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ABSTRACT 

The spin transfer torque magnetic random access memory (STT-MRAM) is suitable for 

embedded and second level cache memories in the mobile CPUs. STT-MRAM is a highly 

potential nonvolatile memory (NVM) technology. There has been a growing demand to improve 

the efficiency and reliability of the NVM circuits and architectures. we present a modified STT-

MRAM cell design, where each cell is comprised of one magnetic tunneling junction (MTJ) 

device and a regular access transistor. We provide analysis of device, circuit and memory 

architecture level issues of STT-MRAM. The Modified 1M1T STT-MRAM bit cell circuit 

offers simpler and more area- and power- efficient design compared to the existing STT-MRAM 

cell design. Some device-circuit co-design issues are investigated to demonstrate ways to reduce 

delay in MRAM circuits based on MTJ. An 8x8 conventional MRAM array is implemented 

using the existing 2M2T cell and the Modified 1M1T cell to perform a comparative analysis at 

the architecture level. The non-volatile nature of the proposed STT-MRAM is verified through 

SPICE simulation. The circuit implementations and simulations are performed for 45nm 

technology node. 

 As the transistor scales down it is prone to subthreshold leakage, gate-dielectric leakage, 

Short channel effect and drain induced barrier lowering. Now alternative of Access transistor is 

needed. We are using FinFET as access transistor in the STT-MRAM bit cell. FinFET based bit 

cell is designed to get an advantage of scaling down. Analysis is done and proven that the power 

consumption, standalone leakage current is less when compared to NMOS based STT-MRAM 
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bit cell. Also determined FinFET based bit cell produces less access time to access the logic 

value from MTJ. 

 Now, Industry is looking to have computational and storage capability together and that can 

be achieved through STT-MRAM. Addition to that there is a possibility to reduce power 

consumption and leakage more. So replacing FinFET technology with Carbon Nano Tube Field 

Effect Transistor (CNTFET) is required. As the conventional STT-MRAM requires certain 

current to reverse the magnetization of MTJ and one CNTFET alone cannot produce sufficient 

current required to store the logic value into MTJ. So new Bit cell is proposed using 3 CNTFET 

and 1 MTJ, this bit cell is capable of storing 3 logic values at a time that is capable of doing 

computation and act as AND gate. Also it utilizes less power to be in active region.  

 Sensing of any memory system is one of the main challenge in industry to get better 

performance with less resources. Conventional Sense Amplifier (SA) used to sense the value 

from SRAM, DRAM memory system is also used to sense the STT-MRAM memory. But use 

of conventional SA is prone to some error. Modified Sense Amplifier is designed to overcome 

the error produced from the conventional SA. It is compared with all the existing SA to get the 

performance details of the modified SA. 

Index Terms— Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM), 

Magnetic Tunneling Junction (MTJ) Device, Tunnel Magneto Resistance (TMR), and 

Nonvolatile Memory (NVM). 
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CHAPTER 1 

INTRODUCTION 

 

1.1.TRENDS IN MEMORY TECHNOLOGIES 

Memories broadly divided into two types. Volatile Memory and on the other hand Non 

Volatile Memory. Volatile-Memory (VM) is the storage which erases the data when system is 

powered off or interrupted. Non-Volatile Memory (NVM) is the storage which remains the data 

even when system is powered off or interrupted.  Examples of Volatile memory are SRAM and 

DRAM. These are the basic volatile memories that are in market. DRAM is again sub divided 

into embedded and standalone devices. These volatile memories are used to design the 

maximum part of the memory hierarchy. Examples are computing units, register files, L1 cache 

and L2 cache.  

 Non Volatile Memories are sub divided into three types according to the ITRS 2015 

report. Base line NVM is the storage that readily available in the market to store the logic values 

into it.  Examples of baseline NVM’s are Flash Memories (NAND and NOR). Applications of 

baseline NVM are Main memory and storage memory. Prototypical models are the storage that 

we have just a prototype but not available in the market. They going to be in the market in very 

few years from now. Examples are Fe RAM, PCM, MRAM and STT-MRAM. Now market is 

used to replace all the volatile memories with NVM to gain certain advantages over them. Third 

type NVM are Emerging Research Devices (ERD). These are at a stage of research and they 

don’t have any prototypical model up to now. Examples are Ferro Electric Memory (FeFET, 

FTJ), ReRAM (Electrochemical Metallization bridge, Metal oxide – bipolar Filamentary, Metal 
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oxide- unipolar filamentary, metal oxide – bipolar non filamentary), Mott memory, Carbon 

Memory, Macromolecular memory.

