129 research outputs found

    Ultrafast and low-energy switching in voltage-controlled elliptical pMTJ

    Full text link
    Switching magnetization in a perpendicular magnetic tunnel junction (pMTJ) via voltage controlled magnetic anisotropy (VCMA) has shown the potential to markedly reduce the switching energy. However, the requirement of an external magnetic field poses a critical bottleneck for its practical applications. In this work, we propose an elliptical-shaped pMTJ to eliminate the requirement of providing an external field by an additional circuit. We demonstrate that a 10 nm thick in-plane magnetized bias layer (BL) separated by a metallic spacer of 3 nm from the free layer (FL) can be engineered within the MTJ stack to provide the 50 mT bias magnetic field for switching. By conducting macrospin simulation, we find that a fast switching in 0.38 ns with energy consumption as low as 0.3 fJ at a voltage of 1.6 V can be achieved. Furthermore, we study the phase diagram of switching probability, showing that a pulse duration margin of 0.15 ns is obtained and a low-voltage operation (~ 1 V) is favored. Finally, the MTJ scalability is considered, and it is found that scaling-down may not be appealing in terms of both the energy consumption and the switching time for the precession based VCMA switching.Comment: There are 28 pages and 5 figure

    Spin-Transfer-Torque (STT) Devices for On-chip Memory and Their Applications to Low-standby Power Systems

    Get PDF
    With the scaling of CMOS technology, the proportion of the leakage power to total power consumption increases. Leakage may account for almost half of total power consumption in high performance processors. In order to reduce the leakage power, there is an increasing interest in using nonvolatile storage devices for memory applications. Among various promising nonvolatile memory elements, spin-transfer torque magnetic RAM (STT-MRAM) is identified as one of the most attractive alternatives to conventional SRAM. However, several design challenges of STT-MRAM such as shared read and write current paths, single-ended sensing, and high dynamic power are major challenges to be overcome to make it suitable for on-chip memories. To mitigate such problems, we propose a domain wall coupling based spin-transfer torque (DWCSTT) device for on-chip caches. Our proposed DWCSTT bit-cell decouples the read and the write current paths by the electrically-insulating magnetic coupling layer so that we can separately optimize read operation without having an impact on write-ability. In addition, the complementary polarizer structure in the read path of the DWCSTT device allows DWCSTT to enable self-referenced differential sensing. DWCSTT bit-cells improve the write power consumption due to the low electrical resistance of the write current path. Furthermore, we also present three different bit-cell level design techniques of Spin-Orbit Torque MRAM (SOT-MRAM) for alleviating some of the inefficiencies of conventional magnetic memories while maintaining the advantages of spin-orbit torque (SOT) based novel switching mechanism such as low write current requirement and decoupled read and write current path. Our proposed SOT-MRAM with supporting dual read/write ports (1R/1W) can address the issue of high-write latency of STT-MRAM by simultaneous 1R/1W accesses. Second, we propose a new type of SOT-MRAM which uses only one access transistor along with a Schottky diode in order to mitigate the area-overhead caused by two access transistors in conventional SOT-MRAM. Finally, a new design technique of SOT-MRAM is presented to improve the integration density by utilizing a shared bit-line structure

    Nanoscale Nonvolatile Memory Circuit Design using Emerging Spin Transfer Torque Magnetic Random Access Memory

