. Let 𝒳 and 𝒴 be finite sets. A discrete channel is a stochastic map

𝑊 : 𝒳 → 𝒫𝒴 where 𝒳 is called the input alphabet and 𝒴 the output alphabet of the

channel.

We would like to stress that for a given channel 𝑊 , the expression 𝑊 (𝑦|𝑥)

denotes the probability to receive 𝑦 given that 𝑥 was sent. The transition probabilities

(or conditional probabilities) of a channel are in general obtained from experimental data.

If no information is known, the worst-case scenario, or an approximation to it, is assumed.

Given an alphabet 𝒳 , denote by 𝒳 𝑛 the set of all words with length 𝑛 over this

alphabet. A block channel with input alphabet 𝒳 and output alphabet 𝒴 is a discrete

channel 𝑊𝑛 : 𝒳 𝑛 → 𝒫𝒴𝑛 . Note that block channels deal with words with a fixed length

while the channels defined in 1.1.1 deal with alphabets. Given a block channel 𝑊𝑛, if

there is a channel 𝑊 such that for every 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝒴𝑛 and 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝒳 𝑛

with 𝑦𝑖 ∈ 𝒴 and 𝑥𝑖 ∈ 𝒳 we have that

𝑊𝑛(𝑦|𝑥) =
𝑛∏︁

𝑖=1
𝑊 (𝑦𝑖|𝑥𝑖),

the discrete block channel 𝑊𝑛 will be denoted by 𝑊 𝑛 and called memoryless. We remark

that 𝑊 𝑛 is obtained by extending the channel 𝑊 to arrays. Due to this, it is often called

the 𝑛-th extension of 𝑊 . Only discrete channels are considered in this work, therefore

the word discrete will be omitted. For simplicity, if 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝒳 𝑛, sometimes the

parenthesis or the commas of 𝑥 will be suppressed. Also, if no confusion may arise, the

index 𝑛 is going to be omitted in the block channel notation.

Example 1.1.2. (Binary Symmetric Channel) A Binary Symmetric Channel 𝑊 : F2 →

𝒫F2 is a channel with input and output alphabets F2 (finite field with 2 elements) and

conditional probabilities 𝑊 (1|1) = 1 − 𝑝 = 𝑊 (0|0) and 𝑊 (1|0) = 𝑝 = 𝑊 (0|1) where

0 ≤ 𝑝 ≤ 1/2. This channel and its 𝑛-th extension are the most studied channels in

information theory. They are called symmetric because 𝑊 (𝑥|𝑦) = 𝑊 (𝑦|𝑥) for all 𝑥, 𝑦 ∈ F2.

It is usual to represent this channel by the diagram in Figure 1.2.

Example 1.1.3. (Binary Erasure Channel) A Binary Erasure Channel 𝑊 : F2 → 𝒫F2∪{?}

is a channel with conditional probabilities 𝑊 (1|1) = 1 − 𝑝 = 𝑊 (0|0) and 𝑊 (? |0) = 𝑝 =
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1− p

1− p
1

0

1

0

p

p

Figure 1.2: Binary Symmetric Channel

𝑊 (? |1) where 0 ≤ 𝑝 ≤ 1/2. The symbol ? means that the bit sent was erased. This

channel is frequently used in information theory because it is one of the simplest channels

to analyze: whenever an error occurs, it tells you about the existence and position of the

error in the array. It is represented by the diagram 1.3.

1− p

1− p
1

0

1

0

p

p

?

Figure 1.3: Binary Erasure Channel

Example 1.1.4. (𝑞-ary Symmetric Channels) A memoryless symmetric channel with

input and output alphabets 𝒳 with 𝑞 = |𝒳 |, and crossover probability 𝑝, where 0 ≤ 𝑝 ≤

1/2 is a channel defined by the following conditional probabilities: 𝑊 (𝑦|𝑦) = 1 − 𝑝 and

𝑊 (𝑦|𝑥) = 𝑝/(𝑞 − 1) if 𝑥 ̸= 𝑦. A particular case of these channels is the binary symmetric

channel defined in Example 1.1.2.

Definition 1.1.5. Consider the set 𝒳 𝑛 of all words with length 𝑛 over the alphabet 𝒳 .

A code 𝒞 is any subset of 𝒳 𝑛. The elements of the code 𝒞 are called codewords.

An (𝑛, 𝑀, 𝑞)-code is a code 𝒞 ⊂ 𝒳 𝑛 where |𝒞|= 𝑀 and |𝒳 |= 𝑞. From now on,

for the sake of simplicity, we will assume that the input alphabet 𝒳 is contained in the

output alphabet 𝒴 . This restriction ensures that 𝒞 ⊂ 𝒳 𝑛 ⊂ 𝒴𝑛 for every code 𝒞 over 𝒳 𝑛.

It facilitates the definition of the next structures (decoders and encoders).

An information set is any set with cardinality 𝑞𝑘 where 𝑞 and 𝑘 are positive

integers. We remark that the set of all messages can be identified with the set of all
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words with length 𝑘 over a finite alphabet 𝒳 with 𝑞 elements, which is denoted by 𝒳 𝑘.

Therefore, the notation (𝑛, 𝑀, 𝑞) is going to be exchanged by (𝑛, 𝑘)𝑞 since 𝑀 = 𝑞𝑘.

Definition 1.1.6. Given an information set 𝒳 𝑘 and an integer 𝑛 ≥ 𝑘, an encoder is an

injective map 𝑓 : 𝒳 𝑘 → 𝒳 𝑛, its image is an (𝑛, 𝑘)𝑞-code 𝒞.

Definition 1.1.7. Let 𝒞 ⊂ 𝒳 𝑛 be an (𝑛, 𝑘)𝑞-code. A decoder of 𝒞 is a decision criteria for

each 𝑦 ∈ 𝒴𝑛 modeled by a stochastic map 𝐷 : 𝒴𝑛 → 𝒫𝒞∪{∞} such that 𝐷(∞|𝑦) ∈ {0, 1}

for every 𝑦 ∈ 𝒴𝑛 and 𝐷(𝑐|𝑐) = 1 for every 𝑐 ∈ 𝒞. The set of all decoders of 𝒞 will be

denoted by 𝒟𝒴(𝒞).

We remark that if 𝐷 ∈ 𝒟𝒴(𝒞), each 𝑦 ∈ 𝒴𝑛 determines a (probabilistic)

decision criteria given by the probability distribution 𝐷(𝑦). Given 𝑥 ∈ 𝒞 ∪ {∞} and

𝑦 ∈ 𝒴𝑛, the value 𝐷(𝑥|𝑦) denotes the probability to the decoder outputs 𝑥 given that the

word 𝑦 was received. If a codeword 𝑐 ∈ 𝒞 is received, the assumption 𝐷(𝑐|𝑐) = 1 ensures

that the decoder will assume the codeword 𝑐 was sent. The symbol ∞ denotes that an

error has occurred and the decoder could not solve the decision problem, refusing the

received word. This means that the information must be sent again (or forgotten). Since

𝐷(∞|𝑦) ∈ {0, 1}, to decide when the received word 𝑦 ∈ 𝒴𝑛 is going to be refused or not

it is a deterministic criteria.

Given a decoder 𝐷 and an encoder 𝑓 for the code 𝒞, a full decoder is a stochastic

map 𝐷′ : 𝒴𝑛 → 𝒫𝒳 𝑘∪{∞} defined by 𝐷′(𝑐|𝑦) = 𝐷(𝑓(𝑐)|𝑦) and 𝐷′(∞|𝑦) = 𝐷(∞|𝑦). Note

that 𝑓−1 : 𝒞 → 𝒳 𝑘 is a bijection, thus the stochastic map 𝐷′ is well defined. The difference

between full decoders and decoders is that a decoder outputs an error ∞ or an element

𝑐 ∈ 𝒞, and a full decoder outputs an error or an information 𝑓−1(𝑐) ∈ 𝒳 𝑘.

Definition 1.1.8. A (𝒞, 𝑓, 𝐷) encoding-decoding scheme for the channel 𝑊 : 𝒳 𝑛 → 𝒫𝒴𝑛

consists of

1 - An information set 𝒳 𝑘 with cardinality 𝑞𝑘 where 𝑞 = |𝒳 | and 𝑘 ≤ 𝑛;

2 - An encoder 𝑓 : 𝒳 𝑘 → 𝒳 𝑛 where 𝑓(𝒳 𝑘) = 𝒞 is an (𝑛, 𝑘)𝑞-code;

3 - A decoder (stochastic map) 𝐷 : 𝒴𝑛 → 𝒫𝒞∪{∞}.

The main purpose of coding theory is to ensure reliable transmission of infor-

mation through a noisy channel, reliability being determined by an appropriate measure.
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Among the most important measures, there are the error probability and the refusal

probability of a code. They express the amount of expected errors and refusals.

Given a decoder 𝐷 ∈ 𝒟𝒴(𝒞) and a channel 𝑊 , the refusal probability for a

codeword 𝑐 ∈ 𝒞 is the probability that the decoder refuses a vector given that 𝑐 was sent,

i.e.,

𝑃 𝐷
𝑟𝑒𝑓 (𝑐) =

∑︁
𝑦∈𝒴𝑛

𝑊 (𝑦|𝑐)𝐷(∞|𝑦).

We remark that the probabilities 𝑊 (𝑦|𝑐) and 𝐷(𝑦|𝑐) are determined by the channel and

the decoder respectively. The refusal probability of the code 𝒞 is the mean

𝑃 𝐷
𝑟𝑒𝑓 (𝒞) =

∑︁
𝑐∈𝒞

𝑃 𝐷
𝑟𝑒𝑓 (𝑐)𝑃 (𝑐)

where 𝑃 (𝑐) is the probability of the codeword 𝑐 ∈ 𝒞 to be sent through the channel. The

error probability can be defined similarly to the refusal probability. The error probability

of a codeword 𝑐 ∈ 𝒞 is defined by

𝑃 𝐷
𝑒 (𝑐) :=

∑︁
𝑦∈𝒴𝑛

𝑊 (𝑦|𝑐)(1 − 𝐷(∞|𝑦) − 𝐷(𝑐|𝑦))

where 1−𝐷(∞|𝑦)−𝐷(𝑐|𝑦) is the probability that the decoder outputs a codeword different

to the sent one 𝑐. The error probability of the code is defined by

𝑃 𝐷
𝑒 (𝒞) :=

∑︁
𝑐∈𝒞

𝑃 𝐷
𝑒 (𝑐)𝑃 (𝑐). (1.1)

It is clear that the error and refusal probabilities do not depend on the encoder.

This is not true when considering error value functions and unequal error protection, as we

can see in [16]. Assuming those probabilities as measures of reliability, we define optimal

decoder:

Definition 1.1.9. For a given code 𝒞, an optimal decoder 𝐷* is a decoder satisfying

𝑃 𝐷*

𝑟𝑒𝑓 (𝒞) + 𝑃 𝐷*

𝑒 (𝒞) = min
𝐷∈𝒟𝒴 (𝒞)

(︁
𝑃 𝐷

𝑟𝑒𝑓 (𝒞) + 𝑃 𝐷
𝑒 (𝒞)

)︁
.

Proposition 1.1.10. Given a decoder 𝐷 ∈ 𝒟𝒴(𝒞), there exists a decoder ̃︁𝐷 ∈ 𝒟𝒴(𝒞)

such that

𝑃
̃︀𝐷

𝑒 (𝒞) ≤ 𝑃 𝐷
𝑟𝑒𝑓 (𝒞) + 𝑃 𝐷

𝑒 (𝒞)
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and 𝑃 ̃︀𝐷𝑟𝑒𝑓 (𝒞) = 0.

Proof. Given a decoder 𝐷 ∈ 𝒟𝒴(𝒞), suppose there exists 𝑦0 ∈ 𝒴𝑛 such that 𝐷(∞|𝑦0) = 1.

Define a new decoder 𝐷* ∈ 𝒟𝒴(𝒞) satisfying 𝐷*(𝑦) = 𝐷(𝑦) for all 𝑦 ̸= 𝑦0 but 𝐷*(𝑦0) is

a new distribution which does not refuse 𝑦0, so 𝐷*(∞|𝑦0) = 0. Our goal here is to show

that

𝑃 𝐷*

𝑟𝑒𝑓 (𝒞) + 𝑃 𝐷*

𝑒 (𝒞) ≤ 𝑃 𝐷
𝑟𝑒𝑓 (𝒞) + 𝑃 𝐷

𝑒 (𝒞). (1.2)

Initially, note that since 𝐷*(∞|𝑦0) = 0 and 𝐷*(∞|𝑦) = 𝐷(∞|𝑦) for all 𝑦 ̸= 𝑦0, hence

𝑃 𝐷*

𝑟𝑒𝑓 (𝒞) =
∑︁
𝑐∈𝒞

∑︁
𝑦∈𝒴𝑛∖{𝑦0}

𝑊 (𝑦|𝑐)𝐷(∞|𝑦)𝑃 (𝑐).

Therefore,

𝑃 𝐷
𝑟𝑒𝑓 (𝒞) = 𝑃 𝐷*

𝑟𝑒𝑓 (𝒞) +
∑︁
𝑐∈𝒞

𝑊 (𝑦0|𝑐)𝑃 (𝑐) (1.3)

because 𝐷(∞|𝑦0) = 1. On the other hand, since 𝐷(𝑐|𝑦0) = 0 for all 𝑐 ∈ 𝒞, by definition

of 𝐷*,

𝑃 𝐷
𝑒 (𝒞) =

∑︁
𝑐∈𝒞

∑︁
𝑦∈𝒴𝑛∖{𝑦0}

𝑊 (𝑦|𝑐)(1 − 𝐷*(∞|𝑦) − 𝐷*(𝑐|𝑦))𝑃 (𝑐),

thus

𝑃 𝐷*

𝑒 (𝒞) = 𝑃 𝐷
𝑒 (𝒞) +

∑︁
𝑐∈𝒞

𝑊 (𝑦0|𝑐)(1 − 𝐷*(𝑐|𝑦0))𝑃 (𝑐). (1.4)

It is straightforward that

∑︁
𝑐∈𝒞

𝑊 (𝑦0|𝑐)(1 − 𝐷*(𝑐|𝑦0))𝑃 (𝑐) ≤
∑︁
𝑐∈𝒞

𝑊 (𝑦0|𝑐)𝑃 (𝑐),

therefore,

𝑃 𝐷*

𝑟𝑒𝑓 (𝒞) + 𝑃 𝐷
𝑒 (𝒞) +

∑︁
𝑐∈𝒞

𝑃 (𝑦0|𝑐)(1 − 𝐷*(𝑐|𝑦0))𝑃 (𝑐) ≤ 𝑃 𝐷*

𝑟𝑒𝑓 (𝒞) + 𝑃 𝐷
𝑒 (𝒞) +

∑︁
𝑐∈𝒞

𝑊 (𝑦0|𝑐)𝑃 (𝑐).

Together with Identities (1.3) and (1.4), we obtain the Inequality (1.2). The decoder ̃︁𝐷
is constructed by following this procedure until we run out of refused elements.

Corollary 1.1.11. Given a code 𝒞, there exists an optimal decoder 𝐷* ∈ 𝒟𝒴(𝒞) satisfying

𝑃 𝐷*
𝑟𝑒𝑓 (𝒞) = 0.

Since we are not concerned with specific applications, and in this level of
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generality we are assuming only the error and refusal measures, Corollary 1.1.11 ensures

that we do not lose generality by assuming the refusal probability to be zero. Therefore,

we will restrict ourselves to the goal in minimizing the error probability. Thus, from now

on, the decoder model will be considered as stochastic maps 𝐷 : 𝒴𝑛 → 𝒫𝒞 (instead of

𝐷 : 𝒴𝑛 → 𝒫𝒞∪{∞}).

1.2 Decoding Schemes

As seen in the previous section, we can consider only complete decoders: de-

coders with no refusal option. In this situation, optimal decoders are the ones minimizing

the error probability. We can basically divide the problem of searching good decoders

using two criteria, the usefulness and the manageability of the decoder. Due to the

generality of this work, we will not deal with the manageability criteria of the decoders

when dealing with metrics decoders, the manageability of metric decoders will be justified

later by the possibility to use syndrome decoding, a general procedure for decoding linear

codes. Therefore, from our point of view, good decoders are not necessarily practical,

since they can be hard to deal with. We will now define a series of abstract decoders

and add some mathematical structures on 𝒳 𝑛, structures that are, in most of the cases,

sufficient conditions to add manageability to the decoder.

Given a channel 𝑊 , by the Bayes’ rule, 𝑊 (𝑦|𝑐)𝑃 (𝑐) = 𝑊 (𝑐|𝑦)𝑃 (𝑦), where 𝑃 (𝑐)

denotes the probability of the codeword 𝑐 ∈ 𝒞 to be sent and 𝑃 (𝑦) is the probability that

𝑦 ∈ 𝒴𝑛 is received. We remark that we are assuming complete decoders, so if 𝐷 ∈ 𝒟𝒴(𝒞),

the error probability can be alternatively written in the following way:

𝑃 𝐷
𝑒 (𝒞) =

∑︁
𝑐∈𝒞

∑︁
𝑦∈𝒴𝑛

𝑊 (𝑦|𝑐) (1 − 𝐷(𝑐|𝑦)) 𝑃 (𝑐)

=
∑︁
𝑐∈𝒞

∑︁
𝑦∈𝒴𝑛

𝑊 (𝑐|𝑦) (1 − 𝐷(𝑐|𝑦)) 𝑃 (𝑦)

= 1 −
∑︁
𝑐∈𝒞

∑︁
𝑦∈𝒴𝑛

𝑊 (𝑐|𝑦)𝑃 (𝑦)𝐷(𝑐|𝑦). (1.5)

Definition 1.2.1. Given a channel 𝑊 , a Maximum a Posteriori Probability (MAP) de-

coder is a decoder 𝐷 : 𝒴𝑛 → 𝒫𝒞 such that 𝐷(𝑦) is a conditional distribution over 𝒞

satisfying

𝑊 (𝑐′ ∼ 𝐷(𝑦)|𝑦) = max{𝑊 (𝑐|𝑦) : 𝑐 ∈ 𝒞}
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for every 𝑦 ∈ 𝒴𝑛.

As one should expect, decoders that minimize error probability are those that

maximize the conditional probabilities 𝑊 (𝑐|𝑦), as explained below.

Lemma 1.2.2. Given a sequence of 𝑛 non-negative integers 𝑎1 ≥ · · · ≥ 𝑎𝑛 such that∑︀
𝑖 𝑎𝑖 = 1. Suppose 𝑎1 = . . . = 𝑎𝑘 > 𝑎𝑘+1 for some 1 ≤ 𝑘 ≤ 𝑛 − 1. Consider the

maximization problem
𝑛∑︁

𝑖=1
𝑎𝑖𝑏

′
𝑖 = max

{𝑏1,...,𝑏𝑛}

𝑛∑︁
𝑖=1

𝑎𝑖𝑏𝑖

where the maximum is over the sets {𝑏1, . . . , 𝑏𝑛} satisfying ∑︀𝑖 𝑏𝑖 = 1. Then every sequence

of non-negative integers 𝑏′
1, . . . , 𝑏′

𝑘 satisfying ∑︀𝑘
𝑖=1 𝑏′

𝑖 = 1 is a solution for this problem.

Proof. Note that
𝑛∑︁

𝑖=1
𝑎𝑖𝑏𝑖 = 𝑎1

(︂
𝑏1 + 𝑎2

𝑎1
𝑏2 + · · · + 𝑎𝑛

𝑎1
𝑏𝑛

)︂
.

Since 𝑎1 ≥ 𝑎𝑖 for every 𝑖, it follows that 𝑏1 + 𝑎2
𝑎1

𝑏2 + · · · + 𝑎𝑛

𝑎1
𝑏𝑛 ≤ 1, therefore,

𝑎1

(︂
𝑏1 + 𝑎2

𝑎1
𝑏2 + · · · + 𝑎𝑛

𝑎1
𝑏𝑛

)︂
≤ 𝑎1.

Then 𝑏1 = 1 and 𝑏𝑖 = 0 for all 𝑖 > 1 is a solution for the maximization problem. Because

𝑎1 = . . . = 𝑎𝑘, every sequence of non-negative integers 𝑏1, . . . , 𝑏𝑘 satisfying ∑︀𝑘
𝑖=1 𝑏𝑖 = 1 is

also a solution.

Theorem 1.2.3. If 𝐷 is a MAP decoder, then 𝐷 is optimal.

Proof. By Equation 1.5, for any code 𝒞,

𝑃 𝐷
𝑒 (𝒞) = 1 −

∑︁
𝑦∈𝒴𝑛

(︃∑︁
𝑐∈𝒞

𝑊 (𝑐|𝑦)𝐷(𝑐|𝑦)
)︃

𝑃 (𝑦).

Note that to minimize the error probability is equivalent to maximize the

expression ∑︁
𝑐∈𝒞

𝑊 (𝑐|𝑦)𝐷(𝑐|𝑦)

for each choice of 𝑦 ∈ 𝒴 . Note that if 𝑐 ∼ 𝐷(𝑦) and 𝑐′ ∼ 𝐷(𝑦), by the definition of

a MAP decoder, 𝑊 (𝑐|𝑦) = 𝑊 (𝑐′|𝑦). Also, if 𝑐 cannot be sampled from 𝐷(𝑦), it means

that 𝐷(𝑐|𝑦) = 0. Thus, the conditional probabilities 𝐷(𝑐|𝑦) satisfy the conditions of
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Lemma 1.2.2 and are solutions for that maximization problem. Therefore, MAP decoders

minimizes the error probability.

A decoder 𝐷 ∈ 𝒟𝒴(𝒞) is said to be deterministic1 if for every 𝑦 ∈ 𝒴𝑛, there is

an element 𝑐 ∈ 𝒞 such that 𝐷(𝑐|𝑦) = 1. Therefore, a deterministic decoder is a surjective

map 𝐷 : 𝒴𝑛 → 𝒞. These decoders will be denoted by 𝑔. The next proposition ensures

that we lose no generality if we consider only deterministic decoders. The proof follows

directly from the definition of a MAP decoder and from Lemma 1.2.2.

Proposition 1.2.4. Given a channel 𝑊 , there is a deterministic decoder 𝑔 : 𝒴𝑛 → 𝒞

which is a MAP decoder.

Due to Proposition 1.2.4, from now on we will consider only deterministic

decoders. We can reformulate the definition of MAP decoder as follows:

Definition 1.2.5. (MAP Decoders - Revisited) A Maximum a Posteriori Probability

(MAP) decoder is a decoder 𝑔 : 𝒴𝑛 → 𝒞 satisfying the condition

𝑊 (𝑔(𝑦)|𝑦) = max{𝑊 (𝑐|𝑦) : 𝑐 ∈ 𝒞}.

Consequently, the error probability of a code 𝒞 can be rewritten as

𝑃 𝑔
𝑒 (𝒞) =

∑︁
𝑐∈𝒞

∑︁
𝑦 ̸∈𝑔−1(𝑐)

𝑊 (𝑦|𝑐)𝑃 (𝑐).

Instead of defining a decoder according to a posteriori probabilities 𝑊 (𝑐|𝑦), we can define

it by using a priori probabilities 𝑊 (𝑦|𝑐): the probability to receive 𝑦 if 𝑐 is sent.

Definition 1.2.6. A Maximum Likelihood (ML) decoder is a decoder 𝑔 : 𝒴𝑛 → 𝒞 satis-

fying the condition

𝑊 (𝑦|𝑔(𝑦)) = max{𝑊 (𝑦|𝑐) : 𝑐 ∈ 𝒞}.

The proof of the next well-known proposition follows straight from the Bayes’

rule.

Proposition 1.2.7. If the distribution of the code 𝑃 (𝑐) (the probability to send 𝑐) is

uniform, then a decoder is an ML decoder if and only if it is a MAP decoder.
1The word “deterministic” is used since for those decoders, given a particular received array, the

decoder will always produce the same output.
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From now on we will assume that 𝑃 (𝑐) is uniformly distributed. It is clear that

when dealing with decoders, we are playing with a sort of measure. One of the mathe-

matical measures that can be used in order to decrease the computational complexity for

the decoding algorithms are metrics. In order to use metrics, we will use the assumption

that the input and output alphabets of a channel are the same, i.e., 𝒳 = 𝒴 .

Definition 1.2.8. Given a metric 𝑑 over 𝒳 𝑛, a Minimum Distance (MD) decoder is a

decoder 𝑔 : 𝒳 𝑛 → 𝒞 satisfying the condition

𝑑(𝑦, 𝑔(𝑦)) = min{𝑑(𝑦, 𝑐) : 𝑐 ∈ 𝒞}.

If 𝑔 is a MD decoder according to 𝑑, we will say that 𝑔 is a 𝑑-MD decoder.

The Hamming metric was constructed in [25] when exploring the geometric

representation (Hamming cube) of a code and it is the most studied metric in coding

theory.

Example 1.2.9. (Hamming Distance) The function 𝑑𝐻 : 𝒳 𝑛 × 𝒳 𝑛 → R+ defined by

𝑑𝐻(𝑥, 𝑦) = |{𝑖 : 𝑥𝑖 ̸= 𝑦𝑖}|

where 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑦 = (𝑦1, . . . , 𝑦𝑛) is called Hamming distance.

Proposition 1.2.10. For any memoryless symmetric channel with crossover probability

𝑝 ≤ 1/2, the MD decoder determined by the Hamming metric is also an ML decoder.

Proof. Let 𝒳 be the alphabet of the channel. Given 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝒳 𝑛 and 𝑐 =

(𝑐1, . . . , 𝑐𝑛) ∈ 𝒞, then

𝑊 (𝑦|𝑐) = 𝑊 (𝑦1|𝑐1) · . . . · 𝑊 (𝑦𝑛|𝑐𝑛)

= (1 − 𝑝)|{𝑖:𝑦𝑖=𝑐𝑖}|
(︃

𝑝

𝑞 − 1

)︃|{𝑖:𝑦𝑖 ̸=𝑐𝑖}|

= (1 − 𝑝)𝑛−𝑑𝐻(𝑦,𝑐)
(︃

𝑝

𝑞 − 1

)︃𝑑𝐻(𝑦,𝑐)

= (1 − 𝑝)𝑛

(︃
𝑝

(1 − 𝑝)(𝑞 − 1)

)︃𝑑𝐻(𝑦,𝑐)

.
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Since 𝑝/[(1 − 𝑝)(𝑞 − 1)] < 1,

𝑊 (𝑦|𝑐) ≥ 𝑊 (𝑦|𝑐′) if, and only if 𝑑𝐻(𝑦, 𝑐) ≤ 𝑑𝐻(𝑦, 𝑐′)

for every 𝑐, 𝑐′ ∈ 𝒞.

We remark that we are considering 𝑃 (𝑐) to be uniformly distributed. Thus,

from Propositions 1.2.7 and 1.2.10 we have the following result.

Theorem 1.2.11. In a 𝑞-ary symmetric channel with crossover probability 𝑝 ≤ 1/2, MAP

decoders, ML decoders and MD decoders according to the Hamming metric are optimal

decoders.

We now add some mathematical structure to 𝒳 and 𝒳 𝑛 in order to develop

tools that can be helpful in handling the problems that may arise when dealing with large

finite sets. The most common ones are the structures of finite fields and vector spaces.

We consider the alphabet 𝒳 to be a finite field F𝑞 where 𝑞 = 𝑝𝑟 (𝑝 prime), so that, 𝒳 𝑛 is

an 𝑛-dimensional vector space, namely F𝑛
𝑞 .

Definition 1.2.12. A metric 𝑑 : F𝑛
𝑞 × F𝑛

𝑞 → R is said to be invariant by translations if

𝑑(𝑥 + 𝑧, 𝑦 + 𝑧) = 𝑑(𝑥, 𝑦)

for every 𝑥, 𝑦, 𝑧 ∈ F𝑛
𝑞 .

Metrics can be defined by using norm and weight functions.

Definition 1.2.13. A function 𝑤 : F𝑛
𝑞 → R is a weight if it satisfies the following axioms:

• 𝑤(𝑥) ≥ 0, for every 𝑥;

• 𝑤(𝑥) = 0 if, and only if, 𝑥 = 0;

It is clear that if we define the function 𝑑 by 𝑑(𝑥, 𝑦) = 𝑤(𝑥 − 𝑦), then 𝑑 is

a semimetric (it has all properties of a metric but the triangular inequality). Moreover,

given a semmimetric 𝑑, the function 𝑤(𝑥) = 𝑑(𝑥, 0) is a weight.

The family of weight functions that we are interested in are the ones preserving

the support. A particular but important family (the poset metrics) may be obtained by
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generalizing the Hamming metric. This particular family will be introduced in the next

chapter and will be the main object of this work. The support of an element 𝑥 ∈ F𝑛
𝑞 is

the set

𝑠𝑢𝑝𝑝(𝑥) = {𝑖 : 𝑥𝑖 ̸= 0}.

Definition 1.2.14. A weight function 𝑤 : F𝑛
𝑞 → R is said to preserve the support if

𝑠𝑢𝑝𝑝(𝑥) ⊂ 𝑠𝑢𝑝𝑝(𝑦) ⇒ 𝑤(𝑥) ≤ 𝑤(𝑦).

Example 1.2.15. (Combinatorial Metrics, [21]) Let [𝑛] := {1, . . . , 𝑛}. Consider 𝑇 =

{𝑇0 = ∅, 𝑇1, . . . , 𝑇𝑠} to be a family of subsets covering [𝑛], i.e., ∪𝑠
𝑖=0𝑇𝑖 = [𝑛]. The 𝑇 -

weight is defined by

• 𝑤𝑇 (𝑥) = 0 ⇐⇒ 𝑠𝑢𝑝𝑝(𝑥) = ∅;

• 𝑤𝑇 (𝑥) = 1 ⇐⇒ 𝑠𝑢𝑝𝑝(𝑥) ⊂ 𝑇𝑖 for some i;

• 𝑤𝑇 (𝑥) = 𝑘 ⇐⇒

𝑠𝑢𝑝𝑝(𝑥) ⊂ {𝑎 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑘 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑓𝑟𝑜𝑚 𝑇}

but

𝑠𝑢𝑝𝑝(𝑥) ̸⊂ {𝑎 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝑘 − 1 𝑜𝑟 𝑙𝑒𝑠𝑠 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑓𝑟𝑜𝑚 𝑇}.

The Combinatorial Metric 𝑑𝑇 is obtained by taking

𝑑𝑇 (𝑥, 𝑦) = 𝑤𝑇 (𝑥 − 𝑦).

It is well-known [20] that 𝑑𝑇 is a metric and that preserves support. Several particular

cases of those metrics are well-studied in the context of coding theory, see [20] for more

details.

Since 𝑑𝑇 is also semimetric, it follows that 𝑤𝑇 is a weight. Moreover, it is a

norm in the following sense:

Definition 1.2.16. A function 𝑁 : F𝑛
𝑞 → R is a norm if it is a weight and satisfies

𝑁(𝑥 + 𝑦) ≤ 𝑁(𝑥) + 𝑁(𝑦) for all 𝑥, 𝑦 ∈ F𝑛
𝑞 .
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Concerning metrics and semimetrics invariant by translations, we have the

following:

(1) If 𝑑 is a metric invariant by translations, then the function 𝑁𝑑(𝑥) = 𝑑(𝑥, 0) is a

norm. Moreover, if 𝑁 is a norm, the function 𝑑𝑁 defined by 𝑑𝑁(𝑥, 𝑦) = 𝑁(𝑥 − 𝑦) is

a metric invariant by translations.

(2) If 𝑑 is a semimetric invariant by translations, then the function 𝑤𝑑(𝑥) = 𝑑(𝑥, 0) is a

weight. Moreover, if 𝑤 is a weight, the function 𝑑𝑤 defined by 𝑑𝑤(𝑥, 𝑦) = 𝑤(𝑥 − 𝑦)

is a semimetric invariant by translations.