1.2.PARAMETERS OF MEMORY SYSTEM 

There are six parameters for designing optimal memory design. We compare all the 

memory systems with these parameters. Parameters are as follows. 

1. Leakage 

2. Density 

3. Retention time 

4. Endurance 

5. Performance 

6. Dynamic Energy  

1. Leakage: For any optimal design Leakage should be low. Since memories are the one 

which have to be in standalone for long time. This leakage causes more power utilization 

of the memory system. Any memory system design should be capable of low leakage. 

2. Density: Optimal design is capable of high storage at lesser area. Bit cell size should be 

much smaller when compared to existing memories. Designing should be capable of 

storing huge data in lesser area. 

3. Retention time: Retention time is the time taken by the memory unit to with stand the 

data when system is powered off. Ideally Retention time should be high and memory 

should be capable of holding data in huge time. 

4. Endurance: Endurance is parameter that describes how many times we can write and 

read the data from memory unit. Ideally Memory system should be capable of unlimited 

endurance.  
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5. Performance: Ideal memory system should have a high speed i.e., high access time which 

results in usage of memory in computational designs. 

6. Dynamic Energy: However, the standalone power is important, at the same time dynamic 

power utilization also place an important role. It is nothing but switching power. Ideally 

Memory system should be capable of low dynamic energy. 

 

Figure 1: Performance parameters comparison[18]. 

 

 In Figure 1 performance parameters are discussed. Here dotted line represents the optimal 

design. Black solid line represents the SRAM behavior. Blue, green and pink represents the 

STT-MRAM, PCM and Flash Performance respectively. From the figure we can conclude that 

the Flash memory is better in density but not good at performance when compared with all other 

Non-Volatile memories that we are comparing. Also not good at Endurance and dynamic energy 

utilization. PCM is better than Flash memory but not good than the SRAM memory and other 

NVM’s. PCM is better in Retention time than SRAM but not than of Flash Memory. Leakage is 

far better than SRAM. STT-MRAM is better in all other aspects but still need to have a better 

device for performance when compared to SRAM. If we can reach the performance of SRAM 
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then we can replace the memory with NVM which gives the additional advantages over the 

existing memories.

 

1.3.INDUSTRY UPDATE 

New architecture proposed by Toshiba in December 2013 which includes tables in 

storage that contains certain input combinations. Improves power consumption and speed. 

Cycles needed to solve equation decreased from 408 to 44. IBM implementing the Nanostructure 

of MRAM cell using domain wall mechanism. China Academia researchers implementing to 

increase the number of bits per cell. 

 

Figure 2: Toshiba architecture on memory hierarchy  

Figure 2 represents the Toshiba new architecture that discussed before and which have 

huge advantage over the traditional hierarchy. 
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Table 1: Industry prototype specifications available in the market. 

Industry Memory size Vol Wright/read cycle Power dissipation 

Everspin 1MB 1.8 V 50ns 0.6W 

Aeroflex 16MB 0-4V 45ns 4W 

Freescale 16MB 2.2V 35ns 0.6W 

 

Table 1 gives the information of the industries who have prototype now in the market 

and also the specifications of Memory System they are using now. The other companies working 

on STT-MRAM Grandis, Qualcomm, Russian Nano-Technology Corp., Avalanche 

Technology, Crocus Technology, Spin Transfer Technologies.

1.4.WHY TO CHOOSE STT-MRAM 

Main problem with the existing memory technologies is due to the limitations of scaling 

down. SRAM cannot be scale down due to its electrical and physical limits. DRAM cannot scale 

down because of its capacitor usage. Scaling down can lose its property. Flash cannot be scale 

down because of its charge retention property. So, we need an alternative that can replace these 

memories but should have all the attributes of existing memory technologies. As we know that 

the existing memory technologies all depends on the electron movement. As per the limitations 

we are exploring a possibility with the rotation of electron to store the logic value. So, STT-

MRAM have a property of all attributes from existing memory technologies and also store 

depends on the magnetic field i.e., electron orientation. It takes the advantage of speed property 

from SRAM Memory. As the speed of STT-MRAM memory is very comparable with the SRAM 

memory and can be discussed in the later section. It takes an advantage of density and Power 

consumption parameter from DRAM memory. Non-Volatile property and also density property 

is taken from Flash Memory. Additional STT-MRAM have the practically highly endurance and 
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high retention time. It is capable of replacing L2 cache of memory hierarchy. Now it is capable 

of replacing secondary memory. There is a need in concentrate on the performance parameters 

of the Memory system that can give the better advantage over the existing memory technologies 

like delay, leakage power and power utilization. This whole project is mainly depend on the 

respective parameters simulation for bit cell and find the optimized value of the design for the 

memory system. Figure 3 represents the attributes distribution from the existing memory 

technologies to the STT- MRAM memory system. 

