7,073 research outputs found

    Gold coated carbon nanotube surfaces as low force electrical contacts for MEMS devices: part 1

    No full text
    An experimental investigation of a gold coated vertically aligned carbon nanotube surfaces is undertaken to determine the limits of the electrical contact performance over a large number of switching cycles under low force conditions and with current loading (1mA-50mA at 4V). The multi-walled CNT’s (MWCNT’s) are synthesized on a silicon planar and sputter coated with a gold film. The planar surfaces are mounted on the tip of a PZT actuator and mated with a coated Au hemispherical probe. The electrical load is selected to reflect typical MEMs relay loads with a 4V supply, 1 and 10mA current load with an applied force of 1mN. The surfaces tested maintain a stable contact resistance over 106 switching cycles. To determine the limits, the contact force is increased to 3mN under dry circuit conditions and the current increased at the 1mN load to 20mA-50mA. The surfaces are compared with a reference Au-Au contact under the same experimental conditions. For the surfaces investigated the current loading limit was determined to be 20mA where the contacts failed after 50x106 cycles

    Low force electrical switching using gold coated vertically aligned multi-walled carbon nanotubes surfaces

    No full text
    Gold coated vertically aligned multi-walled carbon-nanotubes (Au/MWCNT) surfaces are investigated to determine the electrical contact performance under low force conditions with repeated load cycling. The multi-walled CNT's are synthesized on silicon planar and sputter coated with a gold film. These planar surfaces are mounted on the tip of a PZT actuator and mated with a coated Au hemispherical probe. The load is typical of MEMs devices, with a 4V supply, 1 and 10mA current, and applied force of 1mN. The contact resistance (Rc) is monitored with the repeated loading cycles (over 1000 and a million cycle) to determine reliability and durability testing. The surfaces are compared with a reference Au-Au contact under the same experimental conditions. This study shows the potential for the application of CNT surfaces as an interface in low force electrical contact applications

    Zinc-rich paint coatings containing either ionic surfactant-modified or functionalized multi-walled carbon nanotube-supported polypyrrole utilized to protect cold-rolled steel against corrosion

    Get PDF
    The intense anodic action of sacrificial zinc pigments ensured viable galvanic function of the highly porous liquid zinc-rich paints (ZRPs) result in deteriorated long-term corrosion resistance often accompanied by cathodic delamination phenomena. In our approach, such a efficacy problem related to the corrosion preventive function of ZRPs is addressed by the application of intimately structured anodic inhibitor particles composed of nano-size alumina and either polyelectrolyte-modified or chemically functionalized multi-walled carbon nanotubes (MWCNT) supported polypyrrole (PPy) in one specific zinc-rich hybrid paint formulation providing balanced active–passive protective functionality. High dispersity of the nanotube-free PPy-deposited inhibitor particles (PDIPs) with uneven polymer distribution on the alumina carrier was confirmed by transmission electron microscopy (TEM) observations. Furthermore, the MWCNT-embedded PDIPs indicated almost complete surface coverage of the alumina-nanotube carriers by PPy with decreased microstructure dispersity which is attributed to the effect of double-flocculants type co-deposition of the oppositely charged polymers causing coalescence of the modified particles. Depending on the amount of the nanotubes and their proportion to the quantities of the deposited PPy and polyelectrolyte as well as the concentration of the surfactant, varied micron-scale association of the PDIPs in the suspensions of dissolved alkyd matrix was disclosed by rheology characterization carried out at particular solid contents similar to hybrid paint formulation. The evenly distributed but less densely packed nano-structure of PPy was evidenced on the polyelectrolyte-modified nanotubes by Fourier-transform infrared (FTIR) spectroscopy whereas more compact polymer film formation was confirmed on the surface of functionalized nanotubes. According to the greater electrical conductivity, enhanced electroactivity and reversibility of the nanotube-embedded PDIPs were indicated over the nanotube-free particles by cyclic voltammetry, depending on the type and the amount of the nanotubes and their modification. Protection function of the hybrid paint coatings (formulated with spherical zinc pigment at 70 wt.%) was investigated by immersion and salt-spray chamber tests over 254 and 142 day periods, respectively. Firm barrier nature of the nanotube-embedded PDIP contained hybrids was proved by electrochemical impedance spectroscopy (EIS) and radio-frequency glow-discharge optical-emission-spectroscopy (RF-GD-OES). Furthermore, due to the increased conductivity of the nanotube-embedded PDIPs cemented in epoxy primers optimally at 0.4 and 0.6 wt.%, altered corrosion preventive behaviour of the hybrid coatings was indicated by the positively polarized open-circuit potentials (OCPs) and the X-ray photoelectron spectroscopy (XPS) detected lower relative quantities of the interfacially accumulated zinc corrosion products, moderate oxidative degradation of the epoxy vehicle. Decreasing oxidative conversion of iron at the surface was indicated by XPS found to correlate with the increasing intensity of zinc corrosion and decreasing oxidative degradation of the epoxy binder, according to the higher nanotube contents of hybrid coatings. In addition, inhibited zinc corrosion caused low rate of oxidative degradation of epoxy, allowing increased durability of coating adhesion and cohesion thereby ensuring reliable protection by zinc-rich compositions. As a conclusion, modified or functionalized MWCNTs acting as unexchangeable doping agents promote enhanced reversibility and increased conductivity of PPy, forming nano-size inhibitor particles with advanced features. Thus, such inhibitor nano-particles in zinc-rich hybrid compositions afford improved barrier and high efficiency galvanic–cathodic corrosion preventive function, exceeding long-term protection capability of the conventional ZRPs