Example 1.2.17. Not every weight preserving support is a norm. Indeed, define the

weight 𝑤 over F2
2 by setting 𝑤(00) = 0, 𝑤(01) = 𝑤(10) = 1 and 𝑤(11) = 3. This is

a weight that preserves the support but does not satisfies the third condition of norms

(triangular inequality) because 3 = 𝑤(11) > 𝑤(10) + 𝑤(01) = 2. Then the function

𝑑(𝑥, 𝑦) := 𝑤(𝑥−𝑦) is a semimetric (satisfies all the properties of metrics but the triangular

inequality).

The example below provides a norm which does not preserve support. This

extension of the Lee metrics are induced by the ℓ𝑝 metric in Z𝑛, as we can see in [7].

Example 1.2.18. The Lee weight over Z𝑙 is defined by

𝑤𝐿(𝑥) = min{𝑥 (mod 𝑙), −𝑥 (mod 𝑙)}.

The 𝑝 extension of this norm is the 𝑝-Lee norm over Z𝑛
𝑙 where if 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Z𝑛

𝑙 ,

then

𝑤𝑝
𝐿(𝑥) =

(︃
𝑛∑︁

𝑖=1
𝑤𝐿(𝑥𝑖)𝑝

)︃1/𝑝

.

Take 𝑙 > 3, then if 𝑠𝑢𝑝𝑝(𝑥) = 1 = 𝑠𝑢𝑝𝑝(𝑦) with 𝑥1 = 1 and 𝑥2 = 2, thus 𝑤𝑝
𝐿(𝑥) = 1 and

𝑤𝑝
𝐿(𝑦) = 2. If 𝑝-Lee weights preserve support, then we should have 𝑤𝑝

𝐿(𝑥) = 𝑤𝑝
𝐿(𝑦) since

𝑠𝑢𝑝𝑝(𝑥) = 𝑠𝑢𝑝𝑝(𝑦).

It is clear that if we define the function 𝑑 by 𝑑(𝑥, 𝑦) = 𝑁(𝑥 − 𝑦), then 𝑑 is a

metric. Norm and weight functions are also related by their induced metric and semimet-

ric. Indeed, if the semimetric satisfies the triangular inequality, then the weight function

is a norm. We will see that regarding matching metrics and channels, the triangular
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inequality can be easily obtained by using semimetrics. The next two propositions are

well-known results that we will not proof here.

Proposition 1.2.19. If a metric 𝑑 is invariant by translations, then 𝑑 is induced by a

norm.

There is another family of weight functions with interest in coding theory, the

invariant weights, which are weight functions satisfying 𝑤(𝑡𝑥) = 𝑤(𝑥) for every 𝑡 ∈ F𝑞∖{0}

and 𝑥 ∈ F𝑛
𝑞 . In [23], a characterization of invariant weights satisfying MacWilliams

Extension property was given. The invariant weights and the weights preserving sup-

port are related by the next proposition, which proof follows directly from the fact that

𝑠𝑢𝑝𝑝(𝑡𝑥) = 𝑠𝑢𝑝𝑝(𝑥) for all 𝑡 ̸= 0.

Proposition 1.2.20. A weight preserving support is an invariant weight.

Even though the metrics are induced by norms, we will use the weight notation

since it is commonly used in coding theory. In the next section we will present the

syndrome decoding algorithm, an algorithm that works only with invariant by translations

metrics (or semimetrics).

1.2.1 Syndrome Decoding

We are interested in MD decoding according to a metric (or semimetric). As-

suming the metric is invariant by translations, we can use the well-known Syndrome

Decoding algorithm as an alternative to MD decoding. This is the most powerful and

general decoder presented in this thesis, justifying the use of metrics in coding theory.

Our main goal is to prove that in the invariant by translation case, syndrome decoding is

a minimum distance decoder.

Let 𝒞 be a linear code over F𝑛
𝑞 (𝒞 is a subspace of F𝑛

𝑞 ). Then, 𝒞 is the kernel of

some linear transformation, therefore there is an (𝑛 − 𝑘) × 𝑛 matrix 𝐻, the parity check

matrix, satisfying

𝒞 = {𝑥 ∈ F𝑛
𝑞 : 𝐻𝑥𝑇 = 0}.

The vector 𝐻𝑥𝑇 ∈ F𝑘
𝑞 is called the syndrome of 𝑥, therefore it will be denoted by 𝑆𝑦𝑛(𝑥).

Two elements belong to the same coset of 𝒞 if, and only if, they have the same syndrome,

i.e.,

𝑥 + 𝒞 = 𝑦 + 𝒞 ⇐⇒ 𝑆𝑦𝑛(𝑥) = 𝑆𝑦𝑛(𝑦).
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Syndrome Decoding Algorithm.

Precomputation: For each coset 𝑥 + 𝒞, we choose a coset leader 𝑥 such that

𝑤(𝑥) = min{𝑤(𝑧) : 𝑧 ∈ 𝑥 + 𝒞}.

Input: 𝑦 ∈ F𝑛
𝑞

1. Find the coset leader 𝑥 such that 𝑆𝑦𝑛(𝑥) = 𝑆𝑦𝑛(𝑦).

Output: 𝑦 − 𝑥.

Given that 𝑦 was received, all the possible errors have the same syndrome

of 𝑦, hence it is obvious that the error to be found is an element of a particular coset,

the one having the syndrome of 𝑦. In order to conclude that syndrome decoding is a

minimum distance decoding, we need to proof that the coset leader with smaller weight

is the appropriate choice. The next example shows that the hypothesis that 𝑑 is invariant

by translations is essential.

Example 1.2.21. Let 𝑑 : F2
2 ×F2

2 → R+ be a metric defined by the distance table below:

d(x,y) 00 01 10 11

00 0 2 2 3

01 2 0 2 4

10 2 2 0 1

11 3 4 1 0

It is clear that 𝑑 is indeed a metric over F2
2, furthermore, 𝑑 is not invariant by translation

since

2 = 𝑑(01, 10), 3 = 𝑑(00, 11) and 𝑑(01 + 01, 10 + 01) = 𝑑(00, 11).

Let 𝒞 = {00, 01} be an 1-dimensional linear code and suppose we want to decode 𝑦 = 11.

If the decoder used is a 𝑑-MD, then the closest codeword to 𝑦 is 00 since 3 = 𝑑(00, 11) <

𝑑(01, 11) = 4. Suppose now we will use syndrome decoding according to 𝑑. The parity

check matrix of 𝒞 is given by 𝐻 = [1 0]. Note that 𝑆𝑦𝑛(10) = 𝑆𝑦𝑛(11) = 1 and that

𝑆𝑦𝑛(00) = 𝑆𝑦𝑛(01) = 0. Since 𝑆𝑦𝑛(𝑦) = 1, the possible errors are 10 and 11. Note

that 2 = 𝑑(10, 00) < 𝑑(11, 00) = 3. Due to this, syndrome decoding assumes 10 as being

the error, so it outputs 𝑦 − 10 = 01, but as we saw, MD decoders output 00, therefore

syndrome is not an MD decoder.
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Theorem 1.2.22. If 𝑑 is invariant by translations, then syndrome decoding is an MD

decoder.

Proof. Suppose 𝑦 is the vector to be decoded and that 𝑐′ was obtained by decoding 𝑦

using syndrome, then 𝑦 = 𝑒 + 𝑐′ with 𝑆𝑦𝑛(𝑒) = 𝑆𝑦𝑛(𝑦). This representation is not unique

since 𝑦 = 𝑒2 +(𝑐′ − 𝑐1) for every 𝑐1 ∈ 𝐶 where 𝑒2 = 𝑒+ 𝑐1. Assume that 𝑒 is a coset leader.

Because 𝑦 − 𝑐′ = 𝑒 and 𝑦 − (𝑐′ − 𝑐1) = 𝑒2,

𝑑(𝑦, 𝑐′) = 𝑑(𝑦 − 𝑐′, 0) = 𝑑(𝑒, 0) ≤ 𝑑(𝑒2, 0) = 𝑑(𝑦 − (𝑐′ − 𝑐1), 0) = 𝑑(𝑦, 𝑐′ − 𝑐1),

therefore,

𝑑(𝑦, 𝑐′) = min
𝑐∈𝒞

𝑑(𝑦, 𝑐).

Since the algorithm for syndrome decoding allows precomputations to choose

the coset leader in advance, during the decoding process, we only need to find the right

coset, so the search ambient is reduced from 𝑞𝑘 elements (the number of codewords) to

𝑞𝑛−𝑘 elements (the number of cosets). We remark that good codes are expected to have

high rates, so 𝑛 − 𝑘 tends to be smaller than 𝑘. Therefore, syndrome decoding provide,

in many cases, an improvement in the performance of an MD decoder. It is not true in

general that every MD decoder is obtained by the syndrome decoding algorithm, but any

metric (or semimetric) determines some MD decoder that admits a syndrome algorithm.

Example 1.2.23. Let 𝒞 be the unidimensional code in F2
2 generated by 11, so 𝒞 =

{00, 11}. The parity check matrix of 𝒞 is 𝐻 = [1 1]. The vectors 00 and 11 have

syndrome equal to 0 and the others have syndrome equal to 1. Let 𝑔 : F2
2 → 𝒞 be a

𝑑𝐻-MD decoder defined by 𝑔(00) = 00, 𝑔(11) = 11, 𝑔(10) = 11 and 𝑔(01) = 11. There are

only two syndrome decoders, one is given by electing 10 as a coset leader and the other

is defined by electing 01. These decoders are as follows:

𝑔′
1(00) = 00 𝑔′

1(11) = 11 and 𝑔′
1(10) = 00 𝑔′

1(01) = 11

and

𝑔′
2(00) = 00 𝑔′

2(11) = 11 𝑔′
2(10) = 11 and 𝑔′

2(01) = 00.
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Neither 𝑔′
1 nor 𝑔′

2 coincides with 𝑔.

1.3 Matching Metrics and Channels

There are many ways to define a matching between channels and metrics, as

we can see in [20], but their purpose are all the same: to give characterizations of metrics

which are as close as possible to (optimal) MAP decoders. As seen in Proposition 1.2.10,

a decoder determined by the Hamming metric 𝑑𝐻 and an ML decoder determined by a

𝑞-ary symmetric channel 𝑊 are matched in the sense that

𝑑𝐻(𝑥, 𝑦) ≤ 𝑑𝐻(𝑥, 𝑧) ⇐⇒ 𝑊 (𝑦|𝑥) ≥ 𝑊 (𝑧|𝑥).

Unfortunately, cases like this do not always occur, and even when it is possible to match

channels and metrics, the metric constructed may be so complex that it is useless for

practical purposes.

One of the first papers relating metrics and channels is actually a course note

given by Massey [33] apud [28]. Later, Séguin in [42], obtained necessary and sufficient

conditions for a discrete memoryless channel to admit an additive metric (metrics deter-

mined over the alphabet which are additively extended to vectors) matching to it. The

relations between metrics and channels (including the matching problem) were set aside

for many years, until renewed interest arose due to new applications, as we can see in [43],

[40] and [20]. Since the 1990s, many different families of metrics started to be studied in

the context of coding theory, despite the fact that their role, in connection to a channel

(or a general communication scheme), is not properly understood. A particular family of

such metrics will be explored later. The definition of matching we will adopt is the one

given by Séguin in [42].

Definition 1.3.1. Given a discrete channel 𝑊 : F𝑛
𝑞 → 𝒫F𝑛

𝑞
and a metric 𝑑 : F𝑛

𝑞 ×F𝑛
𝑞 → R,

we say that 𝑊 and 𝑑 are matched if, for every code 𝒞 ⊂ F𝑛
𝑞 and every vector 𝑥 ∈ F𝑛

𝑞 ,

arg max
𝑦∈𝒞

𝑊 (𝑥|𝑦) = arg min
𝑦∈𝒞

𝑑(𝑥, 𝑦),

or equivalently,

𝑑(𝑥, 𝑦) < 𝑑(𝑥, 𝑧) if and only if 𝑊 (𝑥|𝑦) > 𝑊 (𝑥|𝑧).
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for every 𝑥, 𝑦, 𝑧 ∈ F𝑛
𝑞 .

To say that 𝑊 and 𝑑 are matched, it means there is a decoder that is si-

multaneously an MD and an ML decoder, i.e., both the probabilistic and metric criteria

coincide.

In [19], Firer and Walker proved that the Z channel2, which is a particular case

of an asymmetric channel, also has a metric matched to it, however this is a completely

theoretical metric and a priori does not provide a better (less complex) model of decoding.

Firer and Walker conjectured the possibility to find metrics matching to every asymmetric

channel, but for this general case, the matching problem remains unsolved until now. The

reciprocal is always true, as we can see in the next proposition.

Proposition 1.3.2. Given a metric 𝑑, there is a discrete channel matching to 𝑑.

Proof. Given a metric 𝑑, for every 𝑥, 𝑦 ∈ F𝑛
𝑞 , define a channel 𝑊 : F𝑛

𝑞 → 𝒫F𝑛
𝑞

by setting

𝑊 (𝑥|𝑦) := 1/𝑑(𝑥, 𝑦)
𝑀 +∑︀

𝑦 ̸=𝑥 1/𝑑(𝑥, 𝑦)

if 𝑥 ̸= 𝑦 and

𝑊 (𝑥|𝑥) := 𝑀

𝑀 +∑︀
𝑦 ̸=𝑥 1/𝑑(𝑥, 𝑦)

where 𝑀 is any constant satisfying 𝑀 > 1/𝑑(𝑥, 𝑦) for every 𝑥, 𝑦 ∈ F𝑛
𝑞 . It is straightforward

to conclude that 𝑑 and 𝑊 are matched.

The matching relation is not bijective since it is possible to construct channels

which do not admit metrics matching to them. Indeed, if 𝑊 is a channel such that

𝑊 (𝑥|𝑦) < 𝑊 (𝑥|𝑧), 𝑊 (𝑧|𝑥) < 𝑊 (𝑧|𝑦) and 𝑊 (𝑦|𝑧) < 𝑊 (𝑦|𝑥) for some 𝑥, 𝑦, 𝑧 ∈ F𝑛
𝑞 , then

if 𝑑 is a metric matching to 𝑊 , due to the symmetry of 𝑑, it should satisfy the following

relations:

𝑑(𝑥, 𝑦) > 𝑑(𝑥, 𝑧) = 𝑑(𝑧, 𝑥) > 𝑑(𝑧, 𝑦) = 𝑑(𝑦, 𝑧) > 𝑑(𝑦, 𝑥) = 𝑑(𝑥, 𝑦),

which is a contradiction. We stress that if 𝑥, 𝑦 and 𝑧 are distinct elements, 𝑊 (𝑥), 𝑊 (𝑦)

and 𝑊 (𝑧) are probability distributions which are independently defined.
2The asymmetric metric is commonly used as an MD decoder for the Z channel. Despite the fact that

it is not matched to the Z channel, it is used to perform decoding due to its simplicity, details in [9].
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For channels that do not admit a metric matching to them, Gabidulin in

[20] presented a series of definitions by weakening the definition of matched metrics and

channel. One of them introduces an asymptotic definition which characterizes minimum

distance decoders that are asymptotically as good as maximum likelihood decoders. Since

our goal concerning matching metrics and channels is only to explain the relevance of

metrics in this field, we will not go deeper into this subject. To prove the existence of

metrics matching to some channels, semimetrics can be used, see [10].

Proposition 1.3.3. [19] If a channel 𝑊 and a semimetric 𝑑′ are matched, then, there is

a metric 𝑑 such that 𝑑 and 𝑊 are matched.
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Chapter 2

Metrics Induced by Partially

Ordered Sets

In this chapter, we present the main object of this dissertation: the family of

poset metrics. Because these metrics are defined by partially ordered sets, some basic

properties of partially ordered sets will be explored in order to state some notations.

The first section will be devoted to linear codes and properties, which were superficially

sketched in the first chapter when describing the syndrome decoding algorithm. In the

following, all metrics will be considered to be defined by a norm and hence to be invariant

by translations. As supplementary readings we suggest the books [27] and [34] and the

papers [6], [39] and [12].

2.1 Linear Codes

Linear codes over F𝑞 (finite field with 𝑞 elements) are the most common and

studied type of code in the literature.

Definition 2.1.1. An [𝑛, 𝑘]𝑞 linear code 𝒞 over F𝑞 is a 𝑘-dimensional linear subspace

𝒞 ⊂ F𝑛
𝑞 . The elements of 𝒞 will be called codewords.

From here on, we will consider only linear codes, except when otherwise stated.

For simplicity in the notations, from now on we will assume that metrics take only natural

values, i.e., 𝑑(𝑥, 𝑦) ∈ N. Since the space F𝑛
𝑞 will always be endowed with a metric 𝑑, codes

may be called 𝑑-codes in order to avoid confusion.
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Definition 2.1.2. Given a metric 𝑑 over F𝑛
𝑞 , the minimum distance of an [𝑛, 𝑘]𝑞 code 𝒞

is

𝛿 = min{𝑑(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝒞 and 𝑥 ̸= 𝑦}.

We say that 𝒞 is an [𝑛, 𝑘, 𝛿]𝑞 code.

Since 𝑑 is invariant by translations, by Proposition 1.2.19, the minimum dis-

tance may be alternatively written as

𝛿 = min{𝑤(𝑥) : 𝑥 ∈ 𝒞 ∖ {0}}

where 𝑤(𝑥) := 𝑑(𝑥, 0) is a norm function and 0 is the null vector.

An [𝑛, 𝑘, 𝛿]𝑞 linear code 𝒞 can be represented as the image of an injective

linear map 𝑇 : F𝑛
𝑞 → F𝑘

𝑞 or the kernel of a surjective map 𝑆 : F𝑛
𝑞 → F𝑛−𝑘

𝑞 . Considering the

canonical basis, we will name 𝐺𝑇 and 𝐻 as the matrices of 𝑇 and 𝑆, respectively. Then,

𝐺 and 𝐻 are known respectively as the generator matrix and the parity check matrix of

𝒞. In other words:

Definition 2.1.3. A generator matrix 𝐺 of an [𝑛, 𝑘, 𝛿] code 𝒞 is a 𝑘 × 𝑛 matrix, of which

the 𝑘 rows form a basis of 𝒞, then

𝒞 = {𝑎𝐺 : 𝑎 ∈ F𝑘
𝑞}.

Definition 2.1.4. A parity check matrix 𝐻 of an [𝑛, 𝑘, 𝛿] code 𝒞 is an (𝑛−𝑘)×𝑛 matrix,

satisfying

𝑐 ∈ 𝒞 ⇐⇒ 𝐻𝑐𝑇 = 0𝑇 ,

where 0 represents the null vector and 𝑥𝑇 is the transpose of the vector 𝑥.

Example 2.1.5. (Hamming Code) Given 𝑘 and 𝑛 = (𝑞𝑘 − 1)/(𝑞 − 1), the [𝑛, 𝑛 − 𝑘, 3]

Hamming code over F𝑞 is a code defined by the parity check matrix that has columns

that are pairwise linearly independent (over F𝑞), i.e., the set of columns is a maximal set

of pairwise linearly independent vectors in F𝑛−𝑘
𝑞 .

The kernel of an (𝑛 − 𝑘) × 𝑛 parity check matrix is a 𝑘-dimensional subspace,

therefore the rank of 𝐻 is (𝑛 − 𝑘) and all its rows are linearly independent, so it can be

seen as a generator matrix of a code.
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Definition 2.1.6. If 𝒞 is an [𝑛, 𝑘, 𝛿] code with parity check matrix 𝐻, the [𝑛, 𝑛 − 𝑘, 𝛿2]

code generated by 𝐻 is denoted by 𝒞⊥ and called the dual code of 𝒞. If 𝒞 = 𝒞⊥, 𝒞 is said

to be a self-dual code.

The rate of an [𝑛, 𝑘, 𝛿] linear code is the quotient 𝑘/𝑛, and it represents the

amount of information contained in each symbol (coordinate). Considering the Hamming

metric (Definition 1.2.9), the fundamental problem of coding theory as suggested by Hall

in [24], is

Fundamental Problem: find practical codes with reasonable large rate and minimum

distance.

For a general metric over F𝑞, the fundamental problem needs to be reformulated

by substituting “minimum distance” by “packing radius”, the true object to be maximized,

as we will see. Given a metric 𝑑, the (closed) d-ball centered at 𝑥 with radius 𝑟 is the set

of all elements with a distance of at most 𝑟 from 𝑥,

𝐵𝑑(𝑥, 𝑟) := {𝑦 ∈ F𝑛
𝑞 : 𝑑(𝑥, 𝑦) ≤ 𝑟}.

Definition 2.1.7. Given a metric 𝑑, the packing radius of a linear code 𝒞 is the maximal

integer ℛ𝑑(𝒞) satisfying

𝐵𝑑(𝑐1, ℛ𝑑(𝒞)) ∩ 𝐵𝑑(𝑐2, ℛ𝑑(𝒞)) = ∅

for every 𝑐1, 𝑐2 ∈ 𝒞 with 𝑐1 ̸= 𝑐2. For simplicity, we may suppress the explicit dependence

on 𝑑 in the notation ℛ𝑑(𝒞).

The following is a well-known standard result in coding theory.

Proposition 2.1.8. Let 𝑑𝐻 be the Hamming metric. The packing radius of a linear code

𝒞 is given by

ℛ𝑑𝐻
(𝒞) =

⌊︃
𝛿 − 1

2

⌋︃

where ⌊𝑎⌋ denotes the integer part of the real number 𝑎 and 𝛿 is the minimum distance

of 𝒞.

The importance of the packing radius in coding theory is due to the fact that

it determines the code error-correcting capability, indeed, considering that a codeword 𝑐
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is sent over a noisy channel and 𝑦 is received. If 𝑑(𝑐, 𝑦) ≤ ℛ𝑑(𝒞), then the received vector

𝑦 will still be closer to 𝑐 than to any other codeword, therefore a minimum distance

decoder will output 𝑐. On the other hand, if 𝑑(𝑐, 𝑦) > ℛ𝑑(𝒞) it is not guaranteed that a

minimum distance decoder will output 𝑐. For the Hamming metric, the packing radius of

a code is determined by its minimum distance (Proposition 2.1.8), therefore the minimum

distance also determines the code error-correcting capability, justifying the description of

the fundamental problem of coding given before. As we will see later, there are metrics

for which the minimum distance of a code does not determine its packing radius. In order

to include this kind of metric, the fundamental problem is restated as follows:

General Fundamental Problem: find practical codes with reasonable large rate and

packing radius.

The error-detection capability of an [𝑛, 𝑘, 𝛿] code is 𝛿−1 since for every received

element 𝑦, if 𝑑(𝑐, 𝑦) ≤ 𝛿 − 1, by definition of the minimum distance, 𝑦 will never be a

codeword different from 𝑐. On the other hand, if 𝑑(𝑐, 𝑦) > 𝛿 − 1 it may happen that 𝑦 ∈ 𝒞

and is undetectable. Even when the minimum distance of a code does not determine its

packing radius, it is relevant in coding theory since it always determines the code error-

detection capability and it provides bounds for the packing radius, as we will see in the

next proposition.

Proposition 2.1.9. Let 𝒞 be an [𝑛, 𝑘, 𝛿] 𝑑-code over F𝑞, then

⌊︃
𝛿 − 1

2

⌋︃
≤ ℛ𝑑(𝒞) ≤ 𝛿 − 1.

Proof. The minimum distance definition ensures that ℛ𝑑(𝒞) ≤ 𝛿 − 1. Denote 𝑡 =

⌊(𝛿 − 1)/2⌋, we just need to prove that 𝐵𝑑(𝑢, 𝑡) ∩ 𝐵𝑑(𝑣, 𝑡) = ∅ for all 𝑢, 𝑣 ∈ 𝒞 with

𝑢 ̸= 𝑣. Suppose 𝑥 ∈ 𝐵𝑑(𝑢, 𝑡) ∩ 𝐵𝑑(𝑣, 𝑡). By the triangular inequality,

𝑑(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑥) + 𝑑(𝑥, 𝑣) ≤ 2𝑡 ≤ 𝛿 − 1,

a contradiction since 𝑑(𝑢, 𝑣) ≥ 𝛿.

As we will see in the poset metrics section, it is possible to construct metrics

and codes such that their packing radius reaches the extremal values of the bounds ob-



38

tained in Proposition 2.1.9. Furthermore, in some cases, those bounds may be attained

by codes with the same minimum distance.

The packing radius ℛ𝑑(𝑐) of a non-null codeword 𝑐 ∈ 𝒞 is defined by being the

packing radius of the (not necessary linear) code {0, 𝑐}. The packing radius of a code 𝒞

can be alternatively defined as the minimal packing radius of its non-null codewords, i.e.,

ℛ𝑑(𝒞) = min
𝑐∈𝒞*

ℛ𝑑(𝑐), (2.1)

where 𝒞* = 𝒞 ∖ {0}. A codeword with minimum packing radius is called a packing vector.

We stress that the problem to find the packing radius of a single codeword for general

metrics is an NP-hard problem, see [12].

2.1.1 Code Equivalence

In order to investigate the fundamental problem of coding, codes can be gath-

ered in classes such that elements in the same class are “geometrically equivalent”. In

particular, we are interested in classes of codes having the same error-correcting capabil-

ity. A simple way to construct these classes is by using linear isometries. As an example,

in the binary Hamming case, two codes belong to the same class if one is a permutation

of the other, see [26].

Definition 2.1.10. If F𝑛
𝑞 is a metric space endowed with the metric 𝑑, a linear isometry

(or 𝑑-linear isometry) 𝑇 is a linear transformation 𝑇 : F𝑛
𝑞 → F𝑛

𝑞 preserving distance, i.e.,

for every 𝑥, 𝑦 ∈ F𝑛
𝑞 ,

𝑑(𝑇 (𝑥), 𝑇 (𝑦)) = 𝑑(𝑥, 𝑦).

Since we are assuming 𝑑 is invariant by translations, 𝑑(𝑥, 𝑦) = 𝑤(𝑥 − 𝑦), then

a linear transformation 𝑇 is an isometry if, and only if, 𝑤(𝑇 (𝑥)) = 𝑤(𝑥) for every 𝑥 ∈ F𝑛
𝑞 .

We denote by 𝐺𝐿𝑑(F𝑛
𝑞 ) the group of all linear isometries of F𝑛

𝑞 .

Example 2.1.11. [31] The linear isometry group of F𝑛
𝑞 when F𝑛

𝑞 is endowed with the

Hamming metric 𝑑𝐻 is the group of all monomial maps, i.e.,

𝐺𝐿𝑑𝐻
(F𝑛

𝑞 ) ≃ F*𝑛
𝑞 o 𝒮𝑛

where:
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• F*𝑛
𝑞 is isomorphic to the the group of all 𝑛 × 𝑛 invertible diagonal matrices. It acts

on F𝑛
𝑞 by multiplying each coordinate by a non-zero constant.

• 𝒮𝑛 is isomorphic to the group of all permutation matrices and corresponds to the

permutations of coordinates in the space.

• the product is semi-direct.

Definition 2.1.12. Two linear codes 𝒞1 and 𝒞2 are said to be equivalent if there is a

linear isometry 𝑇 : F𝑛
𝑞 → F𝑛

𝑞 such that 𝑇 (𝒞1) = 𝒞2. We denote by 𝒞1 ∼𝑑 𝒞2.

With this definition, considering Example 2.1.11 we obtain, for the Hamming

metric case, the usual definition of code equivalence. Equivalence of codes defines an

equivalence relation which gather linear codes in classes of codes having same geometrical

properties, in particular having the same error-correction capability, however it is not true

that codes with the same weight distribution (same number of codewords having weight

𝑖, for every 𝑖) belong to the same class.

Example 2.1.13. [27] Let 𝒞1 and 𝒞2 be binary codes with generator matrices

𝐺1 =

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎦ and 𝐺2 =

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0 0 0

1 0 1 0 0 0

1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦ ,

respectively. Suppose F𝑛
𝑞 is endowed with the Hamming metric. If 𝐴𝑖(𝒞𝑗) is the number of

codewords in 𝒞𝑗 with weight 𝑖, we have that 𝐴0(𝒞𝑗) = 𝐴6(𝒞𝑗) = 1 and 𝐴2(𝒞𝑗) = 𝐴4(𝒞𝑗) = 3

for 𝑗 ∈ {1, 2}. Thus, the codes 𝒞1 and 𝒞2 have the same weight distribution consequently,

the same minimum distance 𝛿 = 2 and the same packing radius ℛ𝑑𝐻
(𝒞1) = ℛ𝑑𝐻

(𝒞2) = 0.

Since the basis elements of 𝒞1 are also elements of 𝒞⊥
1 and these two codes have same

dimension, 𝒞1 is self-dual. But 𝒞2 is not self-dual since the vector 000011 is a codeword of

𝒞⊥
2 but not of 𝒞2. If 𝒞1 and 𝒞2 were equivalent, there should exist a permutation matrix

𝑃 satisfying 𝒞1𝑃 = 𝒞2, but this would imply that 𝒞⊥
1 𝑃 = 𝒞⊥

2 and since 𝒞1 = 𝒞⊥
1 , 𝒞2 would

be self-dual. Therefore, 𝒞1 and 𝒞2 are not equivalent.

Given a linear code 𝒞, we denote by 𝐺𝐿𝑑 (𝒞) its orbit under 𝐺𝐿𝑑(F𝑛
𝑞 ). Since

𝐺𝐿𝑑(F𝑛
𝑞 ) is a group, their orbits are equivalence classes, hence 𝒞 ∼𝑑 𝒞 ′ if, and only if,

𝐺𝐿𝑑 (𝒞) = 𝐺𝐿𝑑 (𝒞 ′). The representatives of each class may be chosen according to codes
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having a generator matrix with a particular form, which is, in general, as simple as possible

in order to provide some information about the code.

Proposition 2.1.14. Every [𝑛, 𝑘, 𝛿] linear 𝑑𝐻-code 𝒞 is equivalent to a linear 𝑑𝐻-code

with the same parameters having a generator matrix of the form 𝐺 = [𝐼𝑘 | 𝐴], where 𝐼𝑘

is the identity matrix with order 𝑘 and 𝐴 is a 𝑘 × (𝑛 − 𝑘) matrix.

This form is possible since permutations and non-null scalar multiplications in

the columns of the generator matrix are performed by linear isometries of the Hamming

metric. Due to Proposition 2.1.14, it is common to find in the literature the assumption

that every code has a generator matrix in the standard form 𝐺 = [𝐼𝑘 | 𝐴]. As consequence

of the standard form, we get an easy way to obtain the parity check matrix of a 𝑑𝐻-code.

Theorem 2.1.15. If 𝐺 = [𝐼𝑘 | 𝐴] is a generator matrix for an [𝑛, 𝑘, 𝛿] code 𝒞, then

𝐻 = [−𝐴𝑇 | 𝐼𝑛−𝑘] is a parity check matrix for 𝒞.

2.2 Partially Ordered Sets

Partial orders will be the main mathematical structures used in this work to

define poset metrics. The definitions in this section are mainly to fix notations for the

development of the next sections. As complementary readings, the book [34] and the

papers [5] and [14] are indicated. Let 𝑋 and 𝑌 be finite non-empty sets. A binary

relation over 𝑋 and 𝑌 is any subset 𝑅 of the product 𝑋 ×𝑌 . If (𝑥, 𝑦) ∈ 𝑅, we write 𝑥𝑅𝑦.

If 𝑋 = 𝑌 , we say that 𝑅 is a binary relation over 𝑋.

Definition 2.2.1. A partial order relation in a set 𝑋 is a binary relation, usually denoted

by 6, satisfying, for every 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following conditions:

(a) 𝑥 6 𝑥 (reflexivity);

(b) If 𝑥 6 𝑦 and 𝑦 6 𝑥, then 𝑥 = 𝑦 (anti-symmetry);

(c) If 𝑥 6 𝑦 and 𝑦 6 𝑧, then 𝑥 6 𝑧 (transitivity).