    Get PDF
    Title from PDF of title page, viewed August 25, 2017Thesis advisor: Masud H ChowdhuryVitaIncludes bibliographical references (pages 67-71)Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2016The spin transfer torque magnetic random access memory (STT-MRAM) is suitable for embedded and second level cache memories in the mobile CPUs. STT-MRAM is a highly potential nonvolatile memory (NVM) technology. There has been a growing demand to improve the efficiency and reliability of the NVM circuits and architectures. we present a modified STT MRAM cell design, where each cell is comprised of one magnetic tunneling junction (MTJ) device and a regular access transistor. We provide analysis of device, circuit and memory architecture level issues of STT-MRAM. The Modified 1M1T STT-MRAM bit cell circuit offers simpler and more area- and power- efficient design compared to the existing STT-MRAM cell design. Some device-circuit co-design issues are investigated to demonstrate ways to reduce delay in MRAM circuits based on MTJ. An 8x8 conventional MRAM array is implemented using the existing 2M2T cell and the Modified 1M1T cell to perform a comparative analysis at the architecture level. The non-volatile nature of the proposed STT-MRAM is verified through SPICE simulation. The circuit implementations and simulations are performed for 45nm technology node. As the transistor scales down it is prone to subthreshold leakage, gate-dielectric leakage, Short channel effect and drain induced barrier lowering. Now alternative of Access transistor is needed. We are using FinFET as access transistor in the STT-MRAM bit cell. FinFET based bit cell is designed to get an advantage of scaling down. Analysis is done and proven that the power consumption, standalone leakage current is less when compared to NMOS based STT-MRAM bit cell. Also determined FinFET based bit cell produces less access time to access the logic value from MTJ. Now, Industry is looking to have computational and storage capability together and that can be achieved through STT-MRAM. Addition to that there is a possibility to reduce power consumption and leakage more. So replacing FinFET technology with Carbon Nano Tube Field Effect Transistor (CNTFET) is required. As the conventional STT-MRAM requires certain current to reverse the magnetization of MTJ and one CNTFET alone cannot produce sufficient current required to store the logic value into MTJ. So new Bit cell is proposed using 3 CNTFET and 1 MTJ, this bit cell is capable of storing 3 logic values at a time that is capable of doing computation and act as AND gate. Also it utilizes less power to be in active region. Sensing of any memory system is one of the main challenge in industry to get better performance with less resources. Conventional Sense Amplifier (SA) used to sense the value from SRAM, DRAM memory system is also used to sense the STT-MRAM memory. But use of conventional SA is prone to some error. Modified Sense Amplifier is designed to overcome the error produced from the conventional SA. It is compared with all the existing SA to get the performance details of the modified SA.Introduction -- Planar NMOS based STT-MRAM bit cell analysis and circuit designing -- Performance improvement using FINFET based STT-MRAM circuit design -- Logic-in-memory using CNT-FET based STT-MRAM bit cell and optimization -- Error free sense amplifier design for STT-MRAM nonvolatile memor

    Towards Energy-Efficient and Reliable Computing: From Highly-Scaled CMOS Devices to Resistive Memories

    Get PDF
    The continuous increase in transistor density based on Moore\u27s Law has led us to highly scaled Complementary Metal-Oxide Semiconductor (CMOS) technologies. These transistor-based process technologies offer improved density as well as a reduction in nominal supply voltage. An analysis regarding different aspects of 45nm and 15nm technologies, such as power consumption and cell area to compare these two technologies is proposed on an IEEE 754 Single Precision Floating-Point Unit implementation. Based on the results, using the 15nm technology offers 4-times less energy and 3-fold smaller footprint. New challenges also arise, such as relative proportion of leakage power in standby mode that can be addressed by post-CMOS technologies. Spin-Transfer Torque Random Access Memory (STT-MRAM) has been explored as a post-CMOS technology for embedded and data storage applications seeking non-volatility, near-zero standby energy, and high density. Towards attaining these objectives for practical implementations, various techniques to mitigate the specific reliability challenges associated with STT-MRAM elements are surveyed, classified, and assessed herein. Cost and suitability metrics assessed include the area of nanomagmetic and CMOS components per bit, access time and complexity, Sense Margin (SM), and energy or power consumption costs versus resiliency benefits. In an attempt to further improve the Process Variation (PV) immunity of the Sense Amplifiers (SAs), a new SA has been introduced called Adaptive Sense Amplifier (ASA). ASA can benefit from low Bit Error Rate (BER) and low Energy Delay Product (EDP) by combining the properties of two of the commonly used SAs, Pre-Charge Sense Amplifier (PCSA) and Separated Pre-Charge Sense Amplifier (SPCSA). ASA can operate in either PCSA or SPCSA mode based on the requirements of the circuit such as energy efficiency or reliability. Then, ASA is utilized to propose a novel approach to actually leverage the PV in Non-Volatile Memory (NVM) arrays using Self-Organized Sub-bank (SOS) design. SOS engages the preferred SA alternative based on the intrinsic as-built behavior of the resistive sensing timing margin to reduce the latency and power consumption while maintaining acceptable access time