 
Figure 3: Attributes of STT-MRAM 
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Figure 4: STT-MRAM memory placement with respect to other Non-Volatile memories[19]. 

Figure 4 represents the placement of STT-MRAM with all other Non-Volatile Memories 

with respect to Access Time. Flash memory have a worst access time behavior with respect to 

all other memory technologies. So we need an alternative of Non-Volatile memory that can be 

comparable to SRAM Access time. STT-MRAM have better properties than other Non-Volatile 

memories and will be the best in all other Non-Volatile memories.  
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 CHAPTER 2 

PLANAR NMOS BASED STT-MRAM BIT CELL ANALYSIS AND CIRCUIT DESIGNING 

 

2.1.INTRODUCTION 

Magnetic Random Access Memory (MRAM) is a revolutionary technological alternative 

to SRAM, which is volatile in nature. Due to the advancement of the spintronic technology, 

magnetic memory devices based on Spin Transfer Torque (STT) MRAM technology are 

becoming more feasible and attractive to replace the conventional SRAM for Cache and other 

emerging memory applications. MRAM has some significant advantages, such as, nonvolatile 

memory property, read and write access speed of 2-10 nanoseconds (ns) for single MRAM-cell, 

high retention time, unlimited endurance and compatibility to CMOS process. Access speed of 

30ns has already been demonstrated in on-chip implementation of MRAM. In this paper, we 

propose a new simplified single-bit STT-MRAM cell design. We formally name this cell as 

1T1M MRAM Cell. We have performed comparative analysis of the proposed and existing STT-

MRAM cell designs. We have also investigated some implementation issues of the proposed 

STT-MRAM and demonstrated an 8x8 MARM array architecture using the proposed cell to 

compare its benefits with respect to the existing MRAM cell. We also compared different 

architectures for MRAM memory. Before introducing the new design and related work, it would 

be relevant to provide a brief overview of the relevant technologies and concepts. 

2.1.1. MTJ and its Operation 

MRAM is based on magnetic tunneling junction (MTJ) device. Instead of using electric 

charge to store the data, magnetic storage phenomenon is used in MTJ [1] device. Figure 5 

shows the mode of operation of MTJ, which has three layers – a pinned and a free layers 

separated by an insulator or thin dielectric tunnel barrier (made of MgO). The pinned and the 
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free layers are made of ferromagnetic materials like Fe, Co and CoFeB. The electron spin 

direction in the pinned or fixed layer does not change, while the electron spin of the free 

magnetic layer changes its direction depending on the biasing. The free layer is responsible for 

the spin polarized current, which depends on the direction of the electrons in the free layer with 

respect to the pinned layer. Based on the relative electron directions the junction achieves low 

and high resistance that defines the parallel and antiparallel configuration of the STT-MRAM 

[1]. In the writing cycle of the STT-MRAM, the energy dissipation of the MTJ can be decreased 

by having a smaller hysteresis loop during the change in the electron spin direction. For lower 

hysteresis loop ferromagnetic materials with low coericivity should be used as the free material 

[4]. 

 

(a)              (b) 

Figure 5 : Direction of electrons in the pinned and free layers, which represents the mode of 

operation and bit stored in MTJ: (a) parallel mode of MTJ (bit “0”) and (b) anti parallel mode 

of MTJ (bit “1”). 
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2.1.2. Single bit STT-MRAM   

MTJ cannot be used as a standalone device in the RAM circuit. It always requires an access 

transistor. Figure 6 shows the layout of a single bit STT-MRAM cell including a MTJ and an 

access transistor. This layout provides an idea about the size of a 45nm diameter MTJ relative 

to a conventional MOSFET of 45nm channel length. Figure 7 shows the schematic of a basic 

single-bit STT-MRAM cell comprising an MTJ and an access transistor. MTJ is the basic 

building block of STT-MRAM bit cell. The bidirectional signal is given to one end of the MTJ 

(M1) through the bit line (BL). The other end of the MTJ is connected to the access-transistor 

(N1) drain. The word line (WL) is connected to the gate terminal of N1. The other terminal of 

the access transistor is connected to the source-line, which is always connected to the ground. 

The state or the internal signal of the MRAM can be parallel or anti parallel and will be 

delivered through the bit line. Here, we are showing the pull-up resistor (R1) to monitor its 

switching. This pull-up resistor doesn’t affect the area and power of the bit-cell. It is just 

included in the model to monitor the state of MTJ and verify the model while designing MTJ. 