If 6 is a partial order relation over 𝑋, the pair 𝑃 = (𝑋,6) is called poset.

Eventually, the binary relation 6 of the poset 𝑃 = (𝑋,6) is denoted by 6𝑃 .

By an abuse of notation, the poset 𝑃 will be identified with 𝑋. Therefore, elements of
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𝑋 will be considered to be also elements of 𝑃 and the order relation over 𝑋 will also be

regarded to be an order relation over 𝑃 .

If any two elements of a partial order are comparable, the order is named total

and the poset is called a chain. An anti-chain is a poset where distinct elements are

never comparable. We say that 𝑦 covers 𝑥 if 𝑥 6 𝑦 and there is no extra element 𝑧 such

that 𝑥 6 𝑧 and 𝑧 6 𝑦. If 𝑦 covers 𝑥, the pair (𝑥, 𝑦) is said a covering pair. In order to

geometrically describe a poset, the Hasse diagram is used.

Definition 2.2.2. The Hasse diagram of a poset 𝑃 = (𝑋,6) is the directed graph in

which the vertex set is 𝑋 and whose arcs are the covering pairs (𝑥, 𝑦) in the poset.

We usually draw the Hasse diagram of a poset in the plane in such a way

that, if 𝑦 covers 𝑥, then the point representing 𝑦 is higher than the point representing

𝑥. No arrows are required in the drawing, since the directions of the arrows are implicit

downward.

Example 2.2.3. Let 𝑋 = {1, 2, 3, 4, 5, 6, 7} and consider the following partial order re-

lation: 1 6 2, 1 6 3, 4 6 3, 3 6 6 and 5 6 6. The Hasse diagram of 𝑃 = (𝑋,6) is given

by

3

7 1 4 5

2

6

Definition 2.2.4. An ideal in a poset 𝑃 is a nonempty subset 𝐼 ⊂ 𝑋 such that, for 𝑖 ∈ 𝐼

and 𝑗 ∈ 𝑋, if 𝑗 6𝑃 𝑖 then 𝑗 ∈ 𝐼.

Given 𝐴 ⊂ 𝑋, we denote by ⟨𝐴⟩𝑃 the smaller ideal of 𝑃 containing 𝐴. If

𝐴 = {𝑖}, we denote by ⟨𝑖⟩𝑃 the ideal ⟨{𝑖}⟩𝑃 . The set 𝑀𝑎𝑥𝑃 (𝐴) is the set of all maximal

elements of 𝐴 in 𝑃 , equivalently,

𝑀𝑎𝑥𝑃 (𝐴) = {𝑖 ∈ 𝐴 : 𝑖 
𝑃 𝑗 for all 𝑗 ∈ 𝐴 ∖ {𝑖}}.

The rank of an element 𝑗 ∈ 𝑋, denoted by ℎ𝑃 (𝑗), is the maximal cardinality of a chain
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contained in ⟨𝑗⟩,

ℎ𝑃 (𝑗) = 𝑚𝑎𝑥{|𝐶| : 𝐶 ⊂ ⟨𝑗⟩𝑃 and 𝐶 is a chain}.

The height ℎ(𝑃 ) of 𝑃 is the maximal rank among the elements of 𝑋. The 𝑖-level of 𝑃 is

the set of all elements with rank 𝑖, Γ𝑖
𝑃 := {𝑗 ∈ 𝑋 : ℎ𝑃 (𝑗) = 𝑖}. The level distribution of

a poset 𝑃 is the vector (Γ1
𝑃 , . . . , Γℎ(𝑃 )

𝑃 ). This distribution defines a partition of 𝑋 in the

sense that 𝑋 = ⨆︀Γ𝑖
𝑃 . Also, since the levels are disjoint, if |𝑋|= 𝑛 and |Γ𝑖

𝑃 |= 𝑛𝑖, then

𝑛 = 𝑛1 + · · · + 𝑛ℎ(𝑃 ). The level enumerator of a poset is the array (|Γ1
𝑃 |, . . . , |Γℎ(𝑃 )

𝑃 |).

Example 2.2.5. The level distribution of the poset defined in Example 2.2.3 is the vector

with length 3 whose coordinates are given by

Γ1
𝑃 = {1, 4, 5, 7}, Γ2

𝑃 = {2, 3} and Γ3
𝑃 = {6}.

Furthermore, ⟨6⟩ = {6, 3, 1, 4, 5} and ⟨{2, 7}⟩ = {2, 7, 1}.

In coding theory, an important family of posets is the family of Hierarchical

posets, as we shall see, the metrics obtained by these posets can be considered as a “true”

generalization of the Hamming metric, see [30] for more details concerning this relation.

Definition 2.2.6. Given a poset 𝑃 , if 𝑥 6𝑃 𝑦 for every 𝑥 ∈ Γ𝑖
𝑃 and 𝑦 ∈ Γ𝑗

𝑃 with 𝑖 < 𝑗,

then 𝑃 is called a hierarchical poset.

Example 2.2.7. The poset 𝑃 constructed in Example 2.2.3 is not hierarchical since 7

and 2 belong to different levels and are not comparable to each other. By suitably adding

relations until we can obtain a hierarchical poset. The resulting poset has the following

Hasse diagram:

6

1

2 3

4 57

Posets can be characterized by their Hasse diagrams. This characterization

is obtained by using the equivalence relation defined by isomorphism of posets. This
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relation ensures that posets with the same unlabeled Hasse diagram are essentially the

same poset.

Definition 2.2.8. Let 𝑃 = (𝑋,6𝑃 ) and 𝑄 = (𝑌,6𝑄) be two partially ordered sets. A

map 𝑓 : 𝑋 → 𝑌 is called order-preserving if 𝑥 6𝑃 𝑦 implies 𝑓(𝑥) 6𝑄 𝑓(𝑦).

Definition 2.2.9. Let 𝑃 = (𝑋,6𝑃 ) and 𝑄 = (𝑌,6𝑄) be two posets such that 𝑌 ⊂ 𝑋.

The set 𝑄 is a subposet of 𝑃 if the identity map 𝐼 : 𝑌 → 𝑋 is an order-preserving map.

The example below shows that a bijective and order-preserving map not always

has an inverse which also preserve order.

Example 2.2.10. Let 𝑃 be an anti-chain over [𝑛] and 𝑄 any other poset over [𝑛]. Then,

any bijective map from 𝑃 to 𝑄 is an order-preserving map with an inverse that does not

preserve order.

Definition 2.2.11. A one-to-one order-preserving map 𝑓 from a poset (𝑋,6𝑃 ) onto

a poset (𝑌,6𝑄) is called an isomorphism if the inverse 𝑓−1 is also an order-preserving

mapping. An isomorphism from a poset to itself is called an automorphism.

Whenever two posets are order isomorphic, they can be considered to be es-

sentially the same in the sense that one of the orders can be obtained from the other just

by renaming of elements.

Proposition 2.2.12. [34] Two hierarchical posets are isomorphic if, and only if, they

have the same level enumerator.

Due to Proposition 2.2.12, if 𝑃 is hierarchical, it will be denoted by (𝑛 :

𝑛1, . . . , 𝑛𝑠) where 𝑛𝑗 = |Γ𝑗
𝑃 | and 𝑠 = ℎ(𝑃 ). The set of all automorphisms of a poset 𝑃 is

a group which will be denoted by 𝐴𝑢𝑡(𝑃 ).

Let 𝒫*
𝑛 the set of all posets over [𝑛]. The set 𝒫*

𝑛 has a natural partial order:

given two posets 𝑃, 𝑄 ∈ 𝒫*
𝑛, we say that 𝑃 is finer (or smaller) than 𝑄 (and write 𝑃 ≤ 𝑄)

if 𝑖 6𝑃 𝑗 implies 𝑖 6𝑄 𝑗. Equivalently, 𝑃 ≤ 𝑄 if, and only if, the identity map is an order-

preserving map from 𝑃 to 𝑄. With this relation, the set 𝒫*
𝑛 is itself a partially ordered

set. The trivial order (anti-chain: 𝑖 6 𝑗 ⇐⇒ 𝑖 = 𝑗) is the (unique) minimal element in

𝒫*
𝑛 and the linear order (chain: 1 6 2 6 · · · 6 𝑛), as much as its 𝑛! permutations, are the

maximal elements in 𝒫*
𝑛.
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A poset 𝑃 ∈ 𝒫*
𝑛 is said to be naturally labeled if for every 𝑖 ∈ Γ𝑟1

𝑃 and 𝑗 ∈ Γ𝑟2
𝑃

with 𝑟1 < 𝑟2, then 𝑖 < 𝑗 (where < is the natural order over N). Therefore, if the set 𝒫𝑛

denote the set of all naturally labeled posets,

𝒫𝑛 = {𝑃 ∈ 𝒫*
𝑛 : 𝑃 is naturally labeled}

𝒫𝑛 has a unique maximal element, the linear order defined by 1 6 2 6 · · · 6 𝑛.

5

1 2 3

4 6

7 8 9

2

3 5 7

4 6

1 8 9

non-natural labelling natural labelling

Since given a poset 𝑃 ∈ 𝒫*
𝑛 there is always a poset 𝑄 ∈ 𝒫𝑛 order isomorphic

to 𝑃 , from now on, assume all the posets to be naturally labeled.

2.3 Poset Metrics

Classical coding theory may be considered as the study of F𝑛
𝑞 when it is en-

dowed with the Hamming metric. To generalize the classical problems in coding theory,

Niederreiter made the initial progress in [37], [35] and [36] by introducing non-Hamming

metrics in F𝑛
𝑞 . Generalizing the metric introduced by Niederreiter, in [6], Brualdi et al.

introduced a new large family of metrics, the so-called poset metrics. In the following,

consider 𝑃 to be a poset over [𝑛].

Definition 2.3.1. The 𝑃 -weight of a vector 𝑥 ∈ F𝑛
𝑞 is defined as the cardinality of the

smallest ideal of 𝑃 containing 𝑠𝑢𝑝𝑝(𝑥), i.e.,

𝑤𝑃 (𝑥) = |⟨𝑠𝑢𝑝𝑝(𝑥)⟩𝑃 |.

It is clear that 𝑤𝑃 (𝑥) ≥ 0 for every 𝑥 ∈ F𝑛
𝑞 and 𝑤𝑃 (𝑥) = 0 if and only if 𝑥 = 0.

Also, the relations 𝑠𝑢𝑝𝑝(𝑥 + 𝑦) ⊂ 𝑠𝑢𝑝𝑝(𝑥) ∪ 𝑠𝑢𝑝𝑝(𝑦) and ⟨𝐴 ∪ 𝐵⟩𝑃 = ⟨𝐴⟩𝑃 ∪ ⟨𝐵⟩𝑃 imply

that 𝑤𝑃 (𝑥 + 𝑦) ≤ 𝑤𝑃 (𝑥) + 𝑤𝑃 (𝑦). Therefore, 𝑤𝑃 is a norm function over F𝑛
𝑞 .
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The support of a set 𝑋 ⊂ F𝑛
𝑞 is the union of the supports of the elements of

𝑋,

𝑠𝑢𝑝𝑝(𝑋) = {𝑖 : 𝑖 ∈ 𝑠𝑢𝑝𝑝(𝑥) for some 𝑥 ∈ 𝑋}.

Definition 2.3.2. The 𝑃 -distance in F𝑛
𝑞 is the (invariant by translation) metric induced

by 𝑤𝑃 ,

𝑑𝑃 (𝑥, 𝑦) = 𝑤𝑃 (𝑥 − 𝑦).

Example 2.3.3 (Niederreiter-Rosenbloom-Tsfasman metric - NRT ). Given two integers

𝑛 and 𝑟 such that 𝑟 divides 𝑛, an (𝑛, 𝑟)-NRT metric is a poset metric induced by a poset

formed by 𝑛/𝑟 disjoint chains, each chain having length 𝑟. Suppose 𝑛 = 12 and 𝑟 = 3.

Consider the NRT weight 𝑤𝑁𝑅𝑇 defined by the following Hasse diagram:

6

1 2 3 4

5 7 8

9 10 11 12

In particular, the (𝑛, 𝑛)-NRT and the (𝑛, 1)-NRT metrics are the chain and

the anti-chain (or the Hamming) metrics.

2.3.1 Group of Linear Isometries for Poset Metrics

As seen in section 2.1.1, two linear codes are equivalent if, and only if, there

is a linear isometry mapping one into the other. For a poset metric, the group of linear

isometries was first determined for the Rosenbloom–Tsfasman space in [8] and for the

crown space in [29]. The description of this group for a general poset metric was presented

in [39]. We will describe it in some details since both the result and the approach used

in the proof will be used in Chapter 3. The proof presented here is slightly different but

follows the same idea of the proof given in [39]. Let 𝑀𝑛(F𝑞) be the set of all 𝑛×𝑛 matrices

over F𝑞 and

𝐺𝑃 := {𝐴 = (𝑎𝑖𝑗) ∈ 𝑀𝑛(F𝑞) : 𝑎𝑖𝑗 = 0 if 𝑖 
 𝑗 and 𝑎𝑖𝑖 ̸= 0}. (2.2)

Considering the usual basis 𝛽 = {𝑒1, . . . , 𝑒𝑛} where 𝑠𝑢𝑝𝑝(𝑒𝑖) = {𝑖} and the 𝑖-th

entry is 1. Each matrix 𝐴 ∈ 𝐺𝑃 defines a linear map 𝑇𝐴. The set of such maps will be
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denoted by 𝒢𝑃 . By definition, 𝑇 ∈ 𝒢𝑃 if, and only if, 𝑇 (𝑒𝑗) = ∑︀
𝑖6𝑃 𝑗 𝑎𝑖𝑗𝑒𝑖 with 𝑎𝑗𝑗 ̸= 0 for

every 𝑗 ∈ [𝑛].

Note initially that an automorphism 𝜑 ∈ 𝐴𝑢𝑡(𝑃 ) induces an isometry 𝑇𝜑 ∈

𝐺𝐿𝑃 (F𝑛
𝑞 ), acting on F𝑛

𝑞 by permutation of the coordinates: 𝑇𝜑(𝑥1, . . . , 𝑥𝑛) = (𝑥𝜑(1), . . . , 𝑥𝜑(𝑛)).

The set of these isometries will be denoted by 𝒜𝑢𝑡(𝑃 ).

Theorem 2.3.4. The group of isometries of F𝑛
𝑞 is the semi-direct product 𝐺𝐿𝑃 (F𝑛

𝑞 ) =

𝒢𝑃 o𝒜𝑢𝑡(𝑃 ).

The next two lemmas will be used in order to produce maximal decompositions

in Chapter 3, a generalization of the canonical decomposition obtained in [15]. They are

also used to prove Theorem 2.3.4, their proofs can be found in [39].

Lemma 2.3.5. If 𝑇 ∈ 𝐺𝐿𝑃 (F𝑛
𝑞 ), then the map 𝜑𝑇 : 𝑃 → 𝑃 given by

𝜑𝑇 (𝑖) = 𝑚𝑎𝑥⟨𝑠𝑢𝑝𝑝(𝑇 (𝑒𝑖)⟩𝑃

is an automorphism of 𝑃 .

Lemma 2.3.6. The linear transformation 𝑇 is an element of 𝐺𝐿𝑃 (F𝑛
𝑞 ) if, and only if,

𝑇 (𝑒𝑗) =
∑︁

𝑖6𝑃 𝑗

𝑥𝑖𝑗𝑒𝜑𝑇 (𝑖), (2.3)

where 𝜑𝑇 is the automorphism associated with 𝑇 as in Lemma 2.3.5 and 𝑥𝑖𝑗 are constants

with 𝑥𝑗𝑗 ̸= 0 for all 𝑗 ∈ [𝑛].

Proof of Theorem 2.3.4. It is clear that 𝒜𝑢𝑡(𝑃 ) is a subgroup of 𝐺𝐿𝑃 (F𝑛
𝑞 ) and the char-

acterization of 𝒢𝑃 together with Lemma 2.3.6 ensures that 𝒢𝑃 is also a subgroup of

𝐺𝐿𝑃 (F𝑛
𝑞 ). Given 𝑇 ∈ 𝐺𝐿𝑃 (F𝑛

𝑞 ), by Lemma 2.3.6, 𝑇 (𝑒𝑗) = ∑︀
𝑖6𝑗 𝑥𝑖𝑗𝑒𝜑𝑇 (𝑖) and 𝑥𝑗𝑗 ̸= 0.

Consider 𝑇 ′ defined by 𝑇 ′(𝑒𝑖) = 𝑒𝜑𝑇 (𝑖), by Lemma 2.3.6, 𝑇 ′ ∈ 𝐺𝐿𝑃 (F𝑛
𝑞 ). Define 𝑇 ′′ by

setting 𝑇 ′′(𝑒𝑗) = ∑︀
𝑖6𝑗 𝑥𝑖𝑗𝑒𝑖, thus 𝑇 (𝑒𝑗) = 𝑇 ′′ ∘𝑇 ′(𝑒𝑗). Since 𝑇 ′ is obtained by the automor-

phism 𝜑𝑇 , it follows that 𝑇 ′ ∈ 𝒜𝑢𝑡(𝑃 ), furthermore, by construction, 𝑇 ′′ ∈ 𝒢𝑃 . Therefore,

𝐺𝐿𝑃 (F𝑛
𝑞 ) = 𝒢𝑃 · 𝒜𝑢𝑡(𝑃 ). In order to prove that 𝒢𝑃 is a normal subgroup of 𝐺𝐿𝑃 (F𝑛

𝑞 ),

it is enough to show that 𝑇 ′ ∘ 𝑇 ∘ 𝑇 ′−1 ∈ 𝒢𝑃 for every 𝑇 ∈ 𝒢𝑃 and 𝑇 ′ ∈ 𝐺𝐿𝑃 (F𝑛
𝑞 ).

Since 𝑇 ′ = 𝑇 ′′ ∘ 𝑇2, where 𝑇 ′′ ∈ 𝒢𝑃 and 𝑇2 ∈ 𝒜𝑢𝑡(𝑃 ), it is sufficient to prove that

𝑇2 ∘ 𝑇 ∘ 𝑇 −1
2 ∈ 𝒢𝑃 for every 𝑇2 ∈ 𝒜𝑢𝑡(𝑃 ). First, note that 𝑇2 = 𝑇𝜑 for some 𝜑 ∈ 𝐴𝑢𝑡(𝑃 )
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and that 𝑇 −1
𝜑 = 𝑇𝜑−1 , thus

𝑇𝜑 ∘ 𝑇 ∘ 𝑇𝜑−1(𝑒𝑗) = 𝑇𝜑 ∘ 𝑇 (𝑒𝜑−1(𝑗)) = 𝑇𝜑

⎛⎝ ∑︁
𝑖6𝜑−1(𝑗)

𝑥𝑖𝜑−1(𝑗)𝑒𝑖

⎞⎠ =
∑︁

𝑖6𝜑−1(𝑗)
𝑥𝑖𝜑−1(𝑗)𝑒𝜑(𝑖).

Since 𝑖 6 𝜑−1(𝑗) implies 𝜑(𝑖) 6 𝑗, denoting 𝑏𝜑(𝑖)𝑗 = 𝑥𝑖𝜑−1(𝑗), it follows that

𝑇𝜑 ∘ 𝑇 ∘ 𝑇𝜑−1(𝑒𝑗) =
∑︁

𝑖 : 𝜑(𝑖)6𝑗

𝑏𝜑(𝑖)𝑗𝑒𝜑(𝑖).

Therefore 𝑇𝜑 ∘ 𝑇 ∘ 𝑇𝜑−1 ∈ 𝒢𝑃 and 𝒢𝑃 is a normal subgroup of 𝐺𝐿𝑃 (F𝑛
𝑞 ). By using the

characterizations of 𝒢𝑃 and 𝒜𝑢𝑡(𝑃 ), it is straightforward to conclude that 𝒢𝑃 ∩𝒜𝑢𝑡(𝑃 ) =

{𝐼} where 𝐼 is the identity map, therefore 𝐺𝐿𝑃 (F𝑛
𝑞 ) is isomorphic to the semidirect product

𝒢𝑃 o𝒜𝑢𝑡(𝑃 ).

Example 2.3.7. (Hierarchical Case) We remark that if 𝑇 ∈ 𝒜𝑢𝑡(𝑃 ), then 𝑇 is induced

by a permutation 𝜑 : 𝑃 → 𝑃 and denoted by 𝑇𝜑. If 𝑃 is an (𝑛 : 𝑛1, . . . , 𝑛𝑠) hierarchical

poset, the image by 𝜑 of an element in the 𝑖-th level must also belong to this level. For each

𝑖, we denote the group 𝒜𝑢𝑡(Γ𝑖
𝑃 ) by the group of all linear maps induced by permutations

𝜑𝑖 that permutes only elements of the 𝑖-th level of 𝑃 , i.e., 𝜑𝑖 : 𝑃 → 𝑃 is a bijection

satisfying 𝜑𝑖(𝑗) = 𝑗 if 𝑗 ̸∈ Γ𝑖
𝑃 . Since 𝑃 is hierarchical, 𝒜𝑢𝑡(Γ𝑖

𝑃 ) ⊂ 𝒜𝑢𝑡(𝑃 ). Hence, each

𝜑𝑖 induces an isometry 𝑇𝜑𝑖
thus 𝜑 = 𝜑1 ∘ . . . ∘ 𝜑𝑠, i.e., 𝑇𝜑 = 𝑇𝜑1 ∘ . . . ∘ 𝑇𝜑𝑠 . Therefore, the

group 𝒜𝑢𝑡(𝑃 ) is isomorphic to the product 𝒜𝑢𝑡(Γ1
𝑃 ) × . . . × 𝒜𝑢𝑡(Γ𝑠

𝑃 ) and 𝑇 ∈ 𝒜𝑢𝑡(𝑃 ) if,

and only if,

𝑇𝜑(𝑥1, . . . , 𝑥𝑛) = (𝑥𝜑1(1), . . . , 𝑥𝜑1(𝑛1)) × · · · × (𝑥𝜑𝑠(𝑛1+...+𝑛𝑠−1+1), . . . , 𝑥𝜑𝑠(𝑛1+...+𝑛𝑠−1+𝑛𝑠))

where 𝜑𝑖 ∈ 𝒜𝑢𝑡(Γ𝑖
𝑃 ) for every 𝑖 ∈ {1, . . . , 𝑠}.

2.3.2 Packing Radius of Poset Codes

Since poset metrics are defined by weights, they are invariant by translations

and the packing radius of a poset code can be equivalently defined as being the largest

integer ℛ𝑃 (𝒞) satisfying

𝐵𝑃 (0, ℛ𝑃 (𝒞)) ∩ 𝐵𝑃 (𝑐, ℛ𝑃 (𝒞)) = ∅
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for every 𝑐 ∈ 𝒞.

In order to simplify the notation, the set of maximal elements in the support

of a codeword 𝑐, which is denoted by 𝑀𝑎𝑥𝑃 (𝑠𝑢𝑝𝑝(𝑐)), will be denoted by 𝑀𝑎𝑥𝑃 (𝑐).

Proposition 2.3.8. Given an [𝑛, 𝑘, 𝛿]𝑞 poset code 𝒞 such that |𝑀𝑎𝑥𝑃 (𝑐)|= 1 for every

𝑐 ∈ 𝒞 ∖ {0}, then

ℛ𝑃 (𝒞) = 𝛿 − 1.

Proof. Suppose 𝑀𝑎𝑥𝑃 (𝑐) = {𝑖}, note that if 𝑥 ∈ 𝐵𝑃 (𝑐, 𝑤𝑃 (𝑐) − 1) then 𝑥𝑖 = 𝑐𝑖. Since

𝑖 ∈ 𝑠𝑢𝑝𝑝𝑃 (𝑥), it follows that 𝑥 ̸∈ 𝐵𝑃 (0, 𝑤𝑃 (𝑐) − 1). Hence, 𝑅𝑃 (𝑐) = 𝑤𝑃 (𝑐) − 1. Taking 𝑐

with minimum weight 𝛿, the packing radius of this codeword is 𝛿 − 1, by characterization

2.1, 𝑐 is a packing vector, therefore, ℛ𝑃 (𝒞) = 𝛿 − 1.

The proof of the next corollary follows straight from the fact that in a chain,

every non-null vector has only one maximal element in its support.

Corollary 2.3.9. Let 𝑃 be a chain. If 𝒞 is an [𝑛, 𝑘, 𝛿]𝑞 𝑃 -code, then

ℛ𝑃 (𝒞) = 𝛿 − 1.

Corollary 2.3.9 and Proposition 2.1.8 ensure that the bounds given in Proposi-

tion 2.1.9 are tight. The extremal values for the bound are obtained by extremal posets,

one with no relations (anti-chain) and the other with the maximum number of relations

(total order - chain). Both are hierarchical posets and the metrics induced by these posets

are very well understood, as can be seen in [30]. A hierarchical poset can be obtained by

summing up anti-chains, as follows:

Definition 2.3.10. Let 𝑃 = (𝑋,6𝑃 ) and 𝑄 = (𝑌,6𝑄) be two posets with 𝑋 ∩ 𝑌 = ∅.

The ordinal sum of 𝑃 and 𝑄 is the poset 𝑃 ⊕ 𝑄 with order relation given by

𝑥 6𝑃 ⊕𝑄 𝑦 ⇐⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥 6𝑃 𝑦 when 𝑥, 𝑦 ∈ 𝑋

𝑥 6𝑄 𝑦 when 𝑥, 𝑦 ∈ 𝑌

𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌

.

Proposition 2.3.11. A hierarchical poset (𝑛 : 𝑛1, . . . , 𝑛𝑙) is an ordinal sum of 𝑙 anti-

chains.
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It is straightforward to conclude that the Hamming metric is a poset metric

induced by an anti-chain. According to Proposition 2.3.11, hierarchical posets are charac-

terized as ordinal sums of anti-chains, therefore, hierarchical metrics are closely related to

the Hamming metric. We are particularly interested in the characterization of poset met-

rics for which the error-correction capability of a code is determined by its error-detection

capability, i.e., poset metrics for which the packing radius of a code is determined by its

minimum distance.

Proposition 2.3.12. If 𝒞 is an [𝑛, 𝑘, 𝛿]𝑞 𝑃 -code such that ⟨𝑠𝑢𝑝𝑝(𝒞)⟩𝑃 is a hierarchical

subposet of 𝑃 , then

ℛ𝑃 (𝒞) = 𝑛1 + · · · + 𝑛𝑟−1 +
⌊︃

𝛿 − (𝑛1 + · · · + 𝑛𝑟−1) − 1
2

⌋︃

where 𝑟 is the smallest level of 𝑃 such that there exists 𝑐 ∈ 𝒞 with 𝑀𝑎𝑥𝑃 (𝑐) ⊂ Γ𝑟
𝑃 and

𝑛𝑠 = |⟨𝑠𝑢𝑝𝑝(𝒞)⟩𝑃 ∩ Γ𝑠
𝑃 |.

Proof. Set 𝑠1 = 0 and 𝑠𝑖 = 𝑛1 + · · · + 𝑛𝑖−1 for all 𝑖 ∈ {2, . . . , ℎ(𝑃 )}. Consider ℎ =

𝑠𝑟 + ⌊(𝛿 − 𝑠𝑟 − 1)/2⌋ where

𝑟 = min{𝑖 : 𝑀𝑎𝑥𝑃 (𝑐) ⊂ Γ𝑖
𝑃 for some 𝑐 ∈ 𝒞}.

Suppose there exists 𝑧 ∈ 𝐵𝑃 (0, ℎ) ∩ 𝐵𝑃 (𝑐, ℎ) for some 𝑐 ∈ 𝒞. Since ⟨𝑠𝑢𝑝𝑝(𝒞)⟩𝑃 is hierar-

chical, 𝑀𝑎𝑥𝑃 (𝑐) ⊂ Γ𝑗0
𝑃 for some level 𝑗0 and by the minimality of 𝑟, it follows that 𝑗0 ≥ 𝑟.

The weight of 𝑐 is of the form 𝑤𝑃 (𝑐) = 𝑠𝑗0 + 𝑡 where 𝑡 = |𝑀𝑎𝑥𝑃 (𝑐)|. It is straightforward

that 𝑀𝑎𝑥𝑃 (𝑧 − 𝑐) ⊂ Γ𝑗0
𝑃 . Thus, if

|𝑀𝑎𝑥𝑃 (𝑧 − 𝑐)|>
⌊︂

𝑡 − 1
2

⌋︂
,

then

𝑑(𝑧, 𝑐) = 𝑠𝑗0 + |𝑀𝑎𝑥𝑃 (𝑧 − 𝑐)|> 𝑠𝑗0 +
⌊︂

𝑡 − 1
2

⌋︂
≥ ℎ,

i.e., 𝑧 ̸∈ 𝐵𝑃 (𝑐, ℎ). On the other hand, if

|𝑀𝑎𝑥𝑃 (𝑧 − 𝑐)|≤
⌊︂

𝑡 − 1
2

⌋︂
,
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then

2|𝑀𝑎𝑥𝑃 (𝑧 − 𝑐)|< 𝑡 = |𝑀𝑎𝑥(𝑐)|.

Therefore, |𝑀𝑎𝑥𝑃 (𝑧)|> |𝑀𝑎𝑥𝑃 (𝑐)|, hence

𝑑(𝑧, 0) = 𝑠𝑗0 + |𝑀𝑎𝑥𝑃 (𝑧)|> 𝑠𝑗0 + |𝑀𝑎𝑥𝑃 (𝑐)|≥ ℎ,

i.e., 𝑧 ̸∈ 𝐵𝑃 (0, ℎ). To conclude, we just need to prove that there exists 𝑐 ∈ 𝒞 such that

𝐵𝑃 (0, ℎ + 1) ∩ 𝐵𝑃 (𝑐, ℎ + 1) ̸= ∅. Suppose 𝑤𝑃 (𝑐) = 𝛿, note that |𝑀𝑎𝑥𝑃 (𝑐)|= 𝛿 − 𝑠𝑟, take

a set 𝐴 ⊂ 𝑀𝑎𝑥𝑃 (𝑐) such that |𝐴|= ⌊(𝛿 − 𝑠𝑟 − 1)/2⌋ + 1, define 𝑧 ∈ F𝑛
𝑞 by the rule 𝑧𝑖 = 𝑐𝑖

for every 𝑖 ∈ 𝐴 and 𝑧𝑖 = 0 otherwise, then

𝑑𝑃 (𝑧, 0) = |𝐴|+𝑠𝑟 = ℎ + 1.

Since |𝑀𝑎𝑥𝑃 (𝑐)∖𝐴|≤ |𝐴|, we also have that

𝑑𝑃 (𝑧, 𝑐) = 𝑠𝑟 + |𝑀𝑎𝑥𝑃 (𝑐)∖𝐴|≤ 𝑠𝑟 + |𝐴|= ℎ + 1.

Thus, 𝑧 ∈ 𝐵𝑃 (0, ℎ + 1) ∩ 𝐵𝑃 (𝑐, ℎ + 1), therefore, ℛ𝑃 (𝒞) = ℎ.

We stress that 𝑃 is hierarchical if, and only if, every ideal of 𝑃 is also hierar-

chical and Proposition 2.3.12 holds for every code.

Theorem 2.3.13. The poset 𝑃 is a hierarchical poset if and only if any two 𝑃 -codes

with same minimum distance also have the same packing radius.