    Cryogenic Memory Technologies

    Full text link
    The surging interest in quantum computing, space electronics, and superconducting circuits has led to new developments in cryogenic data storage technology. Quantum computers promise to far extend our processing capabilities and may allow solving currently intractable computational challenges. Even with the advent of the quantum computing era, ultra-fast and energy-efficient classical computing systems are still in high demand. One of the classical platforms that can achieve this dream combination is superconducting single flux quantum (SFQ) electronics. A major roadblock towards implementing scalable quantum computers and practical SFQ circuits is the lack of suitable and compatible cryogenic memory that can operate at 4 Kelvin (or lower) temperature. Cryogenic memory is also critically important in space-based applications. A multitude of device technologies have already been explored to find suitable candidates for cryogenic data storage. Here, we review the existing and emerging variants of cryogenic memory technologies. To ensure an organized discussion, we categorize the family of cryogenic memory platforms into three types: superconducting, non-superconducting, and hybrid. We scrutinize the challenges associated with these technologies and discuss their future prospects.Comment: 21 pages, 6 figures, 1 tabl

    Gestión de jerarquías de memoria híbridas a nivel de sistema

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadoras y Automática y de Ku Leuven, Arenberg Doctoral School, Faculty of Engineering Science, leída el 11/05/2017.In electronics and computer science, the term ‘memory’ generally refers to devices that are used to store information that we use in various appliances ranging from our PCs to all hand-held devices, smart appliances etc. Primary/main memory is used for storage systems that function at a high speed (i.e. RAM). The primary memory is often associated with addressable semiconductor memory, i.e. integrated circuits consisting of silicon-based transistors, used for example as primary memory but also other purposes in computers and other digital electronic devices. The secondary/auxiliary memory, in comparison provides program and data storage that is slower to access but offers larger capacity. Examples include external hard drives, portable flash drives, CDs, and DVDs. These devices and media must be either plugged in or inserted into a computer in order to be accessed by the system. Since secondary storage technology is not always connected to the computer, it is commonly used for backing up data. The term storage is often used to describe secondary memory. Secondary memory stores a large amount of data at lesser cost per byte than primary memory; this makes secondary storage about two orders of magnitude less expensive than primary storage. There are two main types of semiconductor memory: volatile and nonvolatile. Examples of non-volatile memory are ‘Flash’ memory (sometimes used as secondary, sometimes primary computer memory) and ROM/PROM/EPROM/EEPROM memory (used for firmware such as boot programs). Examples of volatile memory are primary memory (typically dynamic RAM, DRAM), and fast CPU cache memory (typically static RAM, SRAM, which is fast but energy-consuming and offer lower memory capacity per are a unit than DRAM). Non-volatile memory technologies in Si-based electronics date back to the 1990s. Flash memory is widely used in consumer electronic products such as cellphones and music players and NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. The rapid increase of leakage currents in Silicon CMOS transistors with scaling poses a big challenge for the integration of SRAM memories. There is also the case of susceptibility to read/write failure with low power schemes. As a result of this, over the past decade, there has been an extensive pooling of time, resources and effort towards developing emerging memory technologies like Resistive RAM (ReRAM/RRAM), STT-MRAM, Domain Wall Memory and Phase Change Memory(PRAM). Emerging non-volatile memory technologies promise new memories to store more data at less cost than the expensive-to build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. These new memory technologies combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the non-volatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. The research and information on these Non-Volatile Memory (NVM) technologies has matured over the last decade. These NVMs are now being explored thoroughly nowadays as viable replacements for conventional SRAM based memories even for the higher levels of the memory hierarchy. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional(3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years...En el campo de la informática, el término ‘memoria’ se refiere generalmente a dispositivos que son usados para almacenar información que posteriormente será usada en diversos dispositivos, desde computadoras personales (PC), móviles, dispositivos inteligentes, etc. La memoria principal del sistema se utiliza para almacenar los datos e instrucciones de los procesos que se encuentre en ejecución, por lo que se requiere que funcionen a alta velocidad (por ejemplo, DRAM). La memoria principal está implementada habitualmente mediante memorias semiconductoras direccionables, siendo DRAM y SRAM los principales exponentes. Por otro lado, la memoria auxiliar o secundaria proporciona almacenaje(para ficheros, por ejemplo); es más lenta pero ofrece una mayor capacidad. Ejemplos típicos de memoria secundaria son discos duros, memorias flash portables, CDs y DVDs. Debido a que estos dispositivos no necesitan estar conectados a la computadora de forma permanente, son muy utilizados para almacenar copias de seguridad. La memoria secundaria almacena una gran cantidad de datos aun coste menor por bit que la memoria principal, siendo habitualmente dos órdenes de magnitud más barata que la memoria primaria. Existen dos tipos de memorias de tipo semiconductor: volátiles y no volátiles. Ejemplos de memorias no volátiles son las memorias Flash (algunas veces usadas como memoria secundaria y otras veces como memoria principal) y memorias ROM/PROM/EPROM/EEPROM (usadas para firmware como programas de arranque). Ejemplos de memoria volátil son las memorias DRAM (RAM dinámica), actualmente la opción predominante a la hora de implementar la memoria principal, y las memorias SRAM (RAM estática) más rápida y costosa, utilizada para los diferentes niveles de cache. Las tecnologías de memorias no volátiles basadas en electrónica de silicio se remontan a la década de1990. Una variante de memoria de almacenaje por carga denominada como memoria Flash es mundialmente usada en productos electrónicos de consumo como telefonía móvil y reproductores de música mientras NAND Flash solid state disks(SSDs) están progresivamente desplazando a los dispositivos de disco duro como principal unidad de almacenamiento en computadoras portátiles, de escritorio e incluso en centros de datos. En la actualidad, hay varios factores que amenazan la actual predominancia de memorias semiconductoras basadas en cargas (capacitivas). Por un lado, se está alcanzando el límite de integración de las memorias Flash, lo que compromete su escalado en el medio plazo. Por otra parte, el fuerte incremento de las corrientes de fuga de los transistores de silicio CMOS actuales, supone un enorme desafío para la integración de memorias SRAM. Asimismo, estas memorias son cada vez más susceptibles a fallos de lectura/escritura en diseños de bajo consumo. Como resultado de estos problemas, que se agravan con cada nueva generación tecnológica, en los últimos años se han intensificado los esfuerzos para desarrollar nuevas tecnologías que reemplacen o al menos complementen a las actuales. Los transistores de efecto campo eléctrico ferroso (FeFET en sus siglas en inglés) se consideran una de las alternativas más prometedores para sustituir tanto a Flash (por su mayor densidad) como a DRAM (por su mayor velocidad), pero aún está en una fase muy inicial de su desarrollo. Hay otras tecnologías algo más maduras, en el ámbito de las memorias RAM resistivas, entre las que cabe destacar ReRAM (o RRAM), STT-RAM, Domain Wall Memory y Phase Change Memory (PRAM)...Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    FeFET Based Nonvolatile TCAM and DRAM Development