MTJ is modeled with the resistance based on the brinkman-model [17], which uses the spin 

transfer torque technique for an in plane anisotropy. With a tunnel oxide thickness of 0.85nm, 

the MTJ will have a Tunnel Magneto Resistance of 0.99 under initial neutral or zero bias 

condition, when the MTJ is in a parallel state. Magneto resistance is the ratio of the parallel 

resistance and the total resistance. 

It is anticipated that the direction of the electrons changes according to the generated 

current because of the spinning. Spin polarized current is the result of Spin transfer torque at 

the junction and responsible for switching of data in storage layer. Scalability and low-power 

consumption are the major advantages of STT memory [8]. Scalability issue is resolved by 

reducing the writing current value. In the large scale memory design, the tunneling oxide gets 
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damaged because of the high current density. For computation, STT-MRAM requires a high 

writing energy for a flip flop device operation [8]. 

 

Figure 6: Single bit STT-MRAM including a MTJ and an access transistor (sense amplifier is 

not shown) [3]. 

 

Figure 7: One-bit cell STT-MRAM circuit with one MTJ, one access transistor (45nm), one 

BL, one WL, one source-line and the state signal (the state signal is to observe the switching 

mechanisms of MTJ whether it is a parallel or an anti-parallel). MTJ offers spin transfer 

torque technique with in-plane anisotropy. 

     The rest of the paper is organized as follows. Section 2.2 introduces our proposed STT-
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MRAM cell and investigates the prospects and constraints of the proposed design with respect 

to the existing technology. Section 2.3 discusses some device and circuit level issues of the 

proposed STT-MRAM. Section 2.4 demonstrates an 8x8 MRAM architectures using proposed 

and existing MRAM cell designs. Finally, 2.5 concludes the paper with a brief overview of our 

ongoing and future work. 

2.2. PROPOSED SIMPLIFIED STT-MRAM CELL DESIGN 

Over the last few years several STT-MRAM cell designs have been proposed [2], [11], 

[14]-[16]. STT-MRAM cells’ sizes are in general larger than the flash and DRAM cells, 

because in each MRAM cell 1 or 2 additional MOSFET transistors are needed to access the 

MTJ, which leads to the increase in the size. The density of STT-MRAM depends on the MTJ 

and access transistor’s technology node. To ensure higher switching speed (in the range of 

10ns) the access transistor should be able to provide higher current (in the range of 100μA) 

[12]. Therefore, the size (W/L ratio) of the access transistor should be big enough to allow this 

huge current. Additionally, the higher number of interconnects and contacts between the MTJ 

and access transistor increases the manufacturing complexity, cell area and cost [11]. Since this 

is a new and emerging area, there are many challenges and huge opportunities for the 

improvements of every possible aspect of MRAM design from individual cell to large MRAM 

architecture and memory systems that would be utilizing MRAM cells as the fundamental 

building blocks. There is also another growing demand to introduce efficient circuits and 

architectures to compete with the existing nonvolatile memory (NVM) technologies. Due to 

the nonvolatile nature of MRAM cell, there is an enormous potential for this new memory 

technology in the fastest growing NVM industry.  
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(a) 

1. 2 MTJ/cell 

2. 2 Access Transistor /cell 

3. More Area 

4. Complex reading mechanism 

5.Implemented in 130nm-65nm 

technology nodes 

(b) 

1.1 MTJ/cell 

2. 1 Access Transistor/ cell 

3. Less Area 

4. Simple reading mechanism 

6. implementing in 45nm technology node 

Figure 8: Schematic circuit of (a) one of the existing MRAM bit cell [2] and (b) the proposed 

STT-MRAM bit cell. 

Among the existing MRAM cell designs, the 2M2T STT-MRAM cell of [2] is widely 

referenced and verified through some prototype implementations. Each MRAM bit cell 

proposed in [2] has 2 MTJs and 2 access transistors. In this paper, we proposed a 1M1T STT-

MRAM cell design and compared it with the previously validated and implemented 2M2T cell 

design of [2].  At the architecture level, we have used the modified array architecture, which 

minimizes the number of access transistors. In Figure 8b we have shown our proposed 1M1T 

STT-MRAM cell design and compared it with the existing 2M2T MRAM cell design (Figure 

8a) [2]. Existing architectures use the conventional sense amplifier, which need an additional 
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MTJ and a transistor per bit-cell. 

2.2.1. Writing Operation of the Proposed STT-MRAM Cell  

The MTJ’s state will remain as it is irrespective of the state of the bit line (BL) if the write 

line signal WL=0. When the write line is activated (WL=1) and a positive pulse is applied at 

the bit line (BL), the MTJ switches from parallel state to antiparallel state. With WL=1, a 

negative pulse at BL switches the state of MTJ from the antiparallel state to the parallel state. 