Proof. Proposition 2.3.12 ensures that if 𝑃 is hierarchical any two codes having the same

minimum distance also have the same packing radius. Conversely, suppose 𝑃 is not

hierarchical, then there exist 𝑖0 ∈ Γ𝑟
𝑃 and 𝑗0 ∈ Γ𝑟+1

𝑃 such that 𝑖0 
 𝑗0. Let 𝑟 be minimal

with this property. Consider the one-dimensional code 𝒞1 generated by the vector 𝑒𝑗0 and

the one-dimensional code 𝒞2 generated by the vector 𝑣 where 𝑣𝑠 = 1 if 𝑠 ∈ 𝐴, 𝑣𝑖0 = 1 and

𝑣𝑠 = 0 for all 𝑠 ∈ [𝑛] ∖ (𝐴 ∪ {𝑖0}) where 𝐴 = Γ𝑟
𝑃 ∩ ⟨𝑗0⟩. By construction, 𝒞1 and 𝒞2 have

the same minimum distance 𝛿 = |⟨𝑗0⟩𝑃 |. By Proposition 2.3.8, ℛ𝑃 (𝒞1) = 𝛿 − 1 and by
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Proposition 2.3.12,

ℛ𝑃 (𝒞2) = 𝑛1 + · · · + 𝑛𝑟−1 +
⌊︃

𝛿 − (𝑛1 + · · · + 𝑛𝑟−1) − 1
2

⌋︃
,

but

ℛ𝑃 (𝒞1) =𝛿 − 1 = 𝑛1 + · · · + 𝑛𝑟−1 + 𝛿 − (𝑛1 + · · · + 𝑛𝑟−1) − 1 (2.4)

>𝑛1 + · · · + 𝑛𝑟−1 +
⌊︃

𝛿 − (𝑛1 + · · · + 𝑛𝑟−1) − 1
2

⌋︃
= ℛ𝑃 (𝒞2). (2.5)

Example 2.3.14. Consider the non-hierarchical poset 𝑃 over [3] with an order relation

given by 1 6 3. Its Hasse diagram is as follows:

1 2

3

Let 𝒞1 and 𝒞2 be two one-dimensional linear codes over F𝑛
𝑞 generated by 𝑒3 and 𝑒1 + 𝑒2,

respectively. It is straightforward to conclude that both codes have minimum distance

(𝛿 = 2) and that their packing radius are different, namely, ℛ𝑃 (𝒞1) = 1 and ℛ𝑃 (𝒞2) = 0.

We conclude that among the poset metrics, hierarchical metrics are the only

ones where the error-correcting capability of a code is determined by its error-detection

capability. We remark that, as proved in [12], to determine the error-correction capability

of a single pair of codewords is an NP-hard problem, so bounds for these invariants are

very welcome.
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Chapter 3

Canonical Form

It is well known that representation of a code by generator matrices is not

unique. It depends on the choice of the code basis. The election of a particular represen-

tation is motivated by the fact that it can be useful for determining some code parameters.

For example, the standard form for a 𝑑𝐻-code provides an easy way to obtain the parity

check matrix of this code and allows the characterization of MDS codes and the singleton

defect in general, see [45]. The form is called standard because every code has, up to

equivalence, a unique such representation.

Analogous representations of the standard form were presented in [1] and [15]

for codes over vector spaces endowed with NRT and hierarchical metrics, respectively. A

standard form is obtained by the choice of an appropriate basis of the code and eventually

by reordering the columns. The choice of a basis is obtained operating with the rows of a

generating matrix. When considering poset metrics, it may be permitted to perform some

operations (other than permutations) with the columns. Those permitted operations are

determined by the group of linear isometries. In the referred cases of NRT and hierarchical

posets, by operating with the columns we can get a generating matrix (or equivalently,

a basis) that in many senses may be called canonical. The canonical matrix determines

a canonical decomposition of a code into a direct sum of sub-codes with dimension and

support uniquely prescribed by the code weight hierarchy. For a general poset, there is

no such canonical decomposition, but there is a decomposition that is maximal in the

number of components. In the sequence we will first present the canonical form originally

presented in [15] and then proceed to define and determine what we call by a maximal

𝑃 -decomposition. This decomposition is what allows to produce bounds for invariants
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that cannot be related or produced by explicit expressions.

3.1 Canonical Form for Hierarchical Metrics

In [15], it was proposed a canonical-systematic form for codes over spaces

endowed with a hierarchical poset metric. In this section, we will present an alternative

way to obtain the canonical-systematic form emphasizing the role of the basis of the

code instead of the generating matrix. When using the generator matrix, the focus is on

the form of the matrix, here, an particular form may be obtained in some cases by the

choice of an appropriate basis which is determined by a decomposition. Consequently,

a particular form for the matrix is not the main goal, the goal is to obtain a generator

matrix as simple as possible.

Let 𝑃 be a hierarchical poset over [𝑛]. Given 𝑤 ∈ F𝑛
𝑞 , the 𝑃 -clean of 𝑤

is the vector ̃︀𝑤 with the same value of 𝑤 in the coordinates that are maximal in the

support of 𝑤 and zero in the remaining coordinates, namely: ̃︀𝑤𝑖 = 𝑤𝑖 if 𝑖 ∈ 𝑀𝑎𝑥(𝑤) and
̃︀𝑤𝑖 = 0 otherwise. Note that the 𝑃 -clean of 𝑤 has the same 𝑃 -weight of 𝑤. The 𝑗-th

projection of 𝑤 is the vector 𝑤(𝑗) ∈ F𝑛
𝑞 obtained by the projection of 𝑤 into the coordinates

corresponding to the 𝑗-th level of 𝑃 , i.e., 𝑤(𝑗)
𝑖 = 𝑤𝑖 if 𝑖 ∈ Γ𝑗

𝑃 and 𝑤(𝑗)
𝑖 = 0, otherwise.

In the following lemma and theorem, if 𝑤 ∈ F𝑛
𝑞 , ⟨𝑤⟩ denotes the one-dimensional space

generated by 𝑤 (not to be confused with the ideal generated by the support of 𝑤).

Lemma 3.1.1. Let 𝑃 be a hierarchical poset with 𝑠 levels over [𝑛] and 𝒞 be a 𝑙-dimensional

code satisfying 𝑠𝑢𝑝𝑝(𝒞) ⊂ Γ𝑖0
𝑃 for some 𝑖0 ∈ {1, . . . , 𝑠}. Given 𝑤 ∈ F𝑛

𝑞 such that 𝑀𝑎𝑥(𝑤) ⊂

Γ𝑖0
𝑃 and ̃︀𝑤 ̸∈ 𝒞, there exists a linear code 𝒞 ′ such that 𝒞 ′ ∼𝑃 𝒞 ⊕ ⟨𝑤⟩ and 𝑠𝑢𝑝𝑝(𝒞 ′) ⊂ Γ𝑖0

𝑃 .

Proof. Let {𝑣1, . . . , 𝑣𝑙} be a basis of 𝒞. Given 𝑤 as in the statements of the lemma, since
̃︀𝑤 ̸∈ 𝒞, the set 𝛽 = { ̃︀𝑤, 𝑣1, . . . , 𝑣𝑙} is linearly independent. So, 𝛽 is a basis for the linear

code 𝒞 ⊕ ⟨ ̃︀𝑤⟩. Let

𝛽1 = { ̃︀𝑤, 𝑣1, . . . , 𝑣𝑙, 𝑒𝑗1 , . . . , 𝑒𝑗𝑛−𝑙−1}

be a basis of F𝑛
𝑞 obtained by extending the basis 𝛽 using vectors of the canonical basis.

Because 𝑤 = ̃︀𝑤 +∑︀𝑛−𝑙−1
𝑖=1 𝛼𝑖𝑒𝑗𝑖

for suitable scalars 𝛼𝑖, the set

𝛽2 = {𝑤, 𝑣1, . . . , 𝑣𝑙, 𝑒𝑗1 , . . . , 𝑒𝑗𝑛−𝑙−1}
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generates F𝑛
𝑞 . Furthermore, note that 𝛽2 contains a basis of 𝒞 ⊕ ⟨𝑤⟩. Define the linear

map 𝑇 by setting 𝑇 (𝑤) = ̃︀𝑤, 𝑇 (𝑣𝑖) = 𝑣𝑖 for all 𝑖 ∈ {1, . . . , 𝑙} and 𝑇 (𝑒𝑗𝑟) = 𝑒𝑗𝑟 for all

𝑟 ∈ {1, . . . , 𝑛−𝑙−1}. Denoting by 𝒞 ′ the code generated by 𝛽, we have that 𝑠𝑢𝑝𝑝(𝒞 ′) ⊂ Γ𝑖0
𝑃

and 𝑇 (𝒞 ⊕ ⟨𝑤⟩) = 𝒞 ′. To conclude, we just need to prove that 𝑇 is an isometry. Writing

a canonical vector 𝑒𝑗 ∈ F𝑛
𝑞 according to 𝛽2 where 𝑗 ̸∈ {𝑗1, . . . , 𝑗𝑛−𝑙−1}, we get that

𝑒𝑗 = 𝛼𝑤 +
𝑙∑︁

𝑖=1
𝛾𝑖𝑣

𝑖 +
𝑛−𝑙−1∑︁

𝑖=1
𝜃𝑖𝑒𝑗𝑖

,

where 𝛼, 𝛾𝑖, 𝜃𝑖 ∈ F𝑞. Since 𝑤 = ̃︀𝑤 + ∑︀𝑛−𝑙−1
𝑖=1 𝛼𝑖𝑒𝑗𝑖

and 𝛼𝑖 = 0 if 𝑗𝑖 ∈ Γ𝑟
𝑃 with 𝑟 ≥ 𝑖0 ( ̃︀𝑤 is

the 𝑃 -clean of 𝑤), then

𝑇 (𝑒𝑗) = 𝛼 ̃︀𝑤 +
𝑙∑︁

𝑖=1
𝛾𝑖𝑣

𝑖 +
𝑛−𝑙−1∑︁

𝑖=1
𝜃𝑖𝑒𝑗𝑖

= 𝛼

(︃
𝑤 −

𝑛−𝑙−1∑︁
𝑖=1

𝛼𝑖𝑒𝑗𝑖

)︃
+

𝑙∑︁
𝑖=1

𝛾𝑖𝑣
𝑖 +

𝑛−𝑙−1∑︁
𝑖=1

𝜃𝑖𝑒𝑗𝑖
= 𝑒𝑗 −

𝑛−𝑙−1∑︁
𝑖=1

𝛼𝛼𝑖𝑒𝑗𝑖
.

Due to the fact that 𝑃 is hierarchical and 𝛼𝑖 = 0 for every 𝑖 such that 𝑗𝑖 ∈ Γ𝑟
𝑃 with 𝑟 ≥ 𝑖0,

the characterization given in Lemma 2.3.6 ensures that 𝑇 is a linear isometry.

Observation 3.1.2. The linear isometry 𝑇 constructed in the previous lemma coincides

with the identity map when restricted to elements whose support does not intercept the

level 𝑖0, i.e., 𝑇 (𝑥) = 𝑥 if 𝑠𝑢𝑝𝑝(𝑥) ⊂ [𝑛] ∖ Γ𝑖0
𝑃 .

Theorem 3.1.3. Let 𝑃 be an (𝑛 : 𝑛1, . . . , 𝑛𝑠) hierarchical poset. If 𝒞 is a linear 𝑃 -code,

there exists ̃︀𝒞 such that ̃︀𝒞 ∼𝑃 𝒞,

̃︀𝒞 = 𝒞1 ⊕ 𝒞2 ⊕ · · · ⊕ 𝒞𝑠

and 𝑠𝑢𝑝𝑝(𝒞𝑖) ⊂ Γ𝑖
𝑃 for every 𝑖 ∈ [𝑠].

Proof. If 𝒞 is an one-dimensional code, then 𝒞 = ⟨𝑣⟩ for a suitable 𝑣 ∈ F𝑛
𝑞 . Considering

𝒞 ′ = {0} to be the null vector space, since 𝑣 /∈ 𝒞 ′, Lemma 3.1.1 ensures that 𝒞 is equivalent

to the code generated by the 𝑃 -clean of 𝑣. Suppose 𝒞 is a 𝑘-dimensional code and 𝑘 > 1.

Then 𝒞 = ⟨𝑤⟩ ⊕ 𝒞 ′ for some 𝑤 ∈ 𝒞 and a (𝑘 − 1)-dimensional code 𝒞 ′ ⊂ 𝒞. By induction,

there is a linear isometry 𝑇 ′ such that 𝑇 ′(𝒞 ′) = ⊕𝑠
𝑖=1𝐵𝑖 and 𝑠𝑢𝑝𝑝(𝐵𝑖) ⊂ Γ𝑖

𝑃 . Since 𝑇 ′

is injective, we get that 𝑇 ′(𝑤) ̸∈ 𝑇 ′(𝒞 ′). Consider the code 𝑇 ′(𝒞) = ⟨𝑇 ′(𝑤)⟩ ⊕ 𝑇 ′(𝒞 ′).
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Therefore, there exists a level 𝑖 of 𝑃 such that the projection of 𝑇 ′(𝑤) in this level does

not belong to 𝐵𝑖, i.e, 𝑇 ′(𝑤)(𝑗) ̸∈ 𝐵𝑖. Let 𝑖0 be the maximal level with this property.

Define the vector 𝑣 ∈ F𝑛
𝑞 as follows: 𝑣(𝑖) = 𝑇 ′(𝑤)(𝑖) if 𝑖 ≤ 𝑖0 and 𝑣(𝑖) = 0 if 𝑖 > 𝑖0. Since

𝑣 = 𝑇 ′(𝑤)−𝑐 for some 𝑐 ∈ 𝑇 ′(𝒞 ′) we get that 𝑇 ′(𝒞) = ⟨𝑣⟩⊕𝑇 ′(𝒞 ′). By Lemma 3.1.1, there

is a linear isometry 𝑇 such that 𝑇 (𝐵𝑖) = 𝐵𝑖 if 𝑖 ̸= 𝑖0 (ensured by the Observation 3.1.2)

and 𝑠𝑢𝑝𝑝(𝑇 (𝐵𝑖0 ⊕ ⟨𝑣⟩)) = 𝑠𝑢𝑝𝑝(𝑇 (𝐵𝑖0) ⊕ ⟨̃︀𝑣⟩) ⊂ Γ𝑖0
𝑃 where 𝑇 (𝑣) = ̃︀𝑣. Therefore, denoting

𝒞𝑖 = 𝐵𝑖 for every 𝑖 ̸= 𝑖0 and 𝒞𝑖0 = 𝑇 (𝐵𝑖0) ⊕ ⟨̃︀𝑣⟩, we have that ̃︀𝒞 = 𝑇𝑇 ′(𝒞) = ⊕𝑠
𝑖=1𝒞𝑖 and

𝑠𝑢𝑝𝑝(𝒞𝑖) ⊂ Γ𝑖
𝑃 for every 𝑖 ∈ {1, . . . , 𝑠}.

Given a linear code 𝒞, Theorem 3.1.3 states that there exists a code ̃︀𝒞, equiva-

lent to 𝒞, such that ̃︀𝒞 = 𝒞1⊕. . .⊕𝒞𝑠 and 𝑠𝑢𝑝𝑝(𝒞𝑖) ⊂ Γ𝑖
𝑃 for every 𝑖 ∈ {1, . . . , 𝑠}. Assuming

𝑃 to be naturally labeled, the direct sum can be seen as a product of codes, namely,

̃︀𝒞 = 𝒞1 ⊕ . . . ⊕ 𝒞𝑠 = (̂︁𝒞1, . . . ,̂︁𝒞𝑠),

where the codes ̂︀𝒞𝑖 were obtained from 𝒞𝑖 just by deleting the coordinates that do not

belong to the level 𝑖 of the poset (this is known as the punctured code construction, see

[27]). Therefore, while 𝒞𝑖 is a sub-code of F𝑛
𝑞 , ̂︀𝒞𝑖 is a sub-code of F𝑛𝑖

𝑞 where 𝑛𝑖 = |Γ𝑖
𝑃 |.

Corollary 3.1.4. If 𝒞 is a 𝑃 -code where 𝑃 is a naturally labeled (𝑛 : 𝑛1, . . . , 𝑛𝑠) hierar-

chical poset, there is a code 𝒞 ′, equivalent to 𝒞, with generator matrix 𝐺 in the form

𝐺 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 𝐺𝑠

0 0 ... 0
... ... ...

0 𝐺2 0 · · · 0

𝐺1 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝐺𝑖 is the generator matrix of ̂︀𝒞𝑖.

The representation given by Corollary 3.1.4 can be standardized even more.

Indeed, by operating in the rows of 𝐺 we can assume that 𝐺𝑖 is in reduced row echelon

form, note that this operations only perform changing of basis in the code. If 𝑇 ∈ 𝒜𝑢𝑡(𝑃 ),

according to Example 2.3.7, 𝑇 is a composition of permutations according to each level

of the poset. In terms of matrices, assuming that the generator matrix 𝐺 of a code 𝒞 is
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in the form given by Corollary 3.1.4 and that each 𝐺𝑖 is in reduced row echelon form, the

description of 𝒜𝑢𝑡(𝑃 ) ensures that any two rows of 𝐺 can be permuted if, and only if, the

coordinates corresponding to these rows belong to the same level of the poset. Therefore,

if 𝑃𝑖 are 𝑛𝑖 × 𝑛𝑖 permutation matrices, the code generated by

𝐺′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 𝐺𝑠𝑃𝑠

0 0 ... 0
... ... ...

0 𝐺2𝑃2 0 · · · 0

𝐺1𝑃1 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is equivalent to 𝒞. With the previous arguments, the following representation holds.

Corollary 3.1.5. If 𝒞 is a 𝑃 -code where 𝑃 is a naturally labeled (𝑛 : 𝑛1, . . . , 𝑛𝑠) hierar-

chical poset, there is a code 𝒞 ′, equivalent to 𝒞 with generator matrix 𝐺 given by

𝐺 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · [𝐼𝑘𝑠|𝐴𝑠]

0 0 ... 0
... ... ...

0 [𝐼𝑘2|𝐴2] 0 · · · 0

[𝐼𝑘1 |𝐴1] 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where 𝑘𝑖 is the dimension of ̂︀𝒞𝑖 and 𝐴𝑖 are 𝑘𝑖 × (𝑛𝑖 − 𝑘𝑖) matrices. This representation is

called the canonical-systematic form.

As may be seen in [15], the constants 𝑘1, . . . , 𝑘𝑠 are determined by the weight

enumerator of the code and, in this sense, the decomposition is canonical.

3.2 Partitions and Decompositions

A partition of a subset 𝐽 ⊆ [𝑛] is a family of subsets {𝐽1, . . . , 𝐽𝑟} such that

𝐽 =
𝑟⋃︁

𝑖=1
𝐽𝑖,

where 𝐽𝑖 ∩𝐽𝑗 = ∅ if 𝑖 ̸= 𝑗 and each 𝐽𝑖 ̸= ∅. We will denote such a partition by 𝒥 = (𝐽𝑖)𝑟
𝑖=1.

If we write 𝐽0 = [𝑛] ∖𝐽 = {𝑖 ∈ [𝑛] : 𝑖 /∈ 𝐽}, the triple 𝒥 * = (𝐽 ; 𝐽0; 𝐽𝑖)𝑟
𝑖=1 is called pointed
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partition, since 𝐽 is the union of the subsets 𝐽𝑖, it may be omitted in the notation, therefore

the pointed partition 𝒥 * will also be denoted by (𝐽0; 𝐽𝑖)𝑟
𝑖=1. Note that 𝐽0 = ∅ if, and only

if, 𝐽 = [𝑛]. We stress that 𝐽0 has a special role, since it is the only part we allow to be

empty. From now on, we consider only pointed partitions, so we will omit the symbol *

and the adjective “pointed”. A partition 𝒥 can be refined in two ways, either by increasing

the number of parts or by enlarging the distinguished part 𝐽0. Except for the pointer 𝐽0,

the order of the other parts is irrelevant, for example,

(𝐽0; {1, 2} , {3, 4, 5}) = (𝐽0; {5, 4, 3} , {1, 2}) .

Definition 3.2.1. An 𝑙-split of a partition 𝒥 = (𝐽0; 𝐽𝑖)𝑟
𝑖=1 is a partition 𝒥 ′ = (𝐽0; 𝐽 ′

𝑖)
𝑟+1
𝑖=1

where 𝐽𝑖 = 𝐽 ′
𝑖 for each 𝑖 ̸= 𝑙 and 𝐽𝑙 = 𝐽 ′

𝑙 ∪ 𝐽 ′
𝑟+1, with both 𝐽 ′

𝑙 and 𝐽 ′
𝑟+1 non-empty. This

means that 𝐽𝑙 is split into two components and the others are unchanged. An 𝑙-aggregate

of a partition 𝒥 = (𝐽0; 𝐽𝑖)𝑟
𝑖=1 is a partition 𝒥 ′ = (𝐽 ′

0; 𝐽 ′
𝑖)

𝑟
𝑖=1 where 𝐽 ′

𝑖 = 𝐽𝑖 if 𝑖 ̸∈ {𝑙, 0},

𝐽𝑙 = 𝐽 ′
𝑙 ∪ 𝐽*

𝑙 and 𝐽 ′
0 = 𝐽0 ∪ 𝐽*

𝑙 for some ∅ ≠ 𝐽*
𝑙  𝐽𝑙, i.e., some elements of 𝐽𝑙 were

aggregated into the distinguished part 𝐽0.

Definition 3.2.2. We say that a partition 𝒥 ′ is a 1-step refinement of 𝒥 if 𝒥 ′ is obtained

from 𝒥 by performing a single 𝑙-split or a single 𝑙-aggregate operation, for some 𝑙 < |𝒥 |.

The partition 𝒥 ′ is a refinement of 𝒥 if 𝒥 ′ can be obtained from 𝒥 by a successive

number of 1-step refinements. We use the notation 𝒥 ≥ 𝒥 ′ to denote a refinement and

𝒥 ≥𝑙 𝒥 ′ to denote that 𝒥 ′ is a 1-step refinement of 𝒥 performed by an 𝑙-split or 𝑙-

aggregate. When the kind of operation (splitting or aggregation) is relevant, we will use

the notation 𝒥 ≥𝑠
𝑙 𝒥 ′ and 𝒥 ≥𝑎

𝑙 𝒥 ′ for an 𝑙-split or an 𝑙-aggregate, respectively.

Example 3.2.3. The partition ([4]; ∅; {1, 2, 3, 4}) can be refined in order to get the par-

tition ([4]; {1, 3}; {2}, {4}) by using the following 1-step refinements:

(∅; {1, 2, 3, 4}) ≥𝑎
1 ({3} ; {1, 2, 4})

≥𝑎
1 ({1, 3} ; {2, 4}) ≥𝑠

1 ({1, 3} ; {2} , {4}) .

By using the set partition previously defined, decompositions of linear codes

can be constructed. Each set partition over [𝑛] induces a decomposition of linear odes, as

explained below. Such decompositions are the algebraic equivalent of the set partitions
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over [𝑛].

Definition 3.2.4. We say that C = (𝒞; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 is a decomposition of an [𝑛, 𝑘, 𝛿]𝑞 code

𝒞 if each 𝒞𝑖 is a subspace of F𝑛
𝑞 such that:

(a) 𝒞 = ⊕𝑟
𝑖=1𝒞𝑖 with 𝑑𝑖𝑚(𝒞𝑖) > 0 for every 𝑖 ∈ {1, . . . , 𝑟};

(b) 𝒞0 = {(𝑥 1, 𝑥2, . . . , 𝑥𝑛) : 𝑥𝑖 = 0 if 𝑖 ∈ 𝑠𝑢𝑝𝑝 (𝒞)};

(c) (𝑠𝑢𝑝𝑝 (𝒞0) ; 𝑠𝑢𝑝𝑝 (𝒞𝑖))𝑟
𝑖=1 is a pointed partition over [𝑛].

Definition 3.2.5. An 𝑙-split, 𝑙-aggregate, 1-step refinement and a refinement C ′ =

(𝒞; 𝒞 ′
0; 𝒞 ′

𝑖)
𝑟′
𝑖=1 of a decomposition C = (𝒞; 𝒞0; 𝒞𝑖)𝑟

𝑖=1 are defined according to

(𝑠𝑢𝑝𝑝 (𝒞 ′
0) ; 𝑠𝑢𝑝𝑝 (𝒞 ′

𝑖))
𝑟′
𝑖=1

being an 𝑙-split, 𝑙-aggregate, 1-step refinement or a refinement of (𝑠𝑢𝑝𝑝 (𝒞0) ; 𝑠𝑢𝑝𝑝 (𝒞𝑖))𝑟
𝑖=1.

Example 3.2.6. Let 𝑃 be a poset over [4]. Consider the [4, 2, 𝛿𝑃 ]2 code 𝒞 given by

𝒞 = {0000, 1100, 0010, 1110}.

Then,

(𝒞; ⟨𝑒4⟩; 𝒞) ≥𝑠
1 (𝒞; ⟨𝑒4⟩; 𝒞𝑖)2

𝑖=1

where

𝒞1 = {0000, 1100} and 𝒞2 = {0000, 0010}.

Definition 3.2.7. A decomposition C = (𝒞; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 is said to be maximal if it does not

admit a refinement.

Let 𝛽 = {𝑒1, . . . , 𝑒𝑛} be the canonical basis of F𝑛
𝑞 . Given 𝐼 ⊂ [𝑛], the 𝐼-

coordinate subspace 𝑉𝐼 is defined by

𝑉𝐼 = ⟨{𝑒𝑖 : 𝑖 ∈ 𝐼}⟩ =
{︃∑︁

𝑖∈𝐼

𝑥𝑖𝑒𝑖 : 𝑥𝑖 ∈ F𝑞

}︃
.

Given a decomposition C = (𝒞; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 of a linear code 𝒞, we say that

𝑉𝑖 := 𝑉𝑠𝑢𝑝𝑝(𝒞𝑖) = ⟨{𝑒𝑖 : 𝑖 ∈ 𝑠𝑢𝑝𝑝 (𝒞𝑖)}⟩
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is the support-space of (the component) 𝒞𝑖. We consider [𝑛]𝒞 = 𝑠𝑢𝑝𝑝 (𝒞) and [𝑛]𝒞 =

[𝑛] ∖[𝑛]𝒞. In the case where [𝑛]𝒞 ̸= ∅, we write 𝑉0 = 𝑉[𝑛]𝒞 and denote 𝒞0 = 𝑉0. We

say that the decomposition (𝒞; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 is supported by the environment decomposition

(𝑉0; 𝑉𝑖)𝑟
𝑖=1. In the case where [𝑛]𝒞 = ∅, we have 𝑉0 = 𝒞0 = {0}.

Until now, the metric 𝑑𝑃 has not played role in the decomposition of a code.

We introduce now a decomposition that depends of the metric and consequently of the

poset 𝑃 .

Definition 3.2.8. A 𝑃 -decomposition of 𝒞 is a decomposition C = (𝒞 ′; 𝒞 ′
0; 𝒞 ′

𝑖)
𝑟
𝑖=1 of 𝒞 ′ (as

in Definition 3.2.4) where 𝒞 ′ ∼𝑃 𝒞. Each 𝒞 ′
𝑖 is called a component of the decomposition. A

trivial 𝑃 -decomposition of 𝒞 is either the decomposition (𝒞; 𝒞0; 𝒞) or any 𝑃 -decomposition

with a unique factor (𝒞 ′; 𝒞 ′
0; 𝒞 ′) where |𝑠𝑢𝑝𝑝 (𝒞 ′)| = |𝑠𝑢𝑝𝑝 (𝒞)| and |𝑠𝑢𝑝𝑝 (𝒞 ′

0)| = |𝑠𝑢𝑝𝑝 (𝒞0)|.

Definition 3.2.9. A code 𝒞 is said to be 𝑃 -irreducible if it does not admit a non-trivial

𝑃 -decomposition.

Example 3.2.10. Consider the [4, 2, 𝛿𝑃 ]𝑞 code 𝒞 given by

𝒞 = {0000, 1110, 0111, 1001}.

Let 𝑃1 be the (4 : 2, 2) hierarchical poset, 𝑃2 be the anti-chain poset and 𝑃3 be the poset

determined by 2 ≤𝑃3 3 and 2 ≤𝑃3 4. Their Hasse diagrams are as follows:

1 2

3 4

1 2

3 4

1 2 3 4

P1 P2 P3

It is straightforward that 𝒞 does not admit a non-trivial 𝑃2-decomposition, then 𝒞 is

𝑃2-irreducible. If we consider the 𝑑𝑃3-isometry given by

(𝑥1, 𝑥2, 𝑥3, 𝑥4) ↦→ (𝑥1, 𝑥2 + 𝑥3, 𝑥3, 𝑥4),

then

C ′ = ({0000, 1010, 0011, 1001}; ⟨𝑒2⟩; {0000, 1010, 0011, 1001}).
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is a 𝑃3-decomposition of 𝒞. Note that the previous isometry is also a 𝑑𝑃1-isometry, hence

C ′ is also a 𝑃1-decomposition of 𝒞. Considering the 𝑑𝑃1-isometry given by

(𝑥1, 𝑥2, 𝑥3, 𝑥4) ↦→ (𝑥1 + 𝑥3 + 𝑥4, 𝑥2, 𝑥3, 𝑥4),

we get that

C ′′ = ({0000, 0010, 0011, 0001}; ⟨𝑒1, 𝑒2⟩; {0000, 0010} ⊕ {0000, 0001})

is also a 𝑃1-decomposition for 𝒞.

Given a 𝑃 -decomposition C = (𝒞 ′; 𝒞 ′
0; 𝒞 ′

𝑖)
𝑟
𝑖=1 of 𝒞, we have that [𝑛] = ∪𝑟

𝑖=0𝑠𝑢𝑝𝑝 (𝑉𝑖).

Also, if 𝒞 ′
𝑖 = {0}, then 𝑖 = 0. If each 𝒞 ′

𝑖 is 𝑃 -irreducible, denoting 𝑛𝑖 = 𝑑𝑖𝑚(𝑉𝑖) and

𝑘𝑖 = 𝑑𝑖𝑚(𝒞 ′
𝑖), then

𝑟∑︁
𝑖=0

𝑛𝑖 = 𝑛 = 𝑑𝑖𝑚(F𝑛
𝑞 ) and

𝑟∑︁
𝑖=1

𝑘𝑖 = 𝑘 = 𝑑𝑖𝑚(𝒞).

Consider two 𝑃 -decompositions C ′ = (𝒞 ′; 𝒞 ′
0; 𝒞 ′

𝑖)
𝑟′
𝑖=1 and C ′′ = (𝒞 ′′; 𝒞 ′′

0 ; 𝒞 ′′
𝑖 )𝑟′′

𝑖=1

of a code 𝒞. Associated to those 𝑃 -decompositions there are two partitions of [𝑛],

namely: (𝑠𝑢𝑝𝑝 (𝒞 ′
0) ; 𝑠𝑢𝑝𝑝 (𝒞 ′

𝑖))
𝑟′
𝑖=1 and (𝑠𝑢𝑝𝑝 (𝒞 ′′

0 ) ; 𝑠𝑢𝑝𝑝 (𝒞 ′′
𝑖 ))𝑟′′

𝑖=1. By the definition of a

𝑃 -decomposition, there are isometries 𝑇 ′, 𝑇 ′′ ∈ 𝐺𝐿𝑃 (F𝑛
𝑞 ) such that 𝑇 ′ (𝒞) = 𝒞 ′ and

𝑇 ′′ (𝒞) = 𝒞 ′′. Denote 𝑇 = 𝑇 ′′ ∘ (𝑇 ′)−1. Then 𝑇 is a linear isometry and 𝑇 (𝒞 ′) = 𝒞 ′′.

By Lemma 2.3.5, 𝑇 induces an automorphism of order 𝜑𝑇 : [𝑛] → [𝑛]. The automorphism

𝜑𝑇 induces a map on the partition of [𝑛] determined by the 𝑃 -decomposition C ′, namely,

𝜑𝑇 [(𝑠𝑢𝑝𝑝 (𝒞 ′
0) ; 𝑠𝑢𝑝𝑝 (𝒞 ′

𝑖))
𝑟′
𝑖=1] = (𝜑𝑇 (𝑠𝑢𝑝𝑝 (𝒞 ′

0)) ; 𝜑𝑇 (𝑠𝑢𝑝𝑝 (𝒞 ′
𝑖)))

𝑟′
𝑖=1 .