    Get PDF
    Ferroelectric Field Effect Transistor (FeFET) is a promising nonvolatile device which provides high integration density, fast programming speed, and excellent CMOS compatibility. In general, the non-volatility of FeFET is impacted by its physical structure and there is a trade-off between data retention time and device endurance. To improve the cell endurance, for example, the ferroelectric layer of FeFET needs to be programmed to a low polarization level, leading to a short retention time. In ferroelectric DRAM (FeDRAM) design, degradation in FeFET retention time and write-read disturbance requires the FeDRAM cells to be periodically refreshed in order to prevent data loss. In this work, I propose a novel adaptive refreshing and read voltage control scheme to minimize the energy overheads associated with FeDRAM refreshing while still achieve high cell access reliability. In addition to the DRAM application FeFET based TCAM memory is also studied. TCAM (ternary content addressable memory) is a special memory type that can compare input search data with stored data, and return location (sometime, the associated content) of matched data. TCAM is widely used in microprocessor designs as well as communication chip, e.g., IP-routing. Following technology advances of emerging nonvolatile memories (eNVM), applying eNVM to TCAM designs becomes attractive to achieve high density and low standby power. In this work, I examined the applications of three promising eNVM tech-nologies, i.e., magnetic tunneling junction (MTJ), memristor, and ferroelectric memory field effect transistor (FeMFET), in the design of nonvolatile TCAM cells. All these technologies can achieve close-to-zero standby power though each of them has very different pros and cons
    corecore