    Local probing of the field emission stability of vertically aligned multiwalled carbon nanotubes

    Full text link
    Metallic cantilever in high vacuum atomic force microscope has been used as anode for field emission experiments from densely packed vertically aligned multi-walled carbon nanotubes. The high spatial resolution provided by the scanning probe technique allowed precise setting of the tip-sample distance in the submicron region. The dimension of the probe (curvature radius below 50nm) allowed to measure current contribution from sample areas smaller than 1um^2. The study of long-term stability evidenced that on these small areas the field emission current remains stable (within 10% fluctuations) several hours (at least up to 72 hours) at current intensities between 10-5A and 10-8A. Improvement of the current stability has been observed after performing long-time Joule heating conditioning to completely remove possible adsorbates on the nanotubes.Comment: 15 pages, 7 figure

    Elaboration and study of the thermo-mechanical properties of an aligned cnt - polypropylene nanocomposite by twin-screw mixer

    Get PDF
    This study presents first the fabrication of a nanocomposite material based on Multi-Walled Carbon Nanotubes, and on a thermoplastic polymer matrix. First, a twin-screw mixer had been employed for preparing polypropylene nanocomposites loaded at 0.1, 1, 2, and 5wt% of MWCNT. Second, a characterization of rheological behavior for polypropylene as well as polypropylene/multi-walled carbon nanotube mixtures, at three temperatures (180, 200, and 220 °C,) has been carried out using cone and plate rheometer. Then, its thermomechanical properties have been studied. The work demonstrates how the addition of functionalized CNTs to a polypropylene will allow it to act as thermal conductor rather than as insulator

    The Utility of Nanocomposites in Fire Retardancy

    Get PDF
    Nanocomposites have been shown to significantly reduce the peak heat release rate, as measured by cone calorimetry, for many polymers but they typically have no effect on the oxygen index or the UL-94 classification. In this review, we will cover what is known about the processes by which nanocomposite formation may bring this about. Montmorillonite will be the focus in this paper but attention will also be devoted to other materials, including carbon nanotubes and layered double hydroxides. A second section will be devoted to combinations of nanocomposite formation with conventional (and unconventional) fire retardants. The paper will conclude with a section attempting to forecast the future

    Sonocatalytic degradation of methylene blue by a novel sno2-fe3o4@mwcnt hybrid nanocatalyst under ultrasonic irradiation

    Get PDF
    In the present work, SnO2-Fe3O4@MWCNT nanocatalyst was fabricated according to a sonochemical-hydrothermal procedure. The surface morphology and structure analyses of the synthesized SnO2-Fe3O4@MWCNT were investigated by transmission electron microscope (TEM), X-ray diffraction (XRD), Raman spectroscopy, EDS, FTIR and BET analyses. The degradation efficiency of SnO2-Fe3O4@MWCNT nanocatalyst in MB solution was tested by several experimental conditions such as SnO2-Fe3O4@MWCNT dosage (8-20 mg/L), initial MB concentration (20-50 mg/L), initial solution pH (5-9), and ultrasonic output power (37-60 kHz). SnO2-Fe3O4@MWCNT nanocatalyst retained its efficiency as 85% at common experimental conditions of 16 mg/L of SnO2-Fe3O4@MWCNTs, 45 mg/L of MB, pH of 8, H2O2 of 15 mM, and 60 kHz in 60 min under ultrasonic irradiation. In addition, the optimum experiment conditions for SnO2-Fe3O4@MWCNTs in MB degradation were investigated. The experiment result showed that the degradation efficiency of MB was increased by adding H2O2 to the reaction medium due to forming more free radicals. Further, it was detected that OH center dot radicals were determined to be the dominant oxidative species in MB degradation using SnO2-Fe3O4@MWCNT catalyst. The reuse tests showed that SnO2-Fe3O4@MWCNT sonocatalyst preserved its very stable structure after using the same catalyst 5 times. The intermediates and by-products after MB degradation using the catalyst were indicated by GC-MS analysis. Overall the results showed that the SnO2-Fe3O4@MWCNT sonocatalyst has excellent potential for treating organic pollutants in wastewater

    Super-Hydrophobic Multi-Walled Carbon Nanotube Coatings for Stainless Steel

    Full text link
    We have taken advantage of the native surface roughness and the iron content of AISI 316 stainless steel to direct grow multi-walled carbon nanotube (MWCNT) random networks by chemical vapor deposition (CVD) at low-temperature (<1000< 1000^{\circ}C), without the addition of any external catalysts or time-consuming pre-treatments. In this way, super-hydrophobic MWCNT films on stainless steel sheets were obtained, exhibiting high contact angle values (154154^{\circ}) and high adhesion force (high contact angle hysteresis). Furthermore, the investigation of MWCNT films at scanning electron microscopy (SEM) reveals a two-fold hierarchical morphology of the MWCNT random networks made of hydrophilic carbonaceous nanostructures on the tip of hydrophobic MWCNTs. Owing to the Salvinia effect, the hydrophobic and hydrophilic composite surface of the MWCNT films supplies a stationary super-hydrophobic coating for conductive stainless steel. This biomimetical inspired surface not only may prevent corrosion and fouling but also could provide low-friction and drag-reduction.Comment: 6 pages, 3 figure
    corecore