Using the previous notations, we can define the analogous of the operations

over decompositions to 𝑃 -decompositions.

Definition 3.2.11. Let 𝒞 ⊂ F𝑛
𝑞 be a linear code and 𝑃 be a poset over [𝑛]. Let C ′ =

(𝒞 ′; 𝒞 ′
0; 𝒞 ′

𝑖)
𝑟′
𝑖=1 and C ′′ = (𝒞 ′′; 𝒞 ′′

0 ; 𝒞 ′′
𝑖 )𝑟′′

𝑖=1 be two 𝑃 -decompositions of 𝒞. We say that C ′ is a

𝑃 -refinement (1-step 𝑃 -refinement) of C ′′ if 𝜑𝑇 [(𝑠𝑢𝑝𝑝 (𝒞 ′
0) ; 𝑠𝑢𝑝𝑝 (𝒞 ′

𝑖))
𝑟′
𝑖=1] is a refinement

(1-step refinement) of the partition (𝑠𝑢𝑝𝑝 (𝒞 ′′
0 ) ; 𝑠𝑢𝑝𝑝 (𝒞 ′′

𝑖 ))𝑟′′

𝑖=1.

Similar to what was done with set partitions in Definition 3.2.2, the symbols
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𝑃
≥𝑠

𝑙 and
𝑃

≥𝑎
𝑙 specify when the refinement was obtained by an 𝑙-split or an 𝑙-aggregation,

respectively.

Example 3.2.12. Let 𝒞 = {0000, 1100, 0011, 1111} be a 2-dimensional code over F4
2 and

𝑃 be the chain poset determined by 1 6 2 6 3 6 4. Then, starting with the trivial

𝑃 -decomposition, we have the following refinements:

(𝒞; ∅; 𝒞)
𝑃

≥𝑎
1 ({0000, 1100, 0001, 1101} ; {0000, 0010} ; {0000, 1100, 0001, 1101})

𝑃

≥𝑎
1 ({0000, 0100, 0001, 0101} ; {0000, 0010, 1000, 1010} ; {0000, 0100, 0001, 0101})

𝑃

≥𝑠
1 ({0000, 0100, 0001, 0101} ; {0000, 0010, 1000, 1010} ; {0000, 0100} , {0000, 0001})

where the first two refinements were obtained by considering the linear 𝑃 -isometries

(𝑥1, 𝑥2, 𝑥3, 𝑥4) ↦→ (𝑥1, 𝑥2, 𝑥3 − 𝑥4, 𝑥4)

and

(𝑥1, 𝑥2, 𝑥3, 𝑥4) ↦→ (𝑥1 − 𝑥2, 𝑥2, 𝑥3, 𝑥4) ,

respectively. The third refinement is just a splitting

{0000, 0100, 0001, 0101} = {0000, 0100} ⊕ {0000, 0001} .

Definition 3.2.13. A 𝑃 -decomposition C = (𝒞; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 is said to be maximal if each

𝒞𝑖 is 𝑃 -irreducible for every 𝑖 ∈ {1, . . . , 𝑟}.

Let us consider the Hamming metric 𝑑𝐻 over F𝑛
2 . It is well-known that the

group of linear isometries of this metric space is isomorphic to the permutation group 𝒮𝑛.

Given a code 𝒞, let C = (𝒞; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 be a maximal decomposition of 𝒞. If a code 𝒞 ′ is

𝑑𝐻-equivalent to 𝒞, then there is 𝑇 ∈ 𝐺𝐿𝑑𝐻
(F𝑛

𝑞 ) ∼ 𝒮𝑛 such that 𝑇 (𝒞) = 𝒞 ′. Note that the

decomposition C ′ = (𝒞 ′; 𝑇 (𝒞0); 𝑇 (𝒞𝑖))𝑟
𝑖=1 is a maximal decomposition of 𝒞 ′, otherwise, C

would not be a maximal decomposition of 𝒞. Therefore, when considering the Hamming

metric, a maximal decomposition is also a maximal 𝐻-decomposition (𝐻 is the anti-chain

poset over [𝑛]). This is not the general case, as we can see in the following example.

Example 3.2.14. Consider 𝒞 to be the 1-dimensional binary code of length 𝑛 generated

by (1, 1, . . . , 1) ∈ F𝑛
2 . Let 𝑃 be a poset defined by the chain order: 1 6 2 6 · · · 6 𝑛; and



62

𝐻 be the anti-chain order poset. It follows that 𝒞 is 𝐻-irreducible but not 𝑃 -irreducible.

Indeed, by Lemma 2.3.6, the map

𝑇 (𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛) = (𝑥1 + 𝑥𝑛, . . . , 𝑥𝑛−1 + 𝑥𝑛, 𝑥𝑛)

is a 𝑃 -isometry because 𝑇 (𝑒𝑖) = 𝑒𝑖 for every 𝑖 ̸= 𝑛 and 𝑇 (𝑒𝑛) = ∑︀𝑛
𝑖=1 𝑒𝑖. Also, 𝑇 (𝒞) = ⟨𝑒𝑛⟩

is the code generated by the vector 𝑒𝑛, hence

C ′ = (⟨𝑒𝑛⟩; ⟨{𝑒1, . . . , 𝑒𝑛−1}⟩; ⟨𝑒𝑛⟩)

is a maximal 𝑃 -decomposition of 𝒞. Therefore, 𝒞 is not 𝑃 -irreducible. Since 𝒞 is a

one-dimensional code, we only can perform aggregations, but since 𝑠𝑢𝑝𝑝(11 . . . 1) = [𝑛],

aggregations change the Hamming weight, so that 𝒞 is 𝐻-irreducible.

Definition 3.2.15. Let C = (𝒞 ′; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 be a 𝑃 -decomposition of an [𝑛, 𝑘, 𝛿]𝑞 code 𝒞.

The profile of C is the array

profile (C ) := [(𝑛0, 𝑘0) , (𝑛1, 𝑘1) , . . . , (𝑛𝑟, 𝑘𝑟)] ,

where

𝑛𝑖 = |𝑠𝑢𝑝𝑝 (𝒞𝑖)| and 𝑘𝑖 = 𝑑𝑖𝑚 (𝒞𝑖) .

Observe that |𝑠𝑢𝑝𝑝(𝒞𝑖)|= 𝑑𝑖𝑚(𝑉𝑖), then 𝑛 = 𝑛0 + 𝑛1 + · · · + 𝑛𝑟 and 𝑘 = 𝑘1 +

𝑘2 + · · ·+𝑘𝑟. The following theorem states that the profile of a maximal 𝑃 -decomposition

C of a code 𝒞 depends (essentially) exclusively on 𝒞, not on C .

Theorem 3.2.16. Let 𝒞 be an [𝑛, 𝑘, 𝛿]𝑞 code and let 𝑃 be a poset over [𝑛]. Let C ′ and

C ′′ be two maximal 𝑃 -decompositions of 𝒞 with

profile (C ′) = [(𝑛′
0, 𝑘 ′

0) , (𝑛′
1, 𝑘′

1) , . . . , (𝑛′
𝑟, 𝑘′

𝑟)]

and

profile (C ′′) = [(𝑛′′
0, 𝑘′′

0) , (𝑛′′
1, 𝑘′′

1) , . . . , (𝑛′′
𝑠 , 𝑘′′

𝑠 )] .

Then, 𝑟 = 𝑠 and, up to a permutation, profile (C ′) = profile (C ′′), i.e., there is 𝜎 ∈ 𝒮𝑟

such that (𝑛′
𝑖, 𝑘′

𝑖) = (𝑛′′
𝜎(𝑖), 𝑘′′

𝜎(𝑖)) and (𝑛′
0, 𝑘 ′

0) = (𝑛′′
0, 𝑘′′

0).
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Proof. Let C ′ = (𝒞 ′; 𝒞 ′
0; 𝒞 ′

𝑖)
𝑟
𝑖=1 and C ′′ = (𝒞 ′′; 𝒞 ′′

0 ; 𝒞 ′′
𝑖 )𝑠

𝑖=1 be two maximal 𝑃 -decompositions

of 𝒞. Suppose, without loss of generality, 𝑟 < 𝑠. If 𝑇 ∈ 𝐺𝐿𝑃 (F𝑛
𝑞 ) is an isometry satisfying

𝑇 (𝒞 ′) = 𝒞 ′′, there is a component 𝒞 ′
𝑖 of C ′ such that 𝑇 (𝒞 ′

𝑖) is not contained in any

component 𝒞 ′′
𝑗 of C ′′, otherwise 𝑟 ≥ 𝑠. Hence, there are components 𝒞 ′

𝑖0 of C ′ and

𝒞 ′′
𝑗0 , 𝒞 ′′

𝑗1 , . . . , 𝒞 ′′
𝑗𝑡

of C ′′ such that

𝑇
(︁
𝒞 ′

𝑖0

)︁
⊂ 𝒞 ′′

𝑗0 ⊕ 𝒞 ′′
𝑗1 ⊕ · · · ⊕ 𝒞 ′′

𝑗𝑡

and 𝑇
(︁
𝒞 ′

𝑖0

)︁
∩ 𝒞 ′′

𝑗𝑙
̸= ∅ for any 𝑙 ∈ {1, . . . , 𝑡}. Therefore,

𝑇
(︁
𝒞 ′

𝑖0

)︁
=

𝑡⨁︁
𝑚=0

𝑇
(︁
𝒞 ′

𝑖0

)︁
∩ 𝒞 ′′

𝑗𝑚

is a non-trivial 𝑃 -decomposition for 𝒞 ′
𝑖0 , contradicting the fact that each component of

a maximal 𝑃 -decomposition is 𝑃 -irreducible. It follows that 𝑟 = 𝑠. Moreover, for every

𝑖 ∈ {1, . . . , 𝑟} there is 𝑗𝑖 such that 𝑇 (𝒞 ′
𝑖) ⊆ 𝒞 ′′

𝑗𝑖
. Hence, 𝑛′

𝑖 ≤ 𝑛′′
𝑗𝑖

and 𝑘′
𝑖 ≤ 𝑘′′

𝑗𝑖
. Applying

the same reasoning to 𝑇 −1 ∈ 𝐺𝐿𝑃 (F𝑛
𝑞 ), we get that 𝑛′′

𝑖 ≤ 𝑛′
𝑗𝑖

and 𝑘′′
𝑖 ≤ 𝑘′

𝑗𝑖
, hence 𝑛′

𝑖 = 𝑛′′
𝑗𝑖

and 𝑘′
𝑖 = 𝑘′′

𝑗𝑖
, so that, up to a permutation, profile (C ′) = profile (C ′′).

The next Corollary follows straight from Theorem 3.2.16.

Corollary 3.2.17. Let C ′ = (𝒞 ′; 𝒞 ′
0; 𝒞 ′

𝑖)
𝑟
𝑖=1 and C ′′ = (𝒞 ′′; 𝒞 ′′

0 ; 𝒞 ′′
𝑖 )𝑟

𝑖=1 be two maximal 𝑃 -

decompositions of 𝒞 and let 𝑇 ∈ 𝐺𝐿𝑃 (F𝑛
𝑞 ) be a linear isometry such that 𝑇 (𝒞 ′) = 𝒞 ′′.

Then, there is a permutation 𝜎 ∈ 𝒮𝑟 such that 𝑇 (𝒞 ′
𝑖) = 𝒞 ′′

𝜎(𝑖).

To express the amount of operations (splitting and aggregations) performed in

a decomposition, we will define the complexity of a decomposition (do not confuse with

the computational complexity of problems).

Definition 3.2.18. Given a 𝑃 -decomposition C = (𝒞 ′; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 of 𝒞, its complexity is

defined by

𝒪𝑃 (C ) = 1
𝑟

+
𝑟∑︁

𝑖=1
𝑛𝑖 − 𝑘𝑖,

where 𝑛𝑖 = 𝑑𝑖𝑚(𝑉𝑖) (the dimension of the support-space of 𝒞𝑖) and 𝑘𝑖 = 𝑑𝑖𝑚(𝒞𝑖) for

every 1 ≤ 𝑖 ≤ 𝑟. A 𝑃 -decomposition with minimum complexity is called primary 𝑃 -

decomposition.
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Note that the complexity of a 𝑃 -decomposition is completely determined by

its profile. Each aggregation decreases the complexity since some of the parcels 𝑛𝑖 − 𝑘𝑖 in

the summation decrease. A splitting also decreases the complexity since it increases the

number of components (the number 𝑟). By Theorem 3.2.16, maximal 𝑃 -decompositions

have the same complexity. Thus, the minimum complexity of a decomposition of a code

𝒞 will be denoted by 𝒪(𝒞) instead of 𝒪(C ). It is straightforward that aggregations and

splittings decrease the complexity of a 𝑃 -decomposition; actually, if C ′ is a refinement of

C , then 𝒪𝑃 (C ′) < 𝒪𝑃 (C ). Therefore, we have the following proposition.

Proposition 3.2.19. A 𝑃 -decomposition of a code 𝒞 is maximal if, and only if, it is a

primary 𝑃 -decomposition.

The permutation part 𝒜𝑢𝑡(𝑃 ) of 𝐺𝐿𝑃 (F𝑛
𝑞 ) does not alter the complexity of a

decomposition, hence it is irrelevant regarding maximality of 𝑃 -decompositions.

Lemma 3.2.20. Let C = (𝒞 ′; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 be a maximal 𝑃 -decomposition of 𝒞. Let 𝜑 ∈

𝐴𝑢𝑡 (𝑃 ) and 𝑇𝜑 ∈ 𝒜𝑢𝑡(𝑃 ) be the isometry induced by 𝜑. Then,

C ′ = (𝑇𝜑 (𝒞 ′) ; 𝑇𝜑 (𝒞0) ; 𝑇𝜑 (𝒞𝑖))𝑟

𝑖=1

is also a maximal 𝑃 -decomposition of 𝒞.

Proof. Because 𝜑 is a permutation, for every 𝑖 ∈ {0, 1, . . . , 𝑟},

𝑗 ∈ 𝑠𝑢𝑝𝑝(𝒞𝑖) ⇐⇒ 𝜑(𝑗) ∈ 𝑠𝑢𝑝𝑝(𝑇𝜑(𝒞𝑖)).

Hence, C ′ is a 𝑃 -decomposition of 𝒞. Since its profile coincides with the profile of C , C ′

is also a maximal 𝑃 -decomposition of 𝒞.

We recall that the set 𝒫𝑛 of all posets over [𝑛] is itself a partially ordered set.

Maximal 𝑃 -decompositions “behaves well” according to this order in the following way:

Theorem 3.2.21. Let 𝑃, 𝑄 ∈ 𝒫𝑛 with 𝑃 ≤ 𝑄. Given a code 𝒞, there is a maximal

𝑃 -decomposition of 𝒞 which is also a 𝑄-decomposition of 𝒞.

Proof. Assume 𝑃, 𝑄 ∈ 𝒫𝑛 and 𝑃 < 𝑄. Let C ′ = (𝒞 ′; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 be a maximal 𝑃 -

decomposition of 𝒞 and 𝑇 ∈ 𝐺𝐿𝑃 (F𝑛
𝑞 ) such that 𝑇 (𝒞) = 𝒞 ′. By the characterization
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of 𝐺𝐿𝑃 (F𝑛
𝑞 ), 𝑇 = 𝐴 ∘ 𝑇𝜑 where 𝐴 ∈ 𝒢𝑃 and 𝑇𝜑 ∈ 𝒜𝑢𝑡(𝑃 ). From Lemma 3.2.20, we have

that

C ′′ = (𝑇𝜑−1 (𝒞 ′) ; 𝑇𝜑−1 (𝒞0) ; 𝑇𝜑−1 (𝒞𝑖))𝑟

𝑖=1

is also a maximal 𝑃 -decomposition of 𝒞. However 𝑇𝜑−1 (𝒞 ′) = 𝑇𝜑−1 ∘ 𝑇 (𝒞), hence

𝑇𝜑−1 (𝒞 ′) = 𝑇𝜑−1 ∘ 𝐴 ∘ 𝑇𝜑(𝒞).

We stress that 𝒢𝑃 ⊂ 𝒢𝑄 always that 𝑃 ≤ 𝑄. Because 𝒢𝑃 is a normal subgroup of

𝐺𝐿𝑃 (F𝑛
𝑞 ), it follows that 𝑇𝜑−1 ∘ 𝐴 ∘ 𝑇𝜑 ∈ 𝒢𝑃 , hence 𝑇𝜑−1 ∘ 𝐴 ∘ 𝑇𝜑 ∈ 𝒢𝑄. Therefore, C ′′ is

a 𝑄-decomposition of 𝒞.

As a direct consequence of the previous theorem, we obtain a relation among

primary decompositions of posets and the natural order over 𝒫𝑛.

Corollary 3.2.22. Let 𝑃, 𝑄 ∈ 𝒫𝑛 with 𝑃 ≤ 𝑄. Then, 𝒪𝑄(𝒞) ≤ 𝒪𝑃 (𝒞) for every linear

code 𝒞.

Concerning primary 𝑃 -decompositions, there is always a code that it is differ-

ently decomposed depending on the poset, indeed:

Proposition 3.2.23. Let 𝑃, 𝑄 ∈ 𝒫𝑛 with 𝑃 < 𝑄. Then, there is a code 𝒞 such that

𝒪𝑄(𝒞) < 𝒪𝑃 (𝒞).

Proof. Let us suppose 𝑃 < 𝑃1 ≤ 𝑄 and that 𝑃1 covers 𝑃 . Then, there are 𝑖0, 𝑗0 ∈ [𝑛]

such that

𝑖0 
𝑃 𝑗0 and 𝑖0 6𝑃1 𝑗0.

Let 𝒞 be the one-dimensional code generated by 𝑒𝑖0 +𝑒𝑗0 and let 𝒞 ′ be the one-dimensional

code generated by 𝑒𝑗0 . The linear map 𝑇 defined by 𝑇 (𝑒𝑗) = 𝑒𝑗 for every 𝑗 ∈ [𝑛] ∖ {𝑖0, 𝑗0},

𝑇 (𝑒𝑖0) = 𝑒𝑖0 and 𝑇 (𝑒𝑗0) = 𝑒𝑗0 − 𝑒𝑖0 , is a 𝑃1-linear isometry by the characterization of

𝐺𝐿𝑃 (F𝑛
𝑞 ) given in Lemma 2.3.6. Therefore, the 𝑃1-decomposition C = (𝒞 ′; 𝒞 ′

0; ⟨𝑒𝑗0⟩) of 𝒞

is a primary 𝑃1-decomposition. We note that 𝒞 ′
0 = F𝑛

𝑞 ∖ ⟨𝑒𝑗0⟩ and therefore, 𝒪𝑃1(𝒞) = 1.

On the other hand, we claim that C ′ = (𝒞; 𝒞0; 𝒞), where 𝒞0 = ⊕𝑖 ̸=𝑖0,𝑗0𝑉𝑖, is

a 𝑃 -primary decomposition of 𝒞. Indeed, suppose, for a contradiction that C ′ is not
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a 𝑃 -primary decomposition, the only way to refine it would be by constructing a 1-

dimensional code 𝒞 ′′ with |𝑠𝑢𝑝𝑝 (𝒞 ′′)| = 1 and 𝒞 ′′ ∼𝑃 𝒞. Hence, 𝒞 ′′ would be generated by

a canonical vector 𝑒𝑑 for some 𝑑 ∈ [𝑛]. However, each 𝑇 ∈ 𝐺𝐿𝑃 (F𝑛
𝑞 ) determines an order

automorphism 𝜑𝑇 ∈ 𝐴𝑢𝑡 (𝑃 ) as in Lemma 2.3.5. Suppose 𝑇 ∈ 𝐺𝐿𝑃 (F𝑛
𝑞 ) and 𝑇 (𝒞) = 𝒞 ′′,

therefore 𝑇 (𝑒𝑖0 + 𝑒𝑗0) = 𝑒𝑑 for some 𝑑 ∈ [𝑛]. Considering 𝑆 = 𝑇 −1, it follows that

𝑀𝑎𝑥(⟨𝑠𝑢𝑝𝑝(𝑆(𝑒𝑑))⟩𝑃 ) = {𝑖0, 𝑗0}, which is a contradiction since 𝑆 does not determine an

order automorphism as in Lemma 2.3.5. Thus, such isometry does not exist. Therefore,

C ′ is a primary 𝑃 -decomposition for 𝒞 and

1 = 𝒪𝑃1(𝒞) < 𝒪𝑃 (𝒞) = 2. (3.1)

Since 𝑃1 ≤ 𝑄, Corollary 3.2.22 ensures that

𝒪𝑄(𝒞) ≤ 𝒪𝑃1(𝒞). (3.2)

Inequalities 3.1 and 3.2 imply 𝒪𝑄(𝒞) < 𝒪𝑃 (𝒞).

We remark that Corollary 3.2.22 together with Proposition 3.2.23 implies that

primary decomposition is a characterization of posets, in the sense that a given poset

𝑃 may be reconstructed from the profile of codes according to 𝑃 . Moreover, looking at

the proof of Proposition 3.2.23, one may notice that the reconstruction can be done by

considering only the 𝑛(𝑛 − 1)/2 pairs of vectors (𝑒𝑖, 𝑒𝑗).

3.2.1 Hierarchical Bounds

Hierarchical poset metrics are well understood. In particular, if 𝑃 is a hier-

archical poset, the profile of a primary 𝑃 -decomposition of a code 𝒞 is uniquely (and

easily) determined by the weight hierarchy of the code. Moreover, as we can see in [30],

this property is exclusive of hierarchical posets. For this reason, when considering a

general poset 𝑃 , we aim to establish bounds for 𝒪𝑃 (𝒞) considering the easy-to-compute

primary 𝑃 -decompositions relatively to hierarchical posets. In the next section, we will

characterize the generator matrices that determine maximal 𝑃 -decompositions providing

an algorithm to obtain these matrices. But the complexity to determine these matrices

will not be discussed.
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We say that a poset 𝑃 is hierarchical at level 𝑖 if levels Γ𝑖
𝑃 and Γ𝑗

𝑃 relate

hierarchically for every 𝑗 ∈ {1, . . . , 𝑖 − 1}, i.e., if 𝑎 ∈ Γ𝑗
𝑃 for some 𝑗 ∈ {1, . . . , 𝑖 − 1} and

𝑏 ∈ Γ𝑖
𝑃 then 𝑎 6 𝑏. Let

ℋ (𝑃 ) = {𝑖 ∈ [𝑟] : 𝑃 is hierarchical at 𝑖} .

It is clear that 𝑃 is hierarchical if, and only if, ℋ (𝑃 ) = [𝑟].

We stress that for every integers 𝑎 and 𝑏 with 𝑎 < 𝑏, the notation [𝑎, 𝑏] denotes

the set {𝑎, 𝑎 + 1, . . . , 𝑏}. Given a poset 𝑃 with height 𝑟, then:

(1) Consider

𝑠1 = min{𝑖 ∈ [𝑟] : 𝑃 is not hierarchical at level 𝑖 + 1}

and

𝑠2 = min{𝑖 ∈ [𝑟] : 𝑖 > 𝑠1 and 𝑃 is hierarchical at level 𝑖 + 1}.

Denote

𝐽𝑖 = [𝑛1 + · · · + 𝑛𝑖−1 + 1, 𝑛1 + · · · + 𝑛𝑖]

for every 1 ≤ 𝑖 < 𝑠1 and

𝐽𝑠1 = [𝑛1 + · · · + 𝑛𝑠1−1 + 1, 𝑛1 + · · · + 𝑛𝑠2 ].

(2) Consider

𝑠3 = min{𝑖 ∈ [𝑟] : 𝑖 > 𝑠2 and 𝑃 is not hierarchical at level 𝑖 + 1}

and

𝑠4 = min{𝑖 ∈ [𝑟] : 𝑖 > 𝑠3 and 𝑃 is hierarchical at level 𝑖 + 1}.

Thus, denote

𝐽𝑠1+𝑖 = [𝑛1 + · · · + 𝑛𝑠2+𝑖−1 + 1, 𝑛1 + · · · + 𝑛𝑠2+𝑖]

for every 𝑖 ≥ 1 satisfying 𝑠2 + 𝑖 < 𝑠3 and

𝐽𝑠1+(𝑠3−𝑠2) = [𝑛1 + · · · + 𝑛𝑠3−1 + 1, 𝑛1 + · · · + 𝑛𝑠4 ].



68

(3) Consider

𝑠5 = min{𝑖 ∈ [𝑟] : 𝑖 > 𝑠4 and 𝑃 is not hierarchical at level 𝑖 + 1}

and

𝑠6 = min{𝑖 ∈ [𝑟] : 𝑖 > 𝑠5 and 𝑃 is hierarchical at level 𝑖 + 1}.

Therefore,

𝐽𝑠1+(𝑠3−𝑠2)+𝑖 = [𝑛1 + · · · + 𝑛𝑠4+𝑖−1 + 1, 𝑛1 + · · · + 𝑛𝑠4+𝑖]

for every 𝑖 ≥ 1 satisfying 𝑠4 + 𝑖 < 𝑠5 and

𝐽𝑠1+(𝑠3−𝑠2)+(𝑠5−𝑠4) = [𝑛1 + · · · + 𝑛𝑠5−1 + 1, 𝑛1 + · · · + 𝑛𝑠6 ].

Proceeding in this way, we construct a partition of [𝑛] given by 𝐽1 ∪ . . . ∪ 𝐽ℎ for some

ℎ. An arbitrary iteration of the process can be described as follows. (General Case)

Consider 𝑡 to be an odd integer, then

𝑠𝑡 = min{𝑖 ∈ [𝑟] : 𝑖 > 𝑠𝑡−1 and 𝑃 is not hierarchical at level 𝑖 + 1}

and,

𝑠𝑡+1 = min{𝑖 ∈ [𝑟] : 𝑖 > 𝑠𝑡 and 𝑃 is hierarchical at level 𝑖 + 1}.

Furthermore,

𝐽𝑠1+(𝑠3−𝑠2)+···+(𝑠2𝑡−1−𝑠2𝑡−2) = [𝑛1 + · · · + 𝑛𝑠2𝑡−1−1 + 1, 𝑛1 + · · · + 𝑛2𝑡]

and

𝐽𝑠1+(𝑠3−𝑠2)+···+(𝑠2𝑡−1−𝑠2𝑡−2)+𝑖 = [𝑛1 + · · · + 𝑛𝑠2𝑡+𝑖−1 + 1, 𝑛1 + · · · + 𝑛2𝑡+𝑖].

Therefore, out of 𝑃 we can define two hierarchical posets:

Upper neighbor: Let 𝑃 + be the poset over [𝑛] with the same level decom-

position of 𝑃 and for every 𝑎 ∈ Γ𝑖
𝑃 and 𝑏 ∈ Γ𝑗

𝑃 with 𝑎 ̸= 𝑏, define 𝑎 6𝑃 + 𝑏 if, and only if,

𝑖 < 𝑗.

Lower neighbor: Let 𝑃 − be the poset over [𝑛] with level hierarchy [𝑛] =

𝐽1 ∪ 𝐽2 ∪ . . . ∪ 𝐽ℎ and for 𝑎 ∈ Γ𝑖
𝑃 and 𝑏 ∈ Γ𝑗

𝑃 with 𝑎 ̸= 𝑏, we have 𝑎 6𝑃 − 𝑏 if, and only if,
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𝑖 < 𝑗.

In order to clarify the definitions of the upper and lower neighbors, we shall

present an illustrative example.

Example 3.2.24. Let 𝑃 be a poset with 4 levels. Suppose ℋ(𝑃 ) = {1, 2, 4}. Consider

the simplified Hasse diagram representing whether the poset is hierarchical at a particular

level or not: if two consecutive levels are joined by a dotted line, then the poset is not

hierarchical at the level above the other; if two consecutive levels are joined by a line,

then the poset is hierarchical at the level above. Therefore, the diagrams of 𝑃 −, 𝑃 and

𝑃 + are as follows:

P+P

P−
Γ1
P

Γ2
P

Γ3
P

Γ4
P

Γ1
P

Γ1
P Γ2

P

Γ2
P

Γ3
P

Γ3
P

Γ4
P

Γ4
P

We stress that Γ2
𝑃 − = Γ2

𝑃 ∪ Γ3
𝑃 ∪ Γ4

𝑃 since the smallest level where 𝑃 is hierarchical at this

level is the third one. Hence, in order to construct 𝑃 −, all levels of 𝑃 above the level 2

are gathered in the second level of 𝑃 −.

It is easy to see that:

(a) 𝑃 + and 𝑃 − are hierarchical posets and 𝑃 is hierarchical if, and only if, 𝑃 = 𝑃 + =

𝑃 −;

(b) Considering the natural order ≤ on 𝒫𝑛, we have that 𝑃 − ≤ 𝑃 ≤ 𝑃 +. Moreover,

𝑃 − = max {𝑄 ∈ 𝒫𝑛 : 𝑄 ≤ 𝑃 and 𝑄 is hierarchical}

and

𝑃 + = min {𝑄 ∈ 𝒫𝑛 : 𝑃 ≤ 𝑄 and 𝑄 is hierarchical} .

The next proposition follows directly from Corollary 3.2.22.
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Proposition 3.2.25. For any linear code 𝒞,

𝒪𝑃 + (𝒞) ≤ 𝒪𝑃 (𝒞) ≤ 𝒪𝑃 − (𝒞) .

Example 3.2.26. Consider the posets of Example 3.2.10 and denote 𝑃 = 𝑃3, then

𝑃 + = 𝑃1 and 𝑃 − = 𝑃2. Furthermore, using the decompositions in that example (which

are maximal), we conclude that

𝒪𝑃 +(𝒞) = 1/2, 𝒪𝑃 (𝒞) = 2 and 𝒪𝑃 −(𝒞) = 3.

If 𝑃 is not hierarchical, both inequalities are strict for some code 𝒞. Moreover,

the bounds are tight, in the sense that, given a poset 𝑃 , there are codes 𝒞1 and 𝒞2

such that 𝒪𝑃 + (𝒞1) = 𝒪𝑃 (𝒞1) and 𝒪𝑃 − (𝒞2) = 𝒪𝑃 (𝒞2) (just consider any code 𝒞 with

𝑠𝑢𝑝𝑝(𝒞) ⊂ Γ1
𝑃 ).

3.2.2 Packing Radius Bounds

Maximal 𝑃 -decompositions may be useful to determine bounds for the packing

radius of a code. We remark that the packing radius of codes according to hierarchical

metrics was completely characterized in Proposition 2.3.12 and it depends essentially on

the minimum distance of the code, see [30]. We also remark that for non-hierarchical

metrics, the complexity to determine the packing radius of a single vector is NP-hard (see

[12]) and the packing vector is not necessarily a vector with minimum distance.

Proposition 3.2.27. Let C = (𝒞 ′; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 be a 𝑃 -decomposition for 𝒞. Then,

ℛ𝑃 (𝒞) ≤ min
𝑖∈{1,...,𝑟}

ℛ𝑃 (𝒞𝑖).

Proof. Note that ℛ𝑃 (𝒞) = ℛ𝑃 (𝒞 ′). Furthermore, since each 𝒞𝑖 is a subcode of 𝒞 ′, it

follows that ℛ𝑃 (𝒞) ≤ ℛ𝑃 (𝒞𝑖) for every 𝑖 ∈ {1, . . . , 𝑟}.

Proposition 3.2.28. If 𝑃 ≤ 𝑄, then ℛ𝑃 (𝒞) ≤ ℛ𝑄(𝒞) for every linear code 𝒞.

Proof. If follows directly from the fact that

𝐵𝑄(𝑟, 𝑐) ∩ 𝐵𝑄(𝑟, 0) ⊂ 𝐵𝑃 (𝑟, 𝑐) ∩ 𝐵𝑃 (𝑟, 0)
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for every 𝑐 ∈ 𝒞 and any integer 𝑟 ≥ 0.