When an intermediate (between positive and negative) pulse is applied at BL, MTJ holds the 

previous state. 

 

Figure 9: CIRCUIT simulation of STT-MRAM bit cell when a deactivating signal (WL=0) is 

applied at the access transistor. 
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Figure 10: CIRCUIT simulation of STT-MRAM bit cell when an activating signal (WL=1) is 

applied at the access transistor. 

2.2.2. Reading Operation of the Proposed STT-MRAM Cell  

During the reading operation, a small pulse is applied at the BL when the pass transistor 

gets activated and the current of pinned layer is available at the bit-line, which can be used to 

recognize the state of the MTJ. Reading pulse is applied at the gate of the pass transistor. Sense 

margin is not comparable with the logic levels (1/0). An additional amplifier circuit is used to 

make a reliable reading output. Write and read operations are controlled separately by the 

access transistor and pass transistor.  

For the verification of the operation of MRAM cell, we have performed simulation of the 

circuit using Cadence Spectra. For the simulation the 45nm process development kit (PDK) 

from Cadence is used for the transistor model and Verilog-A model of [13] is used for the MTJ. 

The access transistor is in OFF state when a deactivating signal (WL=0) is applied at the gate 

terminal of the access transistor as shown in Figure 9. For the MTJ to be activated its pinned 
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layer has to be connected to the source line of the access transistor, which is connected to the 

ground. If the access transistor is OFF, the MTJ cannot get sufficient energy to spin the 

electrons in the free layer irrespective of the state of the bit-line. In this condition, the STT-

MRAM bit-cell cannot read or write a new value through the bit-line. The state of MTJ will be 

in hold mode.  

When a positive pulse (1.2V) is applied to the access transistor (WL=1) the bit-cell is 

activated and ready for read/write operations. Without any voltage applied at the bit-line the 

STT-MRAM is initially in parallel state. When a positive pulse of 1.2V is applied to the bit-

line (BL=1), the free layer of the MTJ gets sufficient energy to spin the electrons in the opposite 

direction of the pinned layer electrons’ direction. At this stage, the STT-MRAM switches from 

parallel state (“0” bit) to anti-parallel state (“1” bit). Figure 10 shows the writing and reading 

operation of STT-MRAM when the access transistor is at ON state. 

2.2.3. Nonvolatile Feature of the Proposed STT-MRAM Cell 

Storing a value in the STT-MRAM depends on the electron rotation rather than the 

electron movement. After providing sufficient energy (either 1.2V or -1.2 V) to the electrons 

in the free layer of the MTJ the rotations (parallel or anti-parallel) of the electrons with respect 

to the pinned layer will remain unchanged until we apply an opposite voltage (either -1.2V or 

1.2V) to change the electrons rotation. This feature ensures the nonvolatile nature of STT-

MRAM cell. Figure 11 demonstrates this nonvolatile feature. Figure 11 shows the hold state of 

the STT-MRAM. In this state it retains the previous state value. This is done by deactivating 

(WL=0) the access transistor, when the BL value has no effect on the state of the cell. 
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Figure 11: The non-volatile characteristics of STT-MRAM circuit. SPICE simulation of STT-

MRAM bit cell when a deactivating signal is applied at WL. The outputs represent BL, WL 

and state signals of STT-MRAM bit cell. 

2.2.4. Temperature Dependence of the STT-MRAM Cell       

MTJ requires certain amount of energy to be either in the parallel or in the antiparallel 

state. The temperature of STT-MRAM changes according to the operating states of the MTJ. 

Figure 12 shows the change of temperature during the parallel and anti-parallel states of the 

STT-MRAM for the input signals of Figure 10. The dependence of the physical and 

performance parameters of the STT-MRAM on temperature is not a simple issue. This requires 

in-depth analysis. There are many other issues that need to be investigated. Since the focus of 

this paper is to present the concept of a new STT-MRAM cell design and provide some 

preliminary validation, we did not include further analysis on these issues. Besides, space 
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limitation prevents us from including more contents into a single paper. Our future work will 

address many of these issues. 

 

Figure 12: Temperature dependence of MTJ for the input of Figure 10.  

2.2.5. Comparison of the Proposed and Existing STT-MRAM Cells 

The 2M2T MRAM cell proposed in [2] is considered as one of the standard designs. The 

other proposed designs of [11] and [14] -[16] are claimed to be 1M1T designs, which implies 

that these cell designs would require only 1 MTJ and 1 access transistor. However, this claim 

has not been validated, and a closer look at these designs reveals that each of these cells actually 

requires 1 additional MTJ and 1 additional access transistor. Therefore, these designs are not 

truly 1M1T as it is claimed. All the previous MRAM cells are demonstrated for 90nm to 130nm 

technology generations. Here, we have introduced the new design for 45nm technology 

generation. For MRAM cell design, 45nm is the most recent trend. Table 2 provides detail 

comparison of our proposed 1M1T STT-MRAM cell design with respect to the other existing 

designs. Although each of the previously proposed designs are based on different technology 

nodes and operation mechanisms, for reasonable comparison we have implemented the 
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previous designs using 45nm technology node. 