Consider the projections 𝜋𝑖 : F𝑛
𝑞 −→ F𝑛𝑖

𝑞 (note that 𝑛𝑖 = |𝑠𝑢𝑝𝑝(𝒞𝑖)|) defined by

𝜋𝑖(𝑥1, . . . , 𝑥𝑛) = (𝑥𝑖1 , . . . , 𝑥𝑖𝑠)

where 𝑖1 < · · · < 𝑖𝑠 and {𝑖1, . . . , 𝑖𝑠} = 𝑠𝑢𝑝𝑝(𝒞𝑖). Consider on F𝑛𝑖
𝑞 the metric 𝑑𝜋𝑖

induced

by 𝜋𝑖 in the sense that 𝜋𝑖 : 𝑉𝑖 → F𝑛𝑖
𝑞 is an isometry. Then, by the definition of 𝑑𝜋𝑖

,

ℛ𝑃 (𝒞𝑖) = ℛ𝑑𝜋𝑖
(𝜋𝑖(𝒞𝑖)). (3.3)

Using Proposition 3.2.28 and the upper and lower neighbors 𝑃 + and 𝑃 − defined in the

previous section, bounds for the packing radius of codes according to hierarchical posets

may be obtained.

Proposition 3.2.29. Given a maximal 𝑃 -decomposition C = (𝒞 ′; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 for 𝒞,

ℛ𝑃 −(𝒞𝑖) ≤ ℛ𝑃 (𝒞𝑖) ≤ ℛ𝑃 +(𝒞𝑖)

for every 𝑖 ∈ {1, . . . , 𝑟}.

Propositions 3.2.27 and 3.2.29 yield the following upper and lower bounds for

the packing radius:

ℛ𝑃 (𝒞) ≤ min
𝑖∈{1,...,𝑟}

ℛ𝑃 +(𝒞𝑖) (3.4)

for every 𝑖 ∈ {1, . . . , 𝑟}.

Since 𝑃 + and 𝑃 − are hierarchical, these bounds are obtained just by finding

the minimum distance of each code 𝒞𝑖. If 𝑃 is hierarchical, the bounds obtained in

Proposition 3.2.29 and in Inequality (3.4) are tight.

3.2.3 Construction of Maximal P-Decompositions

In order to find maximal 𝑃 -decompositions of a code 𝒞, we need to find codes

that are equivalent to 𝒞 and verify if one of theirs maximal decompositions is a refinement

of the given maximal decomposition of 𝒞. To do so, we will provide a construction

that outputs a generator matrix of a code 𝒞 ′ ∼𝑃 𝒞, which determines a maximal 𝑃 -

decomposition of 𝒞.
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Given a poset 𝑃 over [𝑛] and an [𝑛, 𝑘, 𝛿]𝑞 code 𝒞, let 𝐺 = (𝑔𝑖𝑗) be a 𝑘 × 𝑛

generating matrix of 𝒞. As we have already noted, we lose no generality by assuming that

𝐺 is in a reduced row echelon form, obtained by elementary operations on rows. In order

to obtain a maximal 𝑃 -decomposition, we need to change the classical definition of the

reduced row echelon form. For each 𝑖, let

𝑗 (𝑖) = max {𝑗 : 𝑔𝑖𝑗 ̸= 0}

be the right-most non-zero column of the 𝑖-th row of 𝐺. Performing elementary row

operations on 𝐺, we may assume that

𝑗(1) > 𝑗(2) > · · · > 𝑗(𝑘) and 𝑔𝑖𝑗(𝑙) = 0 if 𝑖 ̸= 𝑙. (3.5)

We say that 𝐺 is in reduced row echelon form if the entries of 𝐺 satisfy 3.5. From now on,

we assumed that generator matrices have this form. In order to clarify the difference of

the proposed reduced row echelon form and the classical one, we present the next example.

Example 3.2.30. Let

𝐺 =

⎡⎢⎢⎢⎢⎢⎣
1 0 1 1 0

1 1 0 1 1

0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎦
be a generator matrix for a [5, 3, 1]2 𝑑𝐻-code 𝒞. Then,

𝐺1 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0

0 1 0 1 1

0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎦ and 𝐺2 =

⎡⎢⎢⎢⎢⎢⎣
0 1 1 0 1

0 0 1 1 0

1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
where 𝐺1 was obtained by the classical construction of reduced row echelon form and 𝐺2

was obtained by the proposed form. Note that

(a) if 𝑗′(𝑖) = 𝑚𝑖𝑛{𝑗 : 𝑔𝑖𝑗 ̸= 0}. Considering 𝐺1 we get that

𝑗′(1) = 1, 𝑗′(2) = 2 and 𝑗′(3) = 3, hence 𝑗′(1) < 𝑗′(2) < 𝑗′(3);
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(b) on the other hand, considering 𝐺2,

𝑗(1) = 5, 𝑗(2) = 4 and 𝑗(3) = 1, hence 𝑗(1) > 𝑗(2) > 𝑗(3).

A generator matrix 𝐺 determines a unique decomposition of 𝒞 in the following

sense:

Construction of C :

Suppose 𝛽1 = {𝑣1, . . . , 𝑣𝑘} is the set of all rows of 𝐺 and 𝐼 ⊂ [𝑛] is the index

set of the null columns of 𝐺. Then, define

𝒞0 = {𝑣 ∈ F𝑛
𝑞 : 𝑣 =

∑︁
𝑖∈𝐼

𝑥𝑖𝑒𝑖}.

Take 𝑤1 ∈ 𝛽1 and let 𝛾1 = {𝑣𝑖1 , . . . , 𝑣𝑖𝑟} ⊂ 𝛽1 be the set of all rows of 𝐺 such that, if

𝑣 ∈ 𝛾1, then 𝑠𝑢𝑝𝑝(𝑤1) ∩ 𝑠𝑢𝑝𝑝(𝑣) ̸= ∅. Denote

𝒞1 = {𝑐 ∈ 𝒞 : 𝑐 =
𝑟∑︁

𝑗=1
𝑥𝑖𝑣𝑖𝑗

}.

Take 𝛽2 = 𝛽1∖𝛾1, if it is empty, the matrix 𝐺 has determined the decomposition (𝒞; 𝒞0; 𝒞1).

If 𝛽2 ̸= ∅, take 𝑤2 ∈ 𝛽2 and 𝛾2 = {𝑣𝑖1 , . . . , 𝑣𝑖𝑠} ⊂ 𝛽2 defined by the elements of 𝛽2 whose

support intercepts the support of 𝑤2 and define

𝒞2 =
⎧⎨⎩𝑐 ∈ 𝒞 : 𝑐 =

𝑠∑︁
𝑗=1

𝑥𝑖𝑣𝑖𝑗

⎫⎬⎭ .

Proceeding this way, at some point, 𝛽𝑟+1 = ∅ and 𝛽𝑟 ̸= ∅ for some 𝑟. Then, C =

(𝒞; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 determines a decomposition of 𝒞. It is clear that the choice of 𝑤𝑖 does not in-

terfere in the construction of the decomposition, therefore, the decomposition constructed

is unique, up to a permutation of its components.

Example 3.2.31. Considering the generator matrix 𝐺 given in Example 3.2.30, it follows

that the decomposition determined by 𝐺 is the trivial one (𝒞; ∅; 𝒞) since every two rows

of 𝐺 have intersection in their supports. On the other hand, the decomposition obtained

by the matrix 𝐺2 is not trivial, indeed, the third row has disjoint support from the first
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and second rows, therefore, if

𝒞1 = {00000, 01101, 00110, 01011}

and

𝒞2 = {00000, 10000}.

The decomposition (𝒞; ∅; 𝒞𝑖)2
𝑖=1 is the one determined by 𝐺2.

A generator matrix 𝐺 is said to be in the generalized reduced row echelon form

if there is a permutation in the rows of 𝐺 such that the resultant matrix is in a reduced

row echelon form.

Proposition 3.2.32. Let 𝒞 be an [𝑛, 𝑘, 𝛿]𝑞 code. If 𝐺 is a generator matrix for 𝒞 in a

generalized reduced row echelon form, then 𝐺 determines a maximal decomposition for

𝒞.

Proof. Let 𝐺 be a generator matrix for 𝒞 in a generalized reduced row echelon form.

Without loss of generality, we will assume that the decomposition determined by 𝐺 (as

in the construction previously presented) has only one component, i.e., C = (𝒞; 𝒞0; 𝒞).

Suppose, for contradiction, there is a refinement for C .

Claim 1: Aggregations are not allowed: if 𝑖0 ∈ 𝑠𝑢𝑝𝑝(𝒞), every basis of 𝒞 would have an

element 𝑣 such that 𝑖0 ∈ 𝑠𝑢𝑝𝑝(𝑣) but 𝑠𝑢𝑝𝑝(𝒞0) is the set of null columns of 𝐺.

Claim 2: Splittings are not allowed: Suppose there is a splitting for C , in other words,

suppose there is a decomposition C ′ = (𝒞; 𝒞0; 𝒞𝑖)2
𝑖=1. Thus, 𝒞 = 𝒞1 ⊕ 𝒞2 with 𝑠𝑢𝑝𝑝(𝒞1) ∩

𝑠𝑢𝑝𝑝(𝒞2) = ∅. Let 𝑤1, . . . , 𝑤𝑘1 be a basis for 𝒞1 and 𝑤𝑘1+1, . . . , 𝑤𝑘 be a basis for 𝒞2.

The 𝑘 × 𝑛 matrix 𝐺1 having 𝑤1, . . . , 𝑤𝑘 as its rows, is a generator matrix for 𝒞 and its

decomposition coincides with C ′. Then, 𝐴𝐺 = 𝐺1 for some 𝑘 × 𝑘 matrix 𝐴, i.e., each

row of 𝐺1 is a linear combination of rows of 𝐺. Let 𝛽1 be the minimum set of rows of 𝐺

generating 𝑤1, . . . , 𝑤𝑘1 , i.e., for every 1 ≤ 𝑖 ≤ 𝑘1,

𝑤𝑖 =
∑︁

𝑣∈𝛽1

𝑥𝑖
𝑣𝑣

where 𝑥𝑖
𝑣 ∈ F𝑞 and there is no 𝑖 such that 𝑥𝑖

𝑣 = 0 for every 𝑣 ∈ 𝛽1. Let 𝛽2 be the minimum
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set of rows of 𝐺 generating 𝑤𝑘1+1, . . . , 𝑤𝑘, i.e.,

𝑤𝑖 =
∑︁

𝑣∈𝛽2

𝑥𝑖
𝑣𝑣

for every 𝑘1 + 1 ≤ 𝑖 ≤ 𝑘 and there is no 𝑖 such that 𝑥𝑖
𝑣 = 0 for every 𝑣 ∈ 𝛽2. Suppose

𝑣0 ∈ 𝛽1 ∩ 𝛽2. Since 𝐺 is in a reduced row form, there is a coordinate 𝑖0 of 𝑣0 such that

it is the only non-null entry of the 𝑖0-th column of 𝐺. Then, there exist 1 ≤ 𝑗1 ≤ 𝑘1 and

𝑘1 + 1 ≤ 𝑗2 ≤ 𝑘 such that the coordinate 𝑖0 of both 𝑤𝑗1 and 𝑤𝑗2 are non-null, which is a

contradiction, therefore 𝛽1 ∩ 𝛽2 = ∅. By construction, 𝑠𝑢𝑝𝑝(𝛽1) ∩ 𝑠𝑢𝑝𝑝(𝛽2) ̸= ∅, otherwise

the decomposition defined by 𝐺 would be not trivial. Let 𝑖0 ∈ 𝑠𝑢𝑝𝑝(𝛽1) ∩ 𝑠𝑢𝑝𝑝(𝛽2),

then 𝑖0 ̸∈ 𝑠𝑢𝑝𝑝(𝒞0) and, supposing 𝑖0 ∈ 𝑠𝑢𝑝𝑝(𝒞2), it follows that 𝑖0 ̸∈ 𝑠𝑢𝑝𝑝(𝒞1). Since

𝑖0 ∈ 𝑠𝑢𝑝𝑝(𝛽1), there exists a row 𝑤 of 𝐺1 such that its coordinate 𝑖0 is non-null. Therefore,

𝑖0 ∈ 𝑠𝑢𝑝𝑝(𝒞1), which is a contradiction. Hence, the decomposition determined by 𝐺 does

not admits refinements, therefore, it is maximal.

The previous proposition ensures that each maximal decomposition is obtained

by taking a generator matrix in a generalized reduced row echelon form. In the follow-

ing, we will consider the triangular subgroup of isometries 𝒢𝑃 ⊆ 𝐺𝐿𝑃 (F𝑛
𝑞 ). By Lemma

3.2.20, these are the only isometries that matter when we are looking for maximal 𝑃 -

decompositions. By definition of 𝒢𝑃 , the following two operations over a generator matrix

𝐺 will provide matrices generating equivalent codes to the one generated by 𝐺:

(OP 1) If 𝑔𝑖0𝑗0 ̸= 0, 𝑔𝑖𝑗0 = 0 for every 𝑖 ̸= 𝑖0 (𝑔𝑖0𝑗0 is the only non-zero entry on the 𝑗0-th

column) and 𝑟 6 𝑗0 (𝑟 ̸= 𝑗0), we may assume 𝑔𝑖0𝑟 = 0;

This is equivalent to choosing the isometry 𝑇 ∈ 𝒢𝑃 such that 𝑇 (𝑒𝑗) = 𝑒𝑗 for every

𝑗 ̸= 𝑗0 and

𝑇 (𝑒𝑗0) = 𝑒𝑗0 − 𝑔𝑖0𝑟𝑔
−1
𝑖0𝑗0𝑒𝑟.

(OP 2) More generally, if 𝑟 6 𝑗1, 𝑗2, . . . , 𝑗𝑠 (𝑟 ̸= 𝑗𝑖 for every 𝑖) and there two rows 𝑖1 and 𝑖2

of 𝐺 such that 𝑔𝑖1𝑟 = ∑︀𝑠
𝑙=1 𝑥𝑙𝑔𝑖1𝑗𝑙

and 𝑔𝑖2𝑟 = ∑︀𝑠
𝑙=1 𝑥𝑙𝑔𝑖2𝑗𝑙

for some choice of 𝑥1, . . . , 𝑥𝑙,

and 𝑔𝑖𝑗𝑙
= 0 for every 𝑖 ̸= 𝑖1, 𝑖2 (𝑔𝑖1𝑗𝑘

and 𝑔𝑖2𝑗𝑘
are the only non-zero entry on the

𝑗𝑘-th column for every 𝑘 ∈ {1, . . . , 𝑠}), we may assume 𝑔𝑖1𝑟 = 𝑔𝑖2𝑟 = 0. Even more

generally, the procedure can be performed simultaneously to many lines, all those

entries may be considered to be 0. If the column 𝑟 is a linear combination of columns
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𝑗1, . . . , 𝑗𝑠, then one may exchange the column 𝑟 by the null column. Let {𝑔1, . . . , 𝑔𝑛}

be the set of columns of 𝐺 and suppose

𝑔𝑟 =
𝑠∑︁

𝑖=1
𝑥𝑖𝑔𝑗𝑖

.

Then, in order to perform the exchange of the 𝑟-th column of 𝐺 by a null column we

have to consider the isometry 𝑇 ∈ 𝒢𝑃 defined by 𝑇 (𝑒𝑖) = 𝑒𝑖 for every 𝑖 ̸∈ {𝑗1, . . . , 𝑗𝑠}

and

𝑇 (𝑒𝑗𝑖
) = 𝑒𝑗𝑖

− 𝑥𝑖𝑒𝑟

for every 𝑖 ∈ {1, . . . , 𝑠}.

Definition 3.2.33. Let 𝐺 be a generator matrix for an [𝑛, 𝑘, 𝛿]𝑞 code 𝒞. If 𝐺 is in a

generalized reduced row echelon form and no operations as defined in (1) and (2) can be

performed over 𝐺, we say that 𝐺 is in a 𝑃 -canonical form.

Example 3.2.34. Let 𝒞 be the [6, 3]2 code with generator matrix given by

𝐺 =

⎡⎢⎢⎢⎢⎢⎣
0 0 1 1 0 1

1 0 1 1 1 0

1 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ .

Consider the poset 𝑃1 with order relations 1 6 2 and 3 6 4. By using operations (OP 1)

and (OP 2) we get the following matrix in a 𝑃1-canonical form:

𝐺′ =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1 0 1

1 0 0 1 1 0

0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ .

Furthermore, if we consider 𝑃2 a poset such that 𝑃1 ⊂ 𝑃2 and 4 6 5, then using operation

(OP 1) we get

𝐺′′ =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1 0 1

1 0 0 0 1 0

0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ .

It is clear that 𝐺′′ is in a 𝑃2-canonical form. It is also clear that it determines a maximum

𝑃2-decomposition for 𝒞.
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In the following, given 𝑇 ∈ 𝒢𝑃 , denote by 𝐴𝑇 = (𝑎𝑖𝑗) ∈ 𝐺𝑃 its matrix according

to the canonical basis.

Theorem 3.2.35. Let 𝐺 be a generator matrix of a code 𝒞 and let C = (𝒞; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 be the

decomposition determined by 𝐺. Then, if 𝐺 is in a 𝑃 -canonical form, the decomposition

C is a maximum 𝑃 -decomposition of 𝒞.

Proof. We will first show that C does not admit aggregations. Suppose there is a 𝑃 -

decomposition C ′ determined by the linear isometry 𝑇 ∈ 𝒢𝑃 such that this decomposition

is obtained by an aggregation from C , i.e., C ′ = (𝑇 (𝒞); 𝒞 ′
0; 𝒞 ′

𝑖)𝑟
𝑖=1 and 𝜑𝑇 (𝑠𝑢𝑝𝑝(𝒞0)) ⊂

𝑠𝑢𝑝𝑝(𝒞 ′
0). Since 𝑇 ∈ 𝒢𝑃 , the map 𝜑𝑇 coincides with the identity map, therefore 𝑠𝑢𝑝𝑝(𝒞0) ⊂

𝑠𝑢𝑝𝑝(𝒞 ′
0). Consider the matrix 𝐺1 = (𝑔1

𝑖𝑗) which 𝑖-th row is obtained by the action of 𝑇

in the 𝑖-th row of 𝐺. Hence, 𝐺1 generates 𝑇 (𝒞). We remark that 𝐴𝑇 = (𝑎𝑖𝑗) ∈ 𝐺𝑃 is the

matrix obtained by 𝑇 . If 𝑖0 ∈ 𝑠𝑢𝑝𝑝(𝒞 ′
0) ∖ 𝑠𝑢𝑝𝑝(𝒞0), then 𝑖0 is a null column of 𝐺1 obtained

by the aggregation. The characterization of 𝐺𝑃 ensures that

0 = 𝑔1
𝑙𝑖0 =

∑︁
𝑗

𝑖06𝑗

𝑎𝑖0𝑗𝑔𝑙𝑗

for every 𝑙 ∈ {1, . . . , 𝑘}. Since 𝑎𝑖0𝑖0 ̸= 0, it follows that

𝑔𝑙𝑖0 =
∑︁

𝑗
𝑖06𝑗,𝑖0 ̸=𝑗

(︃
− 𝑎𝑖0𝑗

𝑎𝑖0𝑖0

)︃
𝑔𝑙𝑗 (3.6)

for every 𝑙 ∈ {1, . . . , 𝑘}. Since 𝐺 is in a 𝑃 -canonical form, 𝑖0 can not be a column 𝑗(𝑖)

for every 𝑖 ∈ {1, . . . , 𝑘}. Equation 3.6 together with Operation (2) ensures that the 𝑖0-th

column of 𝐺 is already null, so 𝑖0 ∈ 𝑠𝑢𝑝𝑝(𝒞0). Therefore, 𝑠𝑢𝑝𝑝(𝒞 ′
0) ⊂ 𝑠𝑢𝑝𝑝(𝒞0), so C ′ can

not be obtained by aggregations from C .

We now prove that C does not admit a splitting. To do so, we will assume,

without loss of generality, C = (𝒞; 𝒞0; 𝒞) is the decomposition determined by 𝐺. Let

𝑇 ∈ 𝒢𝑃 be the isometry determining the splitting for C and consider 𝐺1 as in the first

part of the proof. Hence, the rows of 𝐺1 can be split into two sets with disjoint support,

i.e., there exist two disjoint sets 𝐼1 and 𝐼2 formed by rows of 𝐺1 such that |𝐼1|= 𝑘1,

|𝐼2|= 𝑘2 and 𝑘1 + 𝑘2 = 𝑘. Therefore, 𝐼1 and 𝐼2 generate 𝒞1 and 𝒞2 respectively, and

C ′ = (𝑇 (𝒞); 𝒞0; 𝒞𝑖)2
𝑖=1 is the maximum decomposition determined by 𝐺1. Since the rows

of 𝐺 cannot be split in this form, let 𝑖0 be the right-most column of 𝐺 such that 𝑖0 belongs
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to the support of the first 𝑘1 and also of the last 𝑘2 rows of 𝐺. Since the support of the

subspaces generated by the first 𝑘1 and the last 𝑘2 rows of 𝐺1 respectively are disjoint

and 𝑖0 ̸∈ 𝑠𝑢𝑝𝑝(𝒞 ′
0) since 𝑖0 ̸∈ 𝑠𝑢𝑝𝑝(𝒞0), then 𝑖0 or belongs to the support of the first 𝑘1 or

of the last 𝑘2 rows of 𝐺1. Without loss of generality, suppose 𝑖0 belongs to the support of

the last 𝑘2 rows of 𝐺1. Therefore, if 𝑙 is an integer such that 0 ≤ 𝑙 ≤ 𝑘1, then

0 = 𝑔1
𝑙𝑖0 =

∑︁
𝑗

𝑖06𝑗

𝑎𝑖0𝑗𝑔𝑙𝑗.

Thus,

𝑔𝑙𝑖0 =
∑︁

𝑗
𝑖06𝑗,𝑖0 ̸=𝑗

(︃
− 𝑎𝑖0𝑗

𝑎𝑖0𝑖0

)︃
𝑔𝑙𝑗 (3.7)

for every 𝑙 ∈ {1, . . . , 𝑘1}.

Therefore, 𝑖0 is not the last column of 𝐺 such that 𝑔𝑙𝑖0 ̸= 0 for every 𝑙 ∈

{1, . . . , 𝑘1}. Each column contributing to the summation 3.7 has support either in the

first 𝑘1 or in the last 𝑘2 rows of 𝐺, therefore, Operation (OP 2) ensures that every vector

in the first 𝑘1 rows of 𝐺 has zero in the coordinate 𝑖0. Hence, 𝑖0 is not in the support

of the first 𝑘1 rows of 𝐺. Therefore, 𝒞 = 𝒞1 ⊕ 𝒞2 where 𝒞1 and 𝒞2 are generated by the

first 𝑘1 and the last 𝑘2 rows of 𝐺 respectively. We conclude that C and C ′ have the same

profile, since 𝐺1 is also in a reduced row form and by Proposition 3.2.32, C ′ is a maximal

decomposition of 𝒞 ′, therefore, C is a maximal 𝑃 -decomposition.

Each time we can exchange a column by a null column, we exchange a code

𝒞 with 𝑃 -decomposition C = (𝒞, 𝒞0, 𝒞𝑖)𝑟
𝑖=1 by a 𝑃 -equivalent code with 𝑃 -decomposition

C ′ = (𝒞 ′, 𝒞 ′
0, 𝒞 ′

𝑖)
𝑟
𝑖=1 where 𝑑𝑖𝑚(𝒞 ′

0) = 𝑑𝑖𝑚(𝒞0) + 1. If the Operation (OP 2) is performed

in a proper subset of the 𝑘-lines of 𝐺, we do not increase 𝑑𝑖𝑚(𝒞0) but, we may split some

of the 𝒞𝑖 into 𝒞𝑖 = 𝒞 ′
𝑖1 ⊕ 𝒞 ′

𝑖2 with 𝑠𝑢𝑝𝑝(𝒞 ′
𝑖1) ∩ 𝑠𝑢𝑝𝑝(𝒞 ′

𝑖2) = ∅.

Note that the role of 𝑃 in such operations rests solely on the condition 𝑗 6

𝑗1, 𝑗2, . . . , 𝑗𝑛1 . For the two extremal posets, namely, the anti-chain and the chain poset,

the picture is absolutely clear: If 𝑃 is an anti-chain (hence we are considering the Ham-

ming metric), no such operation may be performed (since 𝑖 6 𝑗 ⇐⇒ 𝑖 = 𝑗). Hence,

maximal 𝑃 -decompositions coincide with maximal decompositions (see the paragraph af-

ter Definition 3.2.13) and the 𝑃 -canonical form presented in Proposition 2.1.14 provides

it; if 𝑃 is a chain with 1 6 2 6 · · · 6 𝑛, then the first operation may be performed to
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every 𝑗 (𝑖) in the reduced row echelon matrix 𝐺, i.e., we have that 𝒞 is equivalent to a

code that has a generating matrix 𝐺 = (𝑔𝑖𝑗) such that 𝑔𝑖𝑗(𝑖) = 1 and 𝑔𝑖𝑗 = 0 if 𝑗 ̸= 𝑗 (𝑖)

(already known from [38]).

The other case that can be easily described is the case of hierarchical posets.

The algorithm to find 𝑃 -decompositions according to the levels of the poset was first

proposed in [15]. In that work, the basis of the code providing such decomposition was

also constructed. We explicit the matrix of this basis in Corollary 3.1.5. Its form is called

canonical-systematic and provides a maximal 𝑃 -decomposition for 𝒞. Furthermore, the

canonical-systematic form is a standard representation in the sense that every code has

such decomposition. In [30], it was proved that for every non-hierarchical poset, it is

not possible to give a standard representation like the one obtained in Corollary 3.1.5.

Actually, this was the main motivation to define a canonical form as we did in Definition

3.2.33.

3.2.4 Complexity of Syndrome Decoding Algorithm

As seen in section 1.2.1, considering a metric determined by a weight, hence

invariant by translations, a syndrome algorithm, which depends on the choice of the coset

leaders, is an implementation of an MD-decoder. This is the case for poset metrics. Given

an [𝑛, 𝑘, 𝛿]𝑞 code 𝒞, a look-up table for syndrome decoding of 𝒞 (the table composed by the

coset leaders) has 𝑞𝑛−𝑘 elements. This is an algebraic invariant and does not depend on

the metric. Nevertheless, we can use refinements of decompositions in order to minimize

the search space (number of cosets) by isometrically immersing the code into a smaller

dimension space or by performing syndrome in each component of the decomposition. In

this section we describe the cases for which such improvements are possible.

Let C = (𝒞; 𝒞0; 𝒞𝑖)𝑟
𝑖=1 be a maximal 𝑃 -decomposition of an [𝑛, 𝑘, 𝛿]𝑞 code 𝒞.

Initially, note that in order to perform decoding, we can ignore the component 𝑉0 (recall

that 𝑉𝑖 is the support-space of 𝒞𝑖) since we know that any codeword 𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ 𝒞

should have 𝑐𝑗 = 0 for every 𝑗 ∈ [𝑛]𝒞. Consider the projection 𝜋 : F𝑛
𝑞 −→ F𝑛1+···+𝑛𝑟

𝑞 (recall

that 𝑛𝑖 = |𝑠𝑢𝑝𝑝(𝒞𝑖)|) defined by

𝜋(𝑥1, . . . , 𝑥𝑛) = (𝑥𝑖1 , . . . , 𝑥𝑖𝑠)
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where 𝑖1 < · · · < 𝑖𝑠 and {𝑖1, . . . , 𝑖𝑠} = 𝑠𝑢𝑝𝑝(𝒞). The map 𝜋1,...,𝑟 = 𝜋|⊕𝑟
𝑖=1𝑉𝑖

, the restriction

of 𝜋 to the space ⊕𝑟
𝑖=1𝑉𝑖, is a bijection. Therefore, by pushing forward the metric in the

restriction, we obtain the metric 𝑑𝜋
𝑃 in F𝑛1+···+𝑛𝑟

𝑞 defined by

𝑑𝜋
𝑃 (𝑥, 𝑦) := 𝑑𝑃 (𝜋−1

𝑖,...,𝑟(𝑥), 𝜋−1
𝑖,...,𝑟(𝑦))

for every 𝑥, 𝑦 ∈ F𝑛1+···+𝑛𝑟
𝑞 . The metric 𝑑𝜋

𝑃 turns the restriction 𝜋1...𝑟 into a linear isometry.

Because 𝒞 is a subspace of 𝑉1 ⊕ . . .⊕𝑉𝑟, the proof of the proposition below follows straight

from these observations.

Proposition 3.2.36. The metric-decoding criteria of F𝑛
𝑞 for 𝒞 is equivalent to the metric-

decoding criteria of F𝑛1+···+𝑛𝑟
𝑞 for 𝜋(𝒞), i.e.,

𝑑𝑃 (𝑐′, 𝑦) = min
𝑐∈𝒞

𝑑𝑃 (𝑐, 𝑦) ⇐⇒ 𝑑𝜋
𝑃 (𝜋(𝑐′), 𝜋(𝑦)) = min

𝑐∈𝜋(𝒞)
𝑑𝜋

𝑃 (𝑐, 𝜋(𝑦)).

By Proposition 3.2.36, to perform syndrome decoding, instead of using a look-

up table with |F𝑛
𝑞 /𝒞|= 𝑞𝑛−𝑘 elements, we can reduce the number of cosets to |F𝑛1+···+𝑛𝑟

𝑞 /𝜋(𝒞)|=∏︀𝑟
𝑖=1 𝑞𝑛𝑖−𝑘𝑖 elements. Note that

𝑞𝑛0 ×
𝑟∏︁

𝑖=1
𝑞𝑛𝑖−𝑘𝑖 = 𝑞𝑛−𝑘.

Therefore, 𝑃 -decompositions having the maximum possible number of elements in the

support of 𝒞0 are the best ones in order to perform syndrome decoding.

Besides this possible (and a-posteriori irrelevant) gain in the cardinality of the

syndrome look-up table obtained considering aggregations, there is a more significant gain

that can be obtained through the splitting operation.

Proposition 3.2.37. If

⟨𝑠𝑢𝑝𝑝(𝒞𝑖)⟩𝑃 ∩ ⟨𝑠𝑢𝑝𝑝(𝒞𝑗)⟩𝑃 = ∅

for all 𝑖 ̸= 𝑗 and 𝑖, 𝑗 ̸= 0, then given 𝑦 ∈ F𝑛
𝑞 ,

min
𝑐∈𝒞

𝑑𝑃 (𝑐, 𝑦) =
𝑟∑︁

𝑖=1
min
𝑐∈𝒞𝑖

𝑑𝜋𝑖
𝑃 (𝜋𝑖(𝑐), 𝜋𝑖(𝑦)).
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Proof. Note that if 𝑐 ∈ 𝒞, then 𝑐 = 𝑐1 + · · · + 𝑐𝑟 with 𝑐𝑖 ∈ 𝒞𝑖 and for every 𝑦𝑖 ∈ F𝑛𝑖
𝑞 ,

𝑠𝑢𝑝𝑝(𝑦𝑖 − 𝑐𝑖) ⊂ ⟨𝑠𝑢𝑝𝑝(𝒞𝑖)⟩ = 𝑠𝑢𝑝𝑝(𝑉𝑖).

Then,

𝑑(𝑦, 𝑐) = 𝑑(𝑦1, 𝑐1) + · · · + 𝑑(𝑦𝑟, 𝑐𝑟),

where 𝑦 = 𝑦1 + · · · + 𝑦𝑟 and 𝑦𝑖 ∈ F𝑛𝑖
𝑞 for all 𝑖 ∈ [𝑟].

Due to Proposition 3.2.37, if the ideals generated by each component are dis-

joint, syndrome decoding can be done independently in each component 𝒞𝑖. Therefore,

the number of cosets can be reduced from 𝑞𝑛−𝑘 elements to ∑︀𝑟
𝑖=1 𝑞𝑛𝑖−𝑘𝑖 elements, where

the last one is the sum of the cosets in each quotient F𝑛𝑖
𝑞 /𝜋𝑖(𝒞 ′

𝑖). More generally, if 𝑟 is a

disjoint union of subsets 𝐼𝑖, i.e., [𝑟] = 𝐼1 ⊔ . . . ⊔ 𝐼𝑠, and

⟨𝑠𝑢𝑝𝑝(⊕𝑖∈𝐼𝑗
𝒞𝑖)⟩𝑃 ∩ ⟨𝑠𝑢𝑝𝑝(⊕𝑖∈𝐼𝑙

𝒞𝑖)⟩𝑃 = ∅,

for every 𝑗 ̸= 𝑙, then decoding can be separately done in each projection of ⊕𝑖∈𝐼𝑗
𝒞𝑖 into

F𝑁
𝑞 where 𝑁 = ∑︀

𝑖∈𝐼𝑗
𝑛𝑖.

Until now, in order to obtain the reductions, it was not necessary to change

the syndrome decoding algorithm; we just performed it in a different (smaller) space. The

hierarchical relation among elements of the poset will provide us a “quasi-independent”

syndrome decoding algorithm that is performed by choosing first coordinates that hi-

erarchically dominate others, therefore we will call this algorithm a Leveled Syndrome

Decoding.

If 𝐼, 𝐽 ⊂ [𝑛], we say that 𝐼 and 𝐽 are hierarchically related if every element

in 𝐼 is smaller than every element in 𝐽 . Suppose [𝑟] is an ordered disjoint union of sets,

[𝑟] = 𝐼1 ⊔ . . .⊔𝐼𝑠, such that 𝑠𝑢𝑝𝑝(⊕𝑖∈𝐼𝑗
𝒞𝑖) is hierarchically related with 𝑠𝑢𝑝𝑝(⊕𝑖∈𝐼𝑗+1𝒞𝑖) for

every 𝑗 ∈ {1, . . . , 𝑠 − 1}, so if 𝑖0 ∈ 𝑠𝑢𝑝𝑝(⊕𝑖∈𝐼𝑗0
𝒞𝑖), then 𝑖0 6 𝑖 for every 𝑖 ∈ 𝑠𝑢𝑝𝑝(⊕𝑖∈𝐼𝑙

𝒞𝑖)

with 𝑙 > 𝑗0. By using the syndrome decoding algorithm described in Section 1.2.1, the

leveled syndrome decoding algorithm is as follows:

Leveled Syndrome Decoding Algorithm 1.

Input: 𝑦 = 𝑦1 + · · · + 𝑦𝑠 ∈ F𝑛
𝑞 where 𝑦𝑖 ∈ ⊕𝑗∈𝐼𝑖

𝑉𝑗

For each 𝑖 ∈ {1, . . . , 𝑠} do
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Decode 𝜋𝑗∈𝐼𝑖
(𝑦𝑖) ∈ F

∑︀
𝑗∈𝐼𝑖

𝑛𝑗

𝑞 using syndrome (𝑑𝜋𝑗∈𝐼𝑖
𝑃 ) outputting 𝑐𝑖 ∈ 𝜋𝑗∈𝐼𝑖

(⊕𝑗∈𝐼𝑖
𝒞𝑗)

Output: 𝑐 = 𝜋−1
𝑗∈𝐼1(𝑐1) + · · · + 𝜋−1

𝑗∈𝐼𝑠
(𝑐𝑠).

As a particular case of a syndrome algorithm, we can order the levels to be

decoded and do the following:

Leveled Syndrome Decoding Algorithm 2.

Input: 𝑦 = 𝑦1 + · · · + 𝑦𝑠 ∈ F𝑛
𝑞 where 𝑦𝑖 ∈ ⊕𝑗∈𝐼𝑖

𝑉𝑗

For 𝑖 = 𝑠 to 1, do

If 𝜋𝑗∈𝐼𝑖
(𝑦𝑖) ∈ ⊕𝑗∈𝐼𝑖

𝒞𝑗 do

𝑐𝑖 = 𝜋𝑗∈𝐼𝑖
(𝑦𝑖);

else do

Decode 𝜋𝑗∈𝐼𝑖
(𝑦𝑖) ∈ F

∑︀
𝑗∈𝐼𝑖

𝑛𝑗

𝑞 using syndrome (𝑑𝜋𝑗∈𝐼𝑖
𝑃 ) outputting 𝑐𝑖 ∈ 𝜋𝑗∈𝐼𝑖

(⊕𝑗∈𝐼𝑖
𝒞𝑗);

Go to Output;

end if;

end For;

Output: 𝑐 = 𝜋−1
𝑗∈𝐼𝑖

(𝑐𝑖) + 𝜋−1
𝑗∈𝐼𝑖+1

(𝑐𝑖+1) + · · · + 𝜋−1
𝑗∈𝐼𝑠

(𝑐𝑠).

The first algorithm was described in [15] for the hierarchical poset case. The

second one is also a minimum distance algorithm according to the poset metric 𝑑𝑃 (see

the next proposition), but if there is an error in a particular level, the decoder outputs

the null vector in the levels covered by the one where the error happened.

Proposition 3.2.38. Algorithm 2 determines a minimum distance decoder according to

the metric 𝑑𝑃 .

Proof. Given 𝑦 ∈ F𝑛
𝑞 and 𝑐 ∈ 𝒞, then

𝑑𝑃 (𝑦, 𝑐) = 𝑑
𝜋𝑗∈𝐼𝑖
𝑃 (𝜋𝑗∈𝐼𝑖

(𝑦), 𝜋𝑗∈𝐼𝑖
(𝑐))

where 𝑖 is the largest integer such that 𝜋𝑗∈𝐼𝑖
(𝑦) ̸= 𝜋𝑗∈𝐼𝑖

(𝑐). Therefore, if 𝑐′ ∈ 𝒞 satisfies

𝑑𝑃 (𝑦, 𝑐′) = min
𝑐∈𝒞

𝑑𝑃 (𝑦, 𝑐),

then 𝑐′′ = 𝑐′
𝑠 + 𝑐′

𝑠−1 + · · · + 𝑐′
𝑖 also attains the minimum and this is the codeword returned
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by algorithm 2.

Both the algorithms are needed to store the look-up tables of each quotient

F𝑁
𝑞 /𝜋𝑗∈𝐼𝑖

(⊕𝑗∈𝐼𝑖
𝒞𝑗) where ∑︀𝑗∈𝐼𝑖

𝑛𝑗. The total number of elements we need to store is

𝑠∑︁
𝑖=1

∏︁
𝑗∈𝐼𝑖

𝑞𝑛𝑗−𝑘𝑗 . (3.8)

The difference between Algorithm 1 and 2 is that while the search in the algorithm 1 is

performed over all elements of the look-up table, the search in Algorithm 2 is restricted

to the first level where an error has occurred, i.e., if this happens in the level 𝑖0, then the

search is performed only over the look-up table of 𝜋𝑗∈𝐼𝑖0
(⊕𝑗∈𝐼𝑖0

𝒞𝑗) which has

∏︁
𝑗∈𝐼𝑖0

𝑞𝑛𝑗−𝑘𝑗 (3.9)

elements. Note that if the poset has only one level, the values of Expressions (3.8) and

(3.9) coincide.
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Chapter 4

Expected Loss

In this chapter we explore the framework of expected loss introduced in [18]

and [16]. This concept allows us to give different treatments for distinct kind of errors.

As showed in [18], that seems important when dealing with image transmission. In this

context, we express the mean of the expected losses according to a given decoder and, in

a particular case, we show that the lexicographic encoder is better than the mean. Due

to experimental results we conjcture that the lexicographic encoder is a Bayes encoder in

the analized case. In the last section, we relate the theory of expected loss with unequal

error protection presenting some conjectures and coding constructions to achieve unequal

error protection.

Given an [𝑛, 𝑘, 𝛿]𝑞 linear code 𝒞 ⊂ F𝑛
𝑞 , the error probability of 𝒞 (Equation 1.1)

may be rewritten in the following way

𝑃 𝐷
𝑒 (𝒞) = 1

𝑞𝑘

∑︁
𝑐∈𝒞

∑︁
𝑦∈F𝑛

𝑞

𝑊 (𝑦|𝑐)
∑︁
𝑐′∈𝒞
𝑐′ ̸=𝑐

𝐷(𝑐′|𝑦),

where 𝐷 is a decoder (stochastic map) and 𝑊 is a channel conditional probability. Let

R+ be the set of non-negative real numbers. Consider the well-known indicator function

𝜇0-1 : 𝒞 × 𝒞 → R+

given by

𝜇0-1 (𝑐, 𝑐′) =

⎧⎪⎨⎪⎩ 0 if 𝑐 = 𝑐′

1 if 𝑐 ̸= 𝑐′
.
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Therefore, the error probability may be expressed as

𝑃 𝐷
𝑒 (𝒞) = 1

𝑞𝑘

∑︁
𝑐∈𝒞

∑︁
𝑦∈F𝑛

𝑞

𝑊 (𝑦|𝑐)
∑︁
𝑐′∈𝒞

𝜇0-1(𝑐, 𝑐′)𝐷(𝑐′|𝑦). (4.1)

The function 𝜇0-1 detects decoding errors but does not distinguish such errors. In some

cases, depending on the nature of the information, we may assign for each pair (𝑐, 𝑐′) ∈

𝒞 ×𝒞, a real value representing the amount of loss obtained provided that 𝑐 is transmitted

but is decoded as 𝑐′ by the receiver. Such loss measures will be used to define the expected

loss of an encoding-decoding scheme.

4.1 Expected Loss

The extension of the error probability definition to expected loss was explained

in [18]. The motivation of this extension arises from the fact that in many real-world

situations, such as the transmission of digital images, it is reasonable to attribute different

values to different errors, contrasting with the indicator function that appears in the error

probability definition. To attribute different values for each exchange of information, we

shall replace the indicator function 𝜇0-1 by a value function that may assume any (non-

negative) real value.

Until now, the information set was identified with F𝑘
𝑞 . From now on, we will

assume that the information set is any set ℐ with 𝑞𝑘 elements. This is important since

the identification with F𝑘
𝑞 may raise some confusion, because the measures that will be

defined in this chapter are determined according to the nature of the information.

An error value function for the information set ℐ is a map 𝜇 that associates

to each pair of information (element of ℐ) a non-negative real number

𝜇 : ℐ × ℐ → R+

where 𝜇 (𝜄1, 𝜄2) is the cost of exchanging 𝜄2 by 𝜄1. If 𝒞 is a code and 𝑓 : ℐ → 𝒞 is an

encoder, we denote by

𝜇𝑓 : 𝒞 × 𝒞 → R+
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the error value function induced by the encoder 𝑓 , i.e., given 𝜄1, 𝜄2 ∈ ℐ,

𝜇𝑓 (𝑓 (𝜄1) , 𝑓 (𝜄2)) := 𝜇 (𝜄1, 𝜄2) .

We shall refer to 𝜇 and 𝜇𝑓 as just an error value function. By considering

such value function, we are interested in evaluating the errors that may occur during the

process consisting of coding, transmitting and decoding. Therefore, it is reasonable to

assume that 𝜇 has the following properties:

(a) 𝜇 is symmetric, i.e., 𝜇(𝜄1, 𝜄2) = 𝜇(𝜄2, 𝜄1);

(b) 𝜇(𝜄, 𝜄) = 0 for all 𝜄 ∈ ℐ.

Given an encoding-decoding scheme (𝒞, 𝑓, 𝐷) and an error value function 𝜇,

let us denote by E(𝒞, 𝜇𝑓 , 𝐷) the expected loss of (𝒞, 𝑓, 𝐷) with respect to 𝜇, i.e.,

E(𝒞, 𝜇𝑓 , 𝐷) = 1
𝑞𝑘

∑︁
𝑐∈𝒞

∑︁
𝑦∈F𝑛

𝑞

𝑊 (𝑦|𝑐)
∑︁
𝑐′∈𝒞

𝜇𝑓 (𝑐, 𝑐′)𝐷(𝑐′|𝑦). (4.2)

The only difference from this equation to Equation 4.1 is the exchanging of 𝜇0-1 by 𝜇𝑓 .

As noticed in the first chapter, the error probability of 𝒞 does not depend on the choice of

the encoder 𝑓 . In other words, given a decoder and a channel, the error probability of 𝒞

is invariant under permutations of the encoder 𝑓 (which is a bijection between ℐ and 𝒞).

Since 𝜇 is defined using the nature of the information set and the decoder uses only the

characteristics of the code, for a given code 𝒞, the expected loss is not invariant according

to the choice of an encoder for 𝒞. Therefore, a new variable (the encoder) is introduced

when dealing with expected loss. In this case, the problem of minimizing both the error

and refusal probabilities can be generalized to the problem of minimizing the expected

loss and the refusal probability.

Definition 4.1.1. Given an information set ℐ and a error value function 𝜇, an encoding-

decoding scheme (𝒞*, 𝑓 *, 𝐷*) is an (𝑛, 𝑘)𝑞-Bayes scheme according to 𝜇 if it satisfies

E(𝒞*, 𝜇𝑓* , 𝐷*) + 𝑃 𝐷*

𝑟𝑒𝑓 (𝒞*) = min
(𝒞,𝑓,𝐷)

(︁
E(𝒞, 𝜇𝑓 , 𝐷) + 𝑃 𝐷

𝑟𝑒𝑓 (𝒞)
)︁

.

Note that we are not chosing previously the code 𝒞 as in Definition 1.1.9.

Unequal error protection uses basically two techniques in order to unequally protect errors:
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adding more redundancy in some coordinates than others, or; increasing the decision

region for some codewords; such strategies are respectively called bit-wise and message-

wise unequal error protection; see [4] for more details. In [13], for a given code, it was

noticed that protection against different kinds of errors depends not only on the decoder,

but also upon the encoder. In that work, optimal decoders were characterized (optimal

according to a concept called separation). Our concept of optimal decoders and encoders

are going to be defined by decoders and encoders minimizing the expected loss according

to a given error value function.

Similarly to what was done in the first chapter for error probability, considering

a normalized error value function (𝜇(𝜄1, 𝜄2) ≤ 1 for all 𝜄1, 𝜄2 ∈ ℐ), we can assume that the

refusal probability is zero and that decoders are deterministic maps. Therefore, from this

point forward, if 𝜇 is a loss function, then 𝜇 : ℐ × ℐ → [0, 1] where [0, 1] ⊂ R.

Proposition 4.1.2. Given a code 𝒞, for every decoder 𝐷 ∈ 𝒟F𝑞(𝒞) and encoder 𝑓 , there

exists a decoder ̃︁𝐷 ∈ 𝒟F𝑞(𝒞) such that

E(𝒞, 𝜇𝑓 ,̃︁𝐷) ≤ 𝑃 𝐷
𝑟𝑒𝑓 (𝒞) + E(𝒞, 𝜇𝑓 , 𝐷)

and 𝑃 ̃︀𝐷𝑟𝑒𝑓 (𝒞) = 0.

Proof. Given a decoder 𝐷 ∈ 𝒟F𝑞(𝒞), suppose there exists 𝑦0 ∈ F𝑛
𝑞 such that 𝐷(∞|𝑦0) = 1.

Define a new decoder 𝐷* ∈ 𝒟F𝑞(𝒞) satisfying 𝐷*(𝑦) = 𝐷(𝑦) for all 𝑦 ̸= 𝑦0 but 𝐷*(𝑦0) is

a new distribution which does not refuse 𝑦0, so 𝐷*(∞|𝑦0) = 0. Using the same reasoning

of the Proposition 1.1.10, we get that

𝑃 𝐷
𝑟𝑒𝑓 (𝒞) = 𝑃 𝐷*

𝑟𝑒𝑓 (𝒞) + 1
𝑞𝑘

∑︁
𝑐∈𝒞

𝑊 (𝑦0|𝑐)

and

E(𝒞, 𝜇𝑓 , 𝐷) = E(𝒞, 𝜇𝑓 , 𝐷*) − 1
𝑞𝑘

∑︁
𝑐∈𝒞

𝑊 (𝑦0|𝑐)
∑︁
𝑐′∈𝒞

𝜇𝑓 (𝑐, 𝑐′)𝐷*(𝑐′|𝑦0).

Therefore,

E(𝒞, 𝜇𝑓 , 𝐷*)+𝑃 𝐷*

𝑟𝑒𝑓 (𝒞) = 𝑃 𝐷
𝑟𝑒𝑓 (𝒞)+E(𝒞, 𝜇𝑓 , 𝐷)+ 1

𝑞𝑘

∑︁
𝑐∈𝒞

𝑊 (𝑦0|𝑐)
⎛⎝∑︁

𝑐′∈𝒞
𝜇𝑓 (𝑐, 𝑐′)𝐷*(𝑐′|𝑦0) − 1

⎞⎠ .
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Since 𝜇𝑓 (𝑐, 𝑐′) ≤ 1 for every 𝑐, 𝑐′ ∈ 𝒞, then for every 𝑐 ∈ 𝒞,

∑︁
𝑐′∈𝒞

𝜇𝑓 (𝑐, 𝑐′)𝐷*(𝑐′|𝑦0) − 1 ≤ 0.

Thus,

E(𝒞, 𝜇𝑓 , 𝐷*) + 𝑃 𝐷*

𝑟𝑒𝑓 (𝒞) ≤ 𝑃 𝐷
𝑟𝑒𝑓 (𝒞) + E(𝒞, 𝜇𝑓 , 𝐷).

Therefore, if 𝑃 𝐷*
𝑟𝑒𝑓 (𝒞) = 0, then ̃︁𝐷 = 𝐷*, otherwise, applying the same arguments for 𝐷*

until we run out of refused elements, ̃︁𝐷 may be constructed.

Proposition 4.1.3. Let 𝒞 be an [𝑛, 𝑘, 𝛿]𝑞 linear code, 𝐷 ∈ 𝒟F𝑞(𝒞) be a decoder satisfying

𝑃 𝐷
𝑟𝑒𝑓 (𝒞) = 0 and 𝑓 be an encoder for 𝒞. Then, there exists a deterministic decoder 𝑔 such

that

E(𝒞, 𝜇𝑓 , 𝑔) ≤ E(𝒞, 𝜇𝑓 , 𝐷).

Proof. If 𝐷 is a stochastic map modeling a decoder for 𝒞 with no refusals, then by 4.2,

E(𝒞, 𝜇𝑓 , 𝐷) = 1
𝑞𝑘

∑︁
𝑦∈F𝑛

𝑞

⎛⎝∑︁
𝑐′∈𝒞

[︃∑︁
𝑐∈𝒞

𝑊 (𝑦|𝑐)𝜇𝑓 (𝑐, 𝑐′)
]︃

𝐷(𝑐′|𝑦)
⎞⎠

where 𝑓 is an encoder and 𝜇 is an error value function. For each 𝑦 ∈ F𝑛
𝑞 , choose 𝑐𝑦 ∈ 𝒞

such that

𝐴𝑦 =
∑︁
𝑐∈𝒞

𝑊 (𝑦|𝑐)𝜇𝑓 (𝑐, 𝑐𝑦) ≤
∑︁
𝑐∈𝒞

𝑊 (𝑦|𝑐)𝜇𝑓 (𝑐, 𝑐′)

for every 𝑐′ ∈ 𝒞. Note that ∑︀𝑐′∈𝒞 𝐷(𝑐′|𝑦) = 1, then

1
𝑞𝑘

∑︁
𝑦∈F𝑛

𝑞

𝐴𝑦 = 1
𝑞𝑘

∑︁
𝑦∈F𝑛

𝑞

𝐴𝑦

∑︁
𝑐′∈𝒞

𝐷(𝑐′|𝑦) = 1
𝑞𝑘

∑︁
𝑦∈F𝑛

𝑞

∑︁
𝑐′∈𝒞

𝐴𝑦𝐷(𝑐′|𝑦) (4.3)

≤ 1
𝑞𝑘

∑︁
𝑦∈F𝑛

𝑞

∑︁
𝑐′∈𝒞

∑︁
𝑐∈𝒞

𝑊 (𝑦|𝑐)𝜇𝑓 (𝑐, 𝑐′)𝐷(𝑐′|𝑦) = E(𝒞, 𝜇𝑓 , 𝐷). (4.4)

Denote by 𝑔 the map defined by 𝑔(𝑦) = 𝑐𝑦, then 𝑔 is a deterministic decoder for 𝒞.

Furthermore,

E(𝒞, 𝜇𝑓 , 𝑔) = 1
𝑞𝑘

∑︁
𝑦∈F𝑛

𝑞

∑︁
𝑐∈𝒞

𝑊 (𝑦|𝑐)𝜇𝑓 (𝑐, 𝑔(𝑦)) = 1
𝑞𝑘

∑︁
𝑦∈F𝑛

𝑞

𝐴𝑦 ≤ E(𝒞, 𝜇𝑓 , 𝐷).

In order to minimize the sum of the expected loss and the refusal probability,
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similarly to what was done in the first chapter, Propositions 4.1.2 and 4.1.3 ensure we can

assume that decoders are deterministic maps and their refusal probabilities are zero (note

that error value functions are considered to be normalized). Therefore, the expected loss

can be rewritten as follows

E(𝒞, 𝜇𝑓 , 𝑔) = 1
𝑞𝑘

∑︁
𝑦∈F𝑛

𝑞

∑︁
𝑐∈𝒞

𝑊 (𝑦|𝑐)𝜇𝑓 (𝑐, 𝑔(𝑦)).

In a general setting, we consider the following data to be given:

(1) The error value function 𝜇, determined by the nature of the information;

(2) The size of the code 𝒞, determined by the size of the information set: |ℐ|= 𝑞𝑘;

(3) The information rate, determined by cost constraints;

(4) The channel model 𝑊 , determined by physical conditions.

In such a setting, we say that the triple (𝒞*, 𝑓 *, 𝑔*) is an (𝑛, 𝑘)𝑞-Bayes coding-

decoding scheme if

E (𝒞*, 𝜇𝑓* , 𝑔*) = min
(𝒞,𝑓,𝑔)

E (𝒞, 𝜇𝑓 , 𝑔)

where the minimum is taken over all encoding-decoding schemes for ℐ over 𝑊 .

We may consider each of the variables 𝒞, 𝑓 and 𝑔 independently.

Definition 4.1.4. A decoder 𝑔* is a Bayes decoder of the pair (𝒞, 𝑓) if

E(𝒞, 𝜇𝑓 , 𝑔*) = min
𝑔
E(𝒞, 𝜇𝑓 , 𝑔).

Definition 4.1.5. An encoder 𝑓 * is a Bayes encoder of the pair (𝒞, 𝑔) if

E(𝒞, 𝜇𝑓* , 𝑔) = min
𝑓
E(𝒞, 𝜇𝑓 , 𝑔).

It is clear that a decoder 𝑔 is a Bayes decoder if, and only if, for any 𝑦 ∈ F𝑛
𝑞 ,

∑︁
𝑐∈𝒞

𝑊 (𝑦|𝑐)𝜇𝑓 (𝑐, 𝑔(𝑦)) = min
{︃∑︁

𝑐∈𝒞
𝑊 (𝑦|𝑐)𝜇𝑓 (𝑐, 𝑐′) : 𝑐′ ∈ 𝒞

}︃
.
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Note that if 𝑔 is a Bayes decoder and 𝜇 is the indicator function 𝜇0-1, then

∑︁
𝑐∈𝒞

�̸�=𝑔(𝑦)

𝑊 (𝑦|𝑐) =
∑︁
𝑐∈𝒞

𝑊 (𝑦|𝑐)𝜇0-1(𝑐, 𝑔(𝑦)) ≤
∑︁
𝑐∈𝒞

𝑊 (𝑦|𝑐)𝜇0-1(𝑐, 𝑐′) =
∑︁
𝑐∈𝒞
�̸�=𝑐′

𝑊 (𝑦|𝑐)

for every 𝑐′ ∈ 𝒞. Therefore,

𝑊 (𝑦|𝑔(𝑦)) ≥ 𝑊 (𝑦|𝑐′)

for every 𝑐′ ∈ 𝒞, i.e.,

𝑊 (𝑦|𝑔(𝑦)) = max{𝑊 (𝑦|𝑐) : 𝑐 ∈ 𝒞}.

In other words, 𝑔 is an ML decoder.

4.2 Bayes Encoders

Even considering the situation when the code and the decoder are previously

chosen, finding Bayes encoders may still be a difficult problem that, up to our knowl-

edge, has not been explored in the literature. A characterization of Bayes encoders in a

general setting depends on the loss function. We stress that for an [𝑛, 𝑘, 𝛿]𝑞 code 𝒞, the

“complexity” to find a Bayes encoder is 𝑞𝑘! (the number of encoders for 𝒞). To estimate

a qualitative measure of a proposed encoder without running over all possible encoders,

the average expected loss may be used.

Lemma 4.2.1. Let 𝑔 be a decoder of an [𝑛, 𝑘, 𝛿]𝑞 linear code 𝒞 and 𝜇 an error value

function. Considering the function 𝜇𝑚𝑒𝑎𝑛 where 𝜇𝑚𝑒𝑎𝑛(𝑐, 𝑐) = 0 for every 𝑐 ∈ 𝒞 and

𝜇𝑚𝑒𝑎𝑛(𝑐1, 𝑐2) =
∑︀

𝑓 𝜇𝑓 (𝑐1, 𝑐2)
𝑞𝑘!

for every 𝑐1 ̸= 𝑐2. Then, the average of the expected losses is the expected loss given by

𝜇𝑚𝑒𝑎𝑛, i.e.,

E(𝒞, 𝜇𝑚𝑒𝑎𝑛, 𝑔) =
∑︀

𝑓 E(𝒞, 𝜇𝑓 , 𝑔)
𝑞𝑘! .

Proof. It follows straight from the fact that

∑︀
𝑓 E(𝒞, 𝜇𝑓 , 𝑔)

𝑞𝑘! = 1
𝑞𝑘!

∑︁
𝑐∈𝒞

∑︁
𝑦∈F𝑛

𝑞

𝑊 (𝑦|𝑐)𝑃 (𝑐)
∑︁

𝑓

𝜇𝑓 (𝑔(𝑦), 𝑐). (4.5)
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With the same statements of the previous Lemma, we have the following propo-

sition:

Proposition 4.2.2. For every 𝑐1, 𝑐2 ∈ 𝒞 with 𝑐1 ̸= 𝑐2,

𝜇𝑚𝑒𝑎𝑛(𝑐1, 𝑐2) = 1
𝑞𝑘(𝑞𝑘 − 1)

𝑡∑︁
𝑠=1

|𝐴𝑗𝑠|𝑗𝑠

where {𝑗1, . . . , 𝑗𝑡} is the set of all possible real values assumed by 𝜇 and 𝐴𝑗𝑘
= {(𝜄1, 𝜄2) ∈

ℐ × ℐ : 𝜇(𝜄1, 𝜄2) = 𝑗𝑘} for every 𝑘 ∈ [𝑡].

Proof. For every 𝑐1, 𝑐2 ∈ 𝒞 with 𝑐1 ̸= 𝑐2,

∑︁
𝑓

𝜇𝑓 (𝑐1, 𝑐2) =
𝑡∑︁

𝑠=1

∑︁
𝑓

𝜇𝑓 (𝑥,𝑦)=𝑗𝑠

𝑗𝑠 =
𝑡∑︁

𝑠=1
(𝑞𝑘 − 2)! |𝐴𝑗𝑠|𝑗𝑠

= (𝑞𝑘 − 2)!
𝑡∑︁

𝑠=1
|𝐴𝑗𝑠|𝑗𝑠,

where 𝐴𝑗𝑠 = {(𝜄1, 𝜄2) ∈ ℐ × ℐ : 𝜇(𝜄1, 𝜄2) = 𝑗𝑠}. Therefore,

∑︀
𝑓 𝜇𝑓 (𝑐1, 𝑐2)

𝑞𝑘! = 1
𝑞𝑘(𝑞𝑘 − 1)

𝑡∑︁
𝑠=1

|𝐴𝑗𝑠|𝑗𝑠.

An information set, as any finite set, may be endowed with an additive group

structure. Despite that, the group operation does not, in general, translate the significance

of the information. When the information set may naturally be endowed with an additive

group structure and the error value function is invariant by this operation, i.e., if 𝜇 satisfies

𝜇(𝜄1 + 𝜄3, 𝜄2 + 𝜄3) = 𝜇(𝜄1, 𝜄2) for all 𝜄1, 𝜄2, 𝜄3 ∈ ℐ, in [17], it was presented a characterization

of the linear-Bayes encoders (the linear encoders minimizing among all linear encoders,

the expected loss). If 𝑔 is a decoder for 𝒞, the decision regions for each 𝑐 ∈ 𝒞, i.e., 𝑔−1(𝑐),

determine a partition of F𝑛
𝑞 , i.e.,

F𝑘
𝑞 =

⨆︁
𝑐∈𝒞

𝑔−1(𝑐).

Then,

E (𝒞, 𝜇𝑓 , 𝑔) = 1
𝑞𝑘

∑︁
𝑐∈𝒞

∑︁
𝑐′∈𝒞

∑︁
𝑦∈𝑔−1(𝑐′)

𝜇𝑓 (𝑐, 𝑐′) 𝑊 (𝑦|𝑐) .
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Therefore,

E (𝒞, 𝜇𝑓 , 𝑔) = 1
𝑞𝑘

∑︁
(𝑐,𝑐′)∈𝒞×𝒞

𝐺𝑔 (𝑐, 𝑐′) 𝜇𝑓 (𝑐, 𝑐′) (4.6)

where

𝐺𝑔 (𝑐, 𝑐′) =
∑︁

𝑦∈𝑔−1(𝑐′)
𝑊 (𝑦|𝑐) . (4.7)

If 𝜇 is invariant by translations and 𝑓 is a linear encoder, then 𝜇𝑓 is also

invariant by translations. Therefore,

E (𝒞, 𝜇𝑓 , 𝑔) = 1
𝑞𝑘

∑︁
(𝑐,𝑐′)∈𝒞×𝒞

𝐺𝑔 (𝑐, 𝑐′) 𝜇𝑓 (𝑐 − 𝑐′, 0) .

Thus, writing 𝑢 = 𝑐 − 𝑐′,

E (𝒞, 𝜇𝑓 , 𝑔) = 1
𝑞𝑘

∑︁
𝑐∈𝒞

∑︁
𝑢∈𝒞

𝐺𝑔 (𝑐, 𝑐 − 𝑢) 𝜇𝑓 (𝑢, 0) = 1
𝑞𝑘

∑︁
𝑢∈𝒞

(︃∑︁
𝑐∈𝒞

𝐺𝑔 (𝑐, 𝑐 − 𝑢)
)︃

𝜇𝑓 (𝑢, 0) .

Proposition 4.2.3. [17] Let 𝒞 = {𝑐1, . . . , 𝑐𝑞𝑘} be an [𝑛, 𝑘, 𝛿]𝑞 linear code, 𝑔 a decoder and

𝜇 an error value function invariant by translations. Suppose, without loss of generality,

∑︁
𝑐∈𝒞

𝐺𝑔(𝑐, 𝑐 − 𝑐1) ≥ · · · ≥
∑︁
𝑐∈𝒞

𝐺𝑔(𝑐, 𝑐 − 𝑐𝑞𝑘).

Then, 𝑓 is a linear-Bayes encoder if, and only if,

𝜇𝑓 (𝑐1, 0) ≤ · · · ≤ 𝜇𝑓 (𝑐𝑞𝑘 , 0).

Even though the characterization obtained by Proposition 4.2.3 provides a

simple way to construct linear-Bayes encoders, invariance by translation is an artificial

condition for the majority of the applications. As we shall see, the general case is much

harder.