Table 2: Comparison between the existing and proposed MRAM nonvolatile memory bit cell. 

 Current (uA) Voltage 

(V) 

Time 

(ns) 

Energy 

(pJ) 

Power 

(pW) 

2M2T[14] 270.544 1.2 10.2 3.30 33 

2M2T[2] 760.434 1.2 3.99 3.641 36.41 

1M1T 283.18  1.2  7.7  2.6 26 

 

Scaling down the existing designs leads to increase in overall delay of the circuit. Huge amount 

of current is required to write into STT-MRAM. So we need large access transistor to provide 

the large writing current that results in the increase of total cell area. Table 3 represents the 

state-of-the-art of the scaling of STT-MRAM in different architectures.  

Table 3: State of art of STT MRAM circuit and architecture. 

Architecture BitCell 

Type 

CMOS 

Node 

(nm) 

Cell 

Delay 

(ns) 

Write 

Energy 

(pJ) 

Critical 

Current 

(uA) 

Conventional Array with 

stretched write 

cycles(SWC)[14]  

45 1M2T 10.2 3.3048 270.54 

Multicontext [15] 90 2M2T 4 4.4 200 

Cross-point [11] 65 2M2T 1.2 0.9 100 

Conventional[2] 65 2M2T 9 1.5 200 
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2.3.STT-MRAM DELAY REDUCTION BY DEVICE (MTJ) AND CIRCUIT CO-DESIGN  

2.3.1. Optimization of MTJ Device Level Magnetization Property to Reduce Delay  

Delay of the STT-MRAM cell can be reduced by increasing the ratio of the switching 

current and the critical switching current (IE/IS). Critical switching current (IS) is the good spin 

value of the MTJ. Usage of MgO as the tunnel oxide in MTJ instead of AlOx3 reduces critical 

switching current density by 3-4 times. Critical switching current is fixed for a particular 

technology. Switching current (IE) is the current passing through the STT-MRAM cell at any 

instance. With the increase of the switching current of the MTJ, it takes less time to have the 

magnetization reversal in the device. Magnetization reversal is the stage where the electrons in 

the free layer lose their stability and are ready to rotate accordingly. Delay is the time measured 

at which magnetic reversal takes place. The magnetization reversal property is simulated in 

MATLAB. Magnetization (M) is observed in all directions (mx, my, mz). Here, mz is considered 

as the indication of the magnetization reversal property. Figure 13 shows the magnetization 

(M) characteristics of the MTJ as a function of the time (t). The switching and critical switching 

current ratio (IE/IS) of MTJ is used as a parameter. Figure 13a shows M-t characteristics when 

IE/IS=8. Figure 13b shows M-t characteristics when IE/IS=4. Figure 13c shows M-t 

characteristics when IE/IS=1.3. By comparing the three plots of Figure 13 it is concluded that 

Mz shifts from positive to negative magnetization (demagnetization) value when IE/IS is higher. 

Therefore, IE/IS=8 offers faster demagnetization than IE/IS=4 and IE/IS=1.3.  

2.3.2. Circuit Level Implementation of STT-MRAM to Reduce Delay  

     Since the critical switching current (IS) is fixed for a particular technology, the only 

parameter that can be optimized to reduce the delay in STT-MRAM cell is the switching current 

(IE). As mentioned earlier, the delay of the STT-MRAM circuit is reduced when IE increases. 

Size of the access transistor will have direct impact on the value of IE. The delay of the cell will 
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decrease if the size (W/L ratio) of the access transistor is increased, because larger access 

transistor can provide higher IE and larger IE/IS ratio in the MTJ. Therefore, at the circuit level 

simulation and optimization the W/L ratio of the access transistor shows a proportional 

dependency on IE/IS. We have performed the circuit level simulation of one bit STT-MRAM 

cell with an access transistor of 45nm technology node. The simulation is shown in Figure 14. 

 

(a) 
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(b) 

 

(c) 

Figure 13: Simulation of STT-MRAM magnetization property along x, y and z axis when (a) 

IE/IS=8, (b) IE/IS=4, (c) IE/IS=1.3. 