Suppose 𝒞 = {𝑐1, . . . , 𝑐𝑞𝑘}, then

E(𝒞, 𝜇𝑓 , 𝑔) = 1
𝑞𝑘

𝑞𝑘∑︁
𝑖=1

𝑞𝑘∑︁
𝑗=1

𝐺𝑔(𝑐𝑖, 𝑐𝑗)𝜇𝑓 (𝑐𝑖, 𝑐𝑗) (4.8)

where 𝐺𝑔 is as in (4.7). Using Equation (4.8), if 𝐴𝑔 = (𝑎𝑖𝑗) and 𝐵𝑓 = (𝑏𝑖𝑗) are matrices
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defined by

𝑎𝑖𝑗 = 𝐺𝑔(𝑐𝑖, 𝑐𝑗) and 𝑏𝑖𝑗 = 𝜇𝑓 (𝑐𝑖, 𝑐𝑗),

then

E(𝒞, 𝜇𝑓 , 𝑔) = 1
𝑞𝑘

𝑇𝑟(𝐴𝑔𝐵𝑓 )

where 𝑇𝑟(.) is the matrix trace function.

Given an encoder 𝑓 , if 𝑃 is a permutation matrix (𝑃 is obtained by permuting

the rows or columns of the identity matrix), then 𝐻 = 𝑃𝐵𝑓𝑃 𝑇 is a matrix constructed

by using an encoder ℎ, i.e., 𝐻 = 𝐵ℎ. In addition, if 𝑓 and ℎ are two encoders, there

is a permutation matrix 𝑃 such that 𝐵ℎ = 𝑃𝐵𝑓𝑃 𝑇 . Therefore, we have the following

theorem.

Theorem 4.2.4. Given a decoder 𝑔′, an encoder 𝑓 ′ and the corresponding matrices 𝐴𝑔′

and 𝐵𝑓 ′ , then

min
𝑓
E(𝒞, 𝜇𝑓 , 𝑔′) = 1

𝑞𝑘
min

𝑃
𝑇𝑟(𝐴𝑔′

𝑃𝐵𝑓 ′
𝑃 𝑡),

where the minimum on the left side is over all permutation matrices.

The previous characterization brings the Bayes encoder problem into a class

of well-studied problems, “minimize the trace of matrices”. Let 𝑓 be an encoder. If

𝜎 : [𝑞𝑘] → [𝑞𝑘] is a permutation (bijection) and 𝐵𝑓,𝜎 is the matrix with entries 𝐵𝑓,𝜎
𝑖𝑗 =

𝜇𝑓 (𝑐𝜎(𝑖), 𝑐𝜎(𝑗)), then the problem of finding a Bayes encoder is equivalent to the problem

of finding a permutation 𝜎 of the codewords such that 𝐴𝑔𝐵𝑓,𝜎 minimizes the trace (note

that 𝐵𝑓,𝜎 = 𝑃𝐵𝑓𝑃 𝑡 for some permutation matrix 𝑃 ). It is clear that the search space has

𝑞𝑘! elements (the number of permutations in a set with 𝑞𝑘 elements). In the next section

we will work with a particular (the simplest in terms of codes) case.

4.3 A particular Case

From now on, we will assume that the channel is a binary DSMC channel with

conditional probabilities given by

𝑊 (𝑦|𝑐) = (1 − 𝑝)𝑛

(︃
𝑝

1 − 𝑝

)︃𝑑𝐻(𝑦,𝑐)

,
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where 𝑦 and 𝑐 are words with length 𝑛, 0 ≤ 𝑝 ≤ 1/2 is the error probability of each

symbol and 𝑑𝐻 is the Hamming distance. Let us consider the unusual case of a code

with no redundancy at all, i.e., let 𝒞 be an [𝑛, 𝑛]2 code. In such a case, to find a Bayes

encoder-decoder pair is equivalent to find a Bayes encoder, since there is a unique decision

to be made: accept as true whatever the message you receive. Codes like those (without

redundancy) are rare but still may be used, as we can see in the recent use, for image

transmission, in the satellite CBERS-2 (http://www.cbers.inpe.br/ingles/). However,

more than looking for possible applications, we believe that understanding this instance

may be a key for the general case (where 𝒞 has redundancy).

We stress that a permutation 𝜎 ∈ 𝒮𝑛 acts on F𝑛
𝑞 by permuting the coordinates.

Proposition 4.3.1. If 𝒞 = F𝑛
𝑞 is a code without redundancy over a DSMC channel, then

the expected loss is invariant over permutations of the coordinates.

Proof. Let 𝑓 : ℐ → 𝒞 be an encoder minimizing the expected loss, without loss of

generality, suppose 𝑓(𝑖𝑗) = 𝑐𝑗. Let 𝜎 be a permutation within the code and denote

𝑐𝜎
𝑗 = (𝑐𝜎(1)

𝑗 , . . . , 𝑐
𝜎(𝑛)
𝑗 ). It is clear that there is a permutation 𝜏 over 𝑞𝑛 such that 𝑐𝜏(𝑗) = 𝑐𝜎

𝑗 .

Define ℎ : 𝒞 → 𝒞 such that ℎ(𝑐𝑗) = 𝑐𝜏(𝑗), as 𝑑𝐻(𝑐𝑖, 𝑐𝑗) = 𝑑𝐻(𝑐𝜏(𝑖), 𝑐𝜏(𝑗)) then ℎ ∘ 𝑓 is an

encoder satisfying

E(𝒞, 𝜇𝑓 , 𝑔) = E(𝒞, 𝜇ℎ∘𝑓 , 𝑔)

As an immediate consequency,

Corollary 4.3.2. When 𝒞 = F𝑛
𝑞 , there are at least 𝑛! Bayes encoders.

Suppose ℐ = {𝑖0, 𝑖1, . . . , 𝑖2𝑛−1} for some integer 𝑛, so that |ℐ|= 2𝑛. Motivated

by applications in image transmission, there is a natural normalized error value function

𝜇 in ℐ, namely:

𝜇(𝑖𝑠, 𝑖𝑡) = 1
(2𝑛 − 1)2 |𝑖𝑠 − 𝑖𝑡|2=

1
(2𝑛 − 1)2 |𝑠 − 𝑡|2 for all 𝑖𝑠, 𝑖𝑡 ∈ ℐ. (4.9)

Let 𝒞 = F𝑛
2 and consider 𝒞 = {𝑐1, . . . , 𝑐2𝑛} where the codewords are lexico-

graphically ordered, i.e., if 𝑐𝑖 = (𝑐𝑖
1, . . . , 𝑐𝑖

𝑛) and 𝑐𝑗 = (𝑐𝑗
1, . . . , 𝑐𝑗

𝑛), then

𝑖 ≤ 𝑗 ⇐⇒
𝑛∑︁

𝑙=1
𝑐𝑖

𝑙2𝑙−1 ≤
𝑛∑︁

𝑙=1
𝑐𝑗

𝑙 2𝑙−1.
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Setting 𝑗𝑠 = (𝑠/(2𝑛 − 1))2 for every 𝑠 ∈ {0, 1, . . . , 2𝑛 − 1}, the set {𝑗0, 𝑗1, . . . , 𝑗2𝑛−1} is the

image of 𝜇. Thus,

|𝐴𝑗𝑠|= 2(2𝑛 − 𝑠)

for every 𝑠 ∈ [2𝑛−1] and |𝐴𝑗0|= 2𝑛, where 𝐴𝑗𝑠 was defined in Proposition 4.2.2. Therefore,

E(𝒞, 𝜇𝑚𝑒𝑎𝑛, 𝑔) = 1
2𝑛

2𝑛∑︁
𝑖=1

2𝑛∑︁
𝑗 ̸=𝑖
𝑗=1

∑︀2𝑛−1
𝑠=1 (2𝑛 − 𝑠)𝑠2

2𝑛−1(2𝑛 − 1)3 𝑊 (𝑐𝑗|𝑐𝑖)

= (1 − 𝑝)𝑛

2𝑛

2𝑛∑︁
𝑖=1

2𝑛∑︁
𝑗 ̸=𝑖
𝑗=1

∑︀2𝑛−1
𝑠=1 (2𝑛 − 𝑠)𝑠2

2𝑛−1(2𝑛 − 1)3

(︃
𝑝

1 − 𝑝

)︃𝑑𝐻(𝑐𝑖,𝑐𝑗)

= (1 − 𝑝)𝑛

2𝑛(2𝑛 − 1)2

2𝑛∑︁
𝑖=1

2𝑛∑︁
𝑗 ̸=𝑖
𝑗=1

2𝑛−1(2𝑛 + 1)
3

(︃
𝑝

1 − 𝑝

)︃𝑑𝐻(𝑐𝑖,𝑐𝑗)

,

and the last equality holds because

1
322𝑛−2(2𝑛 − 1)(2𝑛 + 1) =

2𝑛−1∑︁
𝑠=1

(2𝑛 − 𝑠)𝑠2.

An encoder 𝑓 defined by 𝑓(𝑖𝑗) = 𝑐𝑗+1 is called a lexicographic encoder. For such an encoder

we have that

E(𝒞, 𝜇𝑓 , 𝑔) = (1 − 𝑝)𝑛

2𝑛(2𝑛 − 1)2

2𝑛∑︁
𝑖=1

2𝑛∑︁
𝑗 ̸=𝑖
𝑗=1

(𝑖 − 𝑗)2
(︃

𝑝

1 − 𝑝

)︃𝑑𝐻(𝑐𝑖,𝑐𝑗)

. (4.10)

It is intuitive and quite obvious that E(𝒞, 𝜇𝑓 , 𝑔) is independent on the encoder and decoder.

For 𝑝 = 0 and 𝑝 = 1/2,

E(𝒞, 𝜇𝑓 , 𝑔) = E(𝒞, 𝜇𝑚𝑒𝑎𝑛, 𝑔). (4.11)

Based on experimentations and the knowledge that the result is true in small dimensions

(the Example 4.3.4 describe the 8-dimensional case), we have the following conjecture:

Conjecture 4.3.3.

2𝑛∑︁
𝑖=1

2𝑛∑︁
𝑗 ̸=𝑖
𝑗=1

(𝑖 − 𝑗)2
(︃

𝑝

1 − 𝑝

)︃𝑑𝐻(𝑐𝑖,𝑐𝑗)

<
2𝑛∑︁
𝑖=1

2𝑛∑︁
𝑗 ̸=𝑖
𝑗=1

2𝑛−1(2𝑛 + 1)
3

(︃
𝑝

1 − 𝑝

)︃𝑑𝐻(𝑐𝑖,𝑐𝑗)

.

for every positive integer 𝑛 and every 0 < 𝑝 < 1/2.

If the previous conjecture is true, then for every 0 < 𝑝 < 1/2 the expected loss
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according to 𝑓 is smaller than the mean of the expected losses, i.e.,

E(𝒞, 𝜇𝑓 , 𝑔) < E(𝒞, 𝜇𝑚𝑒𝑎𝑛, 𝑔).

In the following, we shall describe a particular case (with 𝑛 = 8), based on the

256 gray levels of the RGB color model, which fits well with the expected loss 𝜇 described

in (4.9), in [18] two others error value functions were used in this context. In this case,

we manage to conclude that the expected loss obtained by the lexicographic encoder is

better than the mean of the expected losses.

Example 4.3.4. Suppose 𝑛 = 8 and that ℐ = {0, 1, . . . , 255} is the set of all gray colors

in the RGB color model (black is represented by 0 and white by 255). Then,

𝜇(𝑖𝑠, 𝑖𝑡) = 1
2552 |𝑖𝑠 − 𝑖𝑡|2=

1
2552 |𝑠 − 𝑡|2 ∀ 𝑖𝑠, 𝑖𝑡 ∈ ℐ.

Suppose 𝒞 = {𝑐1, . . . , 𝑐256} and 𝑓(𝑖𝑗) = 𝑐𝑗+1 a lexicographic encoder, for every 𝑗 ∈ [28]. It

follows that

E(𝒞, 𝜇𝑚𝑒𝑎𝑛, 𝑔) = (1 − 𝑝)8

16646400

28∑︁
𝑖=1

28∑︁
𝑗 ̸=𝑖
𝑗=1

32896
3

(︃
𝑝

1 − 𝑝

)︃𝑑𝐻(𝑐𝑖,𝑐𝑗)

= (1 − 𝑝)8

16646400

(︃
67371008𝑟

3 + 235798528𝑟2

3 + 471597056𝑟3

3 + 589496320𝑟4

3

+ 471597056𝑟5

3 + 235798528𝑟6

3 + 67371008𝑟7

3 + 8421376𝑟8

3

)︃

where 𝑟 = 𝑝/(1 − 𝑝). On the other hand,

E(𝒞, 𝜇𝑓 , 𝑔) = (1 − 𝑝)8

16646400

28∑︁
𝑖=1

28∑︁
𝑗 ̸=𝑖
𝑗=1

(𝑖 − 𝑗)2
(︃

𝑝

1 − 𝑝

)︃𝑑𝐻(𝑐𝑖,𝑐𝑗)

= (1 − 𝑝)8

16646400
(︁
6379776𝑟 + 40988416𝑟2 + 119295232𝑟3 + 195767040𝑟4

+ 193932032𝑟5 + 115625216𝑟6 + 38366976𝑟7 + 5462272𝑟8 ) .

Therefore,

𝑞(𝑟) = E(𝒞, 𝜇𝑓 , 𝑔)
E(𝒞, 𝜇𝑚𝑒𝑎𝑛, 𝑔) =

3(24921 + 160111𝑟 + 465997𝑟2 + 764715𝑟3 + 757547𝑟4 + 451661𝑟5 + 149871𝑟6 + 21337𝑟7)
32896(8 + 28𝑟 + 56𝑟2 + 70𝑟3 + 56𝑟4 + 28𝑟5 + 8𝑟6 + 𝑟7)
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for every 0 < 𝑟 < 1. Since the derivative

𝑞′(𝑟) = 62475(1 + 𝑟)6(28 + 56𝑟 + 70𝑟2 + 56𝑟3 + 28𝑟4 + 8𝑟5 + 𝑟6)
32896(8 + 28𝑟 + 56𝑟2 + 70𝑟3 + 56𝑟4 + 28𝑟5 + 8𝑟6 + 𝑟7)2 ,

is positive in the interval (0, 1), 𝑞 is strictly increasing in this interval. If 𝑟 = 1, then

𝑝 = 1/2, therefore, by (4.11), 𝑞(1) = 1. Hence, 0 < 𝑞(𝑟) < 1 for all 𝑟 ∈ (0, 1), thus for

every 𝑝 ∈ (0, 1/2),

E(𝒞, 𝜇𝑓 , 𝑔) < E(𝒞, 𝜇𝑚𝑒𝑎𝑛, 𝑔).

As we will see below, we have reasons to believe that the encoder 𝑓 as con-

structed is a Bayes encoder for the 𝑛-dimensional case. The graphic 4.1 represents, for

the 8-dimensional case, the expected losses for 𝑝 varying from 0 to 1/2. The lexicographic

encoder is represented by the red line. The blue dots correspond to encoders randomly

sampled from each 𝑝 in the set {0, 0.005, 0.01, . . . , 0.5}. This picture not only suggests that

lexicographic encoders are optimal, but they are rare and there is a large concentration

close to the mean encoder performance (the green line).

0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

Figure 4.1: p in the interval [0, 1/2].

The construction we did for the 8-dimensional case is similar for other dimen-

sions, but proving that lexicographic encoders are optimal for general 𝑛 and 𝑝 is still an

open problem.
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4.4 Expected Loss and Unequal Error Protection

Given a decoder 𝑔, an encoder 𝑓 and an error value function 𝜇, in this section

we propose a construction of codes with unequal error protection. The goal is to improve

the expected loss of the code obtained by the direct product of two codes, each one

“optimal” for the given parameters. Even though this construction may not be an optimal

construction, we will see that in some cases the performance of this code, according to

expected loss, is improved when compared to the product code.

Let ℐ = F𝑘
2 be the information set. Consider the following data to be given:

• 𝑊 is a binary DSMC;

• 𝑓 is a lexicographic encoder;

• 𝑔 is a minimum distance decoder determined by the Hamming metric 𝑑𝐻 ;

One of the existing formulations of unequal error protection (UEP) is the bit-

wise UEP, in this formulation, the coordinates (bits) of the information set are partitioned

into subsets and the decoding errors in different parts of bits are viewed as different kind

of errors. Since ℐ = F𝑘
2, we will assume that 𝑘 is a positive even integer and that the

first 𝑘/2 coordinates are less important than the last 𝑘/2 coordinates. In other words, the

last 𝑘/2 coordinates need more protection against errors than the first 𝑘/2 coordinates.

One usual approach [4] is to encode each space F𝑘/2
2 separately and take the Cartesian

product of the codes. Suppose the low-priority bits (the fist 𝑘/2 coordinates) are encoded

using an [𝑛1, 𝑘/2, 𝛿1]2 linear code 𝒞1 and that the high-priority bits are encoded with

an [𝑛2, 𝑘/2, 𝛿2]2 linear code 𝒞2 with 𝑛2 > 𝑛1. Therefore, the code 𝒞 = 𝒞1 × 𝒞2 has the

unequal error protection property with more protection devoted to the more significant

information. We will call such a code of a 2-levels product code (in order to recall that

the code was constructed using two levels of UEP).

There is a natural error value function associated with the 2-levels product

code, the one expressing the difference between errors that may occur in the two distinct

levels. Given 𝑣 = (𝑣1, . . . , 𝑣𝑘) ∈ F𝑘
2 and 𝑣′ = (𝑣′

1, . . . , 𝑣′
𝑘) ∈ F𝑘

2, let 𝑟 ∈ R+ with 𝑟 < 1 and
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let 𝜇𝑟 be an error value function defined by

𝜇𝑟(𝑣, 𝑣′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑣 = 𝑣′

𝑟 if ∑︀𝑘
𝑖=1(𝑣𝑖 − 𝑣′

𝑖)2𝑖−1 < 2𝑘/2+1

1 otherwise

.

This function outputs 1 if an error occurs in the high-priority bits and 𝑟 < 1 for errors

occurred in the low-priority bits. We recall that the number 𝑟 is an invariant depending

on the difference among errors occurred in the high-priority and low-priority bits.

In the information theory literature, it is common to reject a message if the

errors are above some threshold. Since we are assuming decoders with refusal probability

zero, it is more important to concentrate the errors in the less important information

coordinates (where the error value is low), and this is achieved by protecting more the

high-priority bits (where the error value is high). By using the concept of expected loss

in this ambient, we may allow more errors provided that they are concentrated in the

low-priority bits, therefore, in general, expected loss does not minimize the number of

expected errors.

The Plotkin’s construction is a well-known method to construct codes. In

particular, the Reed-Muller family of codes are obtained using this construction, see [3].

Basically, given an [𝑛1, 𝑘1, 𝛿1]2 code 𝒞1 and an [𝑛2, 𝑘2, 𝛿2]2 code 𝒞2 and suppose 𝑛1 = 𝑛2,

the Plotkin construction is the code 𝒞 given by

𝒞 = 𝒞1 * 𝒞2 = {(𝑢 + 𝑣, 𝑣) : 𝑢 ∈ 𝒞1 and 𝑣 ∈ 𝒞2}.

Here we generalize this construction. Suppose 𝑛1 ≤ 𝑛2, then consider an 𝑛2 × 𝑛1 matrix

𝐴 = (𝑎𝑖𝑗) such that 𝑎𝑖𝑗 ∈ F2. Hence, the 𝐴-generalized Plotkin’s construction is given by

𝒞 = 𝒞1 *𝐴 𝒞2 = {(𝑢 + 𝑣𝐴, 𝑣) : 𝑢 ∈ 𝒞1 and 𝑣 ∈ 𝒞2}.

When 𝑛1 = 𝑛2 and 𝐴 is the identity matrix, the generalized construction coincides with

the classical Plotkin’s construction. When 𝐴 is the null matrix, we have the Cartesian

product of two codes which is denoted by 𝒞1 × 𝒞2.

Suppose 𝑘1 = 𝑘2 and 𝑛1 < 𝑛2 (the information encoded in 𝒞2 is more pro-

tected). Note that the error value function 𝜇𝑟 is defined in such a way that errors oc-
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curred simultaneously in the high-priority and low-priority bits have the same error value

of the errors occurred only in the high priority bits. In other words, the high-priority bits

dominate the low-priority bits in terms of errors. Therefore, a good choice of a matrix 𝐴

would be the matrix 𝐴 having a maximal number of 𝑣 ∈ 𝒞2 such that 𝑣𝐴 ̸∈ 𝒞1. To do

so, we will describe the construction of 𝐴 used in our simulations which, we believe, due

to the previous observations, it is a reasonable construction. Let 𝛽 = {𝑐1, . . . , 𝑐𝑘1} be a

basis for 𝒞1 and consider

𝛽′ = {𝑐1, . . . , 𝑐𝑘1 , 𝑣1, . . . , 𝑣𝑛1−𝑘1}

a basis for F𝑛1
2 extended from 𝛽. If 𝑘1 > 𝑛1 − 𝑘1, choose 𝐴 having 𝑣𝑖 as its 𝑖-th row and

for every 𝑗 > 𝑛1 − 𝑘1 the 𝑗-th row of 𝐴 is null. Therefore, the image of 𝒞2 by 𝐴 is the

space generated by {𝑣1, . . . , 𝑣𝑛1−𝑘1}. If 𝑘1 ≤ 𝑛1 − 𝑘1 take 𝑣𝑖 as the 𝑖-th row of 𝐴 for every

𝑖 ≤ 𝑘1 and consider the remaining rows to be null. In this case, the image of 𝒞2 by 𝐴 is

the subspace generated by {𝑣1, . . . , 𝑣𝑘1}. Using the 𝐴-generalized Plotkin’s construction

according to the matrix 𝐴 previously constructed, we have the following conjecture:

Conjecture 4.4.1. Let 0 < 𝑝 < 1/2 be the error probability of the binary DSMC. For

every 0 < 𝑟 < 1,

E(𝒞1 *𝐴 𝒞2, 𝜇𝑟
𝑓 ′ , 𝑔′) ≤ E(𝒞1 × 𝒞2, 𝜇𝑟

𝑓 ′′ , 𝑔′′)

where 𝑓 ′ and 𝑓 ′′ are lexicographic encoders and 𝑔′ and 𝑔′′ are syndrome decoders according

to the Hamming metric.

The Best Known linear code 𝒞𝑏 is the code with length 𝑛 and dimension 𝑘

minimizing the error probability, among all known codes with the same parameters.

Conjecture 4.4.2. If 0 < 𝑝 < 1/2 is the error probability of the binary DSMC, then

there exists 0 < 𝑟0(𝑝) < 1 such that for every 𝑟 < 𝑟0(𝑝),

E(𝒞1 *𝐴 𝒞2, 𝜇𝑟
𝑓 ′ , 𝑔′) ≤ E(𝒞𝑏, 𝜇𝑟

𝑓 ′′ , 𝑔′′).

Also, if 𝑝 → 0 then 𝑟0(𝑝) → 0.

Besides the simulations suggesting the truthfulness of the two previous con-

jectures, the fact that the 𝐴-generalized Plotkin’s construction uses the coordinates of 𝒞1
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as redundancy for the code 𝒞2 suggests that the code 𝒞2 is even more protected. One of

the experiments that strengthen the truthfulness of such conjectures will be described in

the rest of this section as an example.

Example 4.4.3. Let 𝒞1 be a [6, 3, 3]2 code and 𝒞2 be a [10, 3, 5]2 code with generator

matrices

𝐺1 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦ and 𝐺2 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 1 0 1 1 0 0 1

0 1 0 1 1 0 1 0 1 0

0 0 1 1 1 1 1 1 0 0

⎤⎥⎥⎥⎥⎥⎦
respectively. Let 𝒞3 be the best known linear code with parameters [16, 6, 6]2. By using the

Magma Computational Algebra System version 2.21-10, this code has generator matrix

𝐺3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0

0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1

0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1

0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1

0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0

0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Consider the 10 × 6 matrix 𝐴 given by

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

07×6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where 07×6 is a null submatrix with order 7 × 6. Then, the code 𝒞1 *𝐴 𝒞2 has generator

matrix

𝐺4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1

0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0

0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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In this scenario, considering the error probability 𝑝 of the binary DSMC to be

0.001, 0.01, 0.1 and 0.2 and considering 𝑟 (𝑟 is the parameter given by the error value

function 𝜇𝑟) as a variable, we have the following graphics:
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Note that the previous graphs were plotted using 𝑟 ∈ (0, 0.1), since the for small error

probability 𝑝, the lines are so close that we cannot distinguish them if we would plot for

every 𝑟 in the interval (0, 1). Due to the characterization of 𝜇𝑟, it is possible to prove that

E(𝒞, 𝜇𝑟
𝑓 , 𝑔) is linear in 𝑟. Hence, by analyzing the inclination of these straight lines (what

was done using Magma), we get that for every 𝑝 ∈ {0.001, 0.01, 0.1, 0.2} and 0 ≤ 𝑟 ≤ 1,

E(𝒞1 *𝐴 𝒞2, 𝜇𝑟
𝑓 ′ , 𝑔′) ≤ E(𝒞1 × 𝒞2, 𝜇𝑟

𝑓 ′′ , 𝑔′′)

as expected. Furthermore, comparing the 𝐴-generalized Plotkin’s construction with the

best known linear code, using the same values of 𝑝, we get the following graphics:

Direct Product A-Generalized Plotkin's Construction
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Best Known A-Generalized Plotkin's Construction

In order to make visible the intersection points of lines in the graphs, the

interval plotted for both the first and second graphs were reduced. Note that the 4

graphs suggest that the intersection point converges to zero if 𝑝 → 0. We stress that in

this case we can find the exact point of intersection of the two straight lines since the

dimension is small and can be computationally calculated.
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FUTURE PERSPECTIVES

Extended Poset Metrics

By characterizing a big family of metrics, the description of all possible de-

coders with some characteristics can be solved, this would be very impressive if this family

of metrics respect some particular construction, as in the poset metrics. Motivated by

this characterization problem, we will propose an even more general family of metrics

than the poset one.

Given a set 𝑌 , remark that any subset 𝑋 ⊂ 𝒫(𝑌 ) of the powerset of 𝑌 is

a poset with the inclusion relation. In the following, consider 𝑋 ⊂ 𝒫(𝑌 ) such that

𝑌 ⊂ ∪𝐴∈𝑋𝐴. Remark that if 𝐴, 𝐵 ∈ 𝑋 and 𝐴 ⊂ 𝐵, 𝐵 is said a covering of 𝐴 if there is

no 𝐶 ∈ 𝑋 such that 𝐴  𝐶  𝐵. Given a poset 𝑃 = (𝑋,6) over 𝑋, if 𝐵 ⊂ 𝑌 and 𝐼 is an

ideal in 𝑃 such that 𝐵 ⊂ ∪𝐴∈𝐼𝐴, 𝐼 is a cover ideal of 𝐵 if there is no ideal 𝐽 in 𝑃 such

that 𝐵 ⊂ ∪𝐴∈𝐽𝐴 and |𝐽 |< |𝐼|. Denote by 𝑁𝑃 (𝐵) the cardinality of the ideal covering 𝐵,

𝑁𝑃 (𝐵) = min{|𝐼| : 𝐼 covers 𝐵}.

If 𝐼 and 𝐽 are cover ideals of 𝐵, then |𝐼|= |𝐽 |, therefore the function 𝑁𝑃 is well defined.

Proposition 4.4.4. 𝑁𝑃 (𝐴 ∪ 𝐵) ≤ 𝑁𝑃 (𝐴) + 𝑁𝑃 (𝐵)

Proof. If 𝐼 and 𝐽 are ideals covering 𝐴 and 𝐵 respectively, then 𝐼 ∪𝐽 is an ideal satisfying

𝐴 ∪ 𝐵 ⊂ 𝐼 ∪ 𝐽 , then there is an ideal 𝑈 covering 𝐴 ∪ 𝐵 such that 𝐴 ∪ 𝐵 ⊂ 𝑈 ⊂ 𝐼 ∪ 𝐽 ,

therefore 𝑁𝑃 (𝐴 ∪ 𝐵) ≤ 𝑁𝑃 (𝐴) + 𝑁𝑃 (𝐵).

Definition 4.4.5. With the notations above, supposing 𝑌 = [𝑛], if 𝑥 ∈ F𝑛
𝑞 , the extended

poset 𝑃 -weight is defined by being the smallest cardinality of the ideals covering the

support of 𝑥,

𝑤𝑃 (𝑥) = 𝑁𝑃 (𝑠𝑢𝑝𝑝(𝑥)).
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Proposition 4.4.6. Extended poset weights preserve support.

Proof. If 𝑤𝑃 is an extended poset weight and 𝑥, 𝑦 ∈ F𝑛
𝑞 are vectors such that 𝑠𝑢𝑝𝑝(𝑥) ⊂

𝑠𝑢𝑝𝑝(𝑦), then every ideal covering 𝑠𝑢𝑝𝑝(𝑦) is an ideal containing 𝑠𝑢𝑝𝑝(𝑥), then 𝑤𝑃 (𝑥) ≤

𝑤𝑃 (𝑦).

The weight function 𝑤 is clearly non-negative, furthermore, 𝑤(𝑥) = 0 if, and

only if, 𝑥 = 0 since [𝑛] ⊂ ∪𝐴∈𝑋𝐴. Given 𝑥, 𝑦 ∈ F𝑛
𝑞 , because 𝑠𝑢𝑝𝑝(𝑥 + 𝑦) ⊂ 𝑠𝑢𝑝𝑝(𝑥) ∪

𝑠𝑢𝑝𝑝(𝑦), by Propositions 4.4.4 and 4.4.6, it follows that 𝑤(𝑥+𝑦) ≤ 𝑤(𝑥)+𝑤(𝑦). Therefore,

the extended poset weight 𝑤𝑃 is a norm function and metrics can be defined according to

these norms.

Definition 4.4.7. Given an extended poset weight 𝑤𝑃 , the extended metric (or extended

𝑃 -metric) is the metric induced by 𝑤𝑃 , i.e.,

𝑑𝑃 (𝑥, 𝑦) = 𝑤𝑃 (𝑥 − 𝑦)

for every 𝑥, 𝑦 ∈ F𝑛
𝑞 .

Despite the definition of these metrics is quite broad, these metrics possess a

nice structure, indeed, they are invariant by translations since are defined by norms, and

these norms preserve support, as stated in Proposition 4.4.6.

In [11], it was showed that, up to a decoding equivalence, any metric space

may be embedded into a hypercube with the Hamming metric. Therefore, for decoding

purposes, the Hamming metric can be always used, but the decoding complexity may in-

clease since the embedding immerse the code into a higher dimensional space. A natural

question rises when working in this level of generality, among the metrics preserving sup-

port, does the family of extended poset metrics characterizes, up to decoding equivalence,

any minimum distance decoder? We do not have the answer for this question but seems

to be a fruitful line of research.

Better Hierarchical Bounds

The set 𝒫𝑛 of all posets over [𝑛] is, by itself, a poset, as we saw in Chapter 2.

If we consider the graph that has 𝒫𝑛 as the set of vertices and an edge connects 𝑃 to 𝑄 if,
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and only if, 𝑃 covers 𝑄 or 𝑄 covers 𝑃 , then we have a natural distance defined between

two elements 𝑃, 𝑄 ∈ 𝒫𝑛: 𝑑 (𝑃, 𝑄) is the minimal length of a path in the graph connecting

𝑃 to 𝑄. We remark that given the upper and lower neighbors 𝑃 − and 𝑃 +, in general,

there may be a hierarchical poset 𝑄 with 𝑑 (𝑃, 𝑄) ≤ 𝑑 (𝑃, 𝑃 −) and 𝑑 (𝑃, 𝑄) ≤ 𝑑 (𝑃, 𝑃 +).

It is possible that this finer notion of proximity of posets allow us to determine better

bounds than the ones obtained by the upper and lower neighbors 𝑃 + and 𝑃 −.
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