Figure 14 shows how MTJ device level delay optimization is implemented in STT-MRAM 
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circuit level design. This is a device-circuit co-design approach, where any parametric 

optimization in the MTJ device directly reflects in the STT-MRAM circuit level performance. 

To decrease the delay (time taken to demagnetize the STT-MRAM to write a new state into it) 

of the STT-MRAM, W/L ratio of the access transistor should be increased. Delay can also be 

reduced by introducing different bit structure, which consumes more area that is discussed in 

[5] and [8]. Usage of FinFET can also be a solution to decrease delay, which is discussed in 

[6]. Figure 14 compares the delays for different sizes of the access transistor. State1 represents 

W/L=150 with a delay of 1ns. State2 represents W/L = 30 with a delay of 1.291ns. State3 

represents W/L = 15 with a delay of 1.67ns. State4 represents W/L = 7.5 with a delay of 

2.431ns. State5 represents W/L = 2.5 with a delay of 6.08ns.

2.4.IMPLEMENTATION OF AN 8X8 RAM ARCHITECTURE USING THE EXISTING 

AND PROPOSED STT-MRAM 

To validate our proposed STT-MRAM cell design and investigate its prospects and 

constraints we have implemented an 8x8 RAM array using the conventional 2M2T MRAM 

cell and our proposed 1M1T MRAM cell. 
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Figure 14: The output state of the STT-MRAM device and circuit co-design approach. High 

W/L ratio of the access transistor reduces the delay in the demagnetizing of the MTJ.  
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Figure 15: Conventional STT-MRAM system architecture/array block diagram, where each 

cell is represented by 2 MTJs and 2 access transistors [2]. 

2.4.1. Conventional Architecture 
Figure 15 shows the conventional STT-MRAM system architecture/array block diagram, 

where each bit cell is selected by the row and column decoders. Figure 19 shows the circuit 

implementation of the 8x8 MRAM array using conventional cell. In each cell, one of the two 

MTJs is used as the reference to sense the value stored in the other MTJ. The existing MRAM 

designs propose to use the regular sense amplifier used in basic SRAM and DRAM memory 

applications. The standard sense amplifiers have some limitations in terms of the usage in 

MRAM array.  There are some power related issues as well in the current MRAM design. Low 

power issues of the existing STT-MRAM circuit design is discussed in [10]. 

2.4.2. Proposed Architecture 

Figure 16 shows STT-MRAM architecture/array block diagram for the proposed cell. 

Figure 20 shows the circuit implementation of 8x8 STT-MRAM array using our proposed cell. 

Each STT-MRAM bit cell has one access transistor, which is active when the corresponding 
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word line is active. Here, the write signal (WL) is connected to the gate terminals of all the 

access transistors in a word. When a write signal is active the whole word is activated and the 

row and column decoders select the specific bit cell within that word. To change the state of a 

specific MTJ in the STT-MRAM array either a -1.2 V or a +1.2 V is applied at the bit line. 

With +1.2 V, the state of MTJ changes from parallel to anti-parallel and with -1.2 V, it changes 

from anti-parallel to parallel state.parallel to parallel state. 

 

Figure 16: Proposed architecture showing bit cell. 

In our proposed architecture the reference MTJ of the 2M2T MRAM cell is eliminated from 

the cell. Additionally, the number of access transistor per cell in our proposed design is one (1) 

as opposed to two (2) access transistors per cell in the design of Figure 15. The elimination of 

1 MTJ and 1 access transistor from the proposed cell makes each individual cell and the overall 

architecture significantly simpler and energy efficient, and it can be implemented in less area. 

Roughly, we can estimate that 50% of the area of the chip can be saved by using our proposed 

cell. Elimination of 1 MTJ and 1 access transistor per cell will also provide significant reduction 

of leakage leading huge savings in overall power consumption. 

Figure 21 represents the output of bits (B0-B8) for the proposed architecture. Outputs are 
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taken from the sense amplifier connected to the pass transistor logic at the bit line. This 

simulation is executed to show that our proposed Array is accessible to read and write 

operations. In this simulation WL0 signal is given a pulse input with a pulse-width and period 

of 40ns and 80ns respectively. B0 signal is also given a pulse input with 10ns pulse-width, 20ns 

period, and +1.2V as high input and -1.2V as low input. The delay of B0 is 0ns. B1-B7 signals 

are have delays in the increment of 10ns. WL1-WL7 is deactivated (0V). Output is plotted from 

the sense amplifiers connected to the bit-lines (B0-B7). 

Table 4: Power and performance comparison of memory arrays implemented with the 

proposed and conventional MRAM cells 

 Power (nW) Delay (ns) 

Conventional Array 2.33 510.72 

Proposed Array 1.664 492 

Improved percentage 28.755% 3.67% 

 

Table 4 compares the proposed array architecture with respect to the conventional array 

architecture in terms of power and delay. Delay and power is calculated using Cadence Spectre 

simulation tool. Our proposed array architecture reduces overall power by 28% with respect to 

the conventional array architecture. Delay of the proposed array architecture is reduced by 

3.67%. As mentioned earlier, we anticipate close to 50% saving in area. However, without the 

actual layout it would not be possible to quantify the area saving. 

2.4.3. Analysis of the Impact of Threshold Voltage Variation of the Access Transistor 

on the Proposed STT-MRAM Cell 

Figure 17 represents Monte Carlo simulation of the variation of Vth in the access transistor. 
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This variation leads to the shift of the operating region of the access transistor, which affects 

the write and read operating of the MTJ. The simulation is performed by activating W0 and 

deactivating all other word lines (W1-W7) in the proposed array architecture of Figure 20. The 

bit-line (B0) is given a sequence of signal as in Figure 21. The variation of Vth in the access 

transistor (N0) and its effect is observed through Monte Carlo simulation using ADE-XL 

simulator. The variation is taken from the technology file provided to the simulator. Latin 

hypercube sampling method is chosen to do the simulation due to its faster ability. The input 

for this simulation is the number of points (N), which we selected to be 1000. Number of points 

is the samples between the ranges of Vth variation. Mu is the mean of the analysis and here it 

is 237.931 mV, which represents the maximum number of pass points at that sample. Pass 

points are the yield of the analysis. In our simulation, yield is 100%. The term sd is the standard 

deviation of the analysis and here it is 10.46 mV. Standard deviation shows the number of 

points towards the mean. When sd tends to zero more points are towards the mean. Figure 18 

shows the output of the bit-cell in the proposed array with the variation of Vth of the access 

transistor. Table 5 gives the information of distribution of the number of points. 

 

Figure 17: Monte Carlo Simulation of Vth with 0 fail points and 50 pass points for 1000 bins. 
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Figure 18: Monte Carlo simulation that is STT-MRAM is holding for 1000 points. 

Table 5: Distribution of points in Monte Carlo simulation 

Vth of the access transistor (mV) Number of Points 

209.64 15 

215.57 43 

221.50 93 

227.41 177 

233.33 236 

239.26 195 

245.18 136 

251.1 67 

257.02 29 

262.94 9 

Total points 1000 
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2.5.CONCLUSION AND FUTURE WORK 

In this paper, a new STT-MRAM cell has been proposed, which contains 1 MTJ and 1 

access transistor. The proposed 1M1T MRAM cell and the corresponding array architecture 

would be simpler and more area- and power- efficient than the existing 2M2T MRAM cell and 

its corresponding array architecture. In this paper, the main focus is to proof the concept of a 

new STT-MRAM cell. In our future work, we will focus on quantifying the advantages of the 

new MRAM cell in terms of power, area and circuit implementation. The proposed STT-

MRAM circuit and architecture are implemented in 45nm technology node. All the prior work 

on MRAM cells were based on 130 to 65nm nodes. The power consumption, delay and area of 

the proposed 1M1T are expected to be significantly lower than that 2M2T due to lower number 

of MTJ and access transistors. For the first time, we demonstrated the implementation of an 

8x8 STT-MRAM array architecture using the proposed 1M1T and existing 2M2T MRAM 

cells. For fair comparison, we implemented both architectures using same technology node. In 

addition, this paper discusses some circuit and architecture co-design issues and impacts of 

process and parametric variation. Our future work involves Ultra-Low-Power MRAM design 

in sub-nm technology (20 to 10nm).  
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Figure 19: Conventional STT-MRAM system 8x8 architecture/array, where each cell is 

represented by two MTJs and two access transistors [2]. 
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Figure 20: Proposed STT-MRAM system 8x8 architecture/array, where each cell has one 

MTJ and one pass transistor (45nm). 
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Figure 21: Plots of Values stored in eight MTJs of the proposed Architecture 

As of now all the current research works on MRAM including our work use the standard 

sense amplifiers of the basic memory applications to demonstrate MRAM memory arrays. 

However, based on our preliminary study, we anticipate that standard sense amplifiers would 

not be very efficient for MRAM arrays. We are currently working to design a new type of 

sensing amplifier for our proposed and other MRAM cells and memory architectures to 

improve the performance and reliability of MRAM. Some neural applications need parallel 

reading and writing of the memory. The proposed cell and the architecture can be configured 

to perform simultaneous read and write using the sense amplifier under investigation
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CHAPTER 3 

PERFORMANCE IMPROVEMENT USING FINFET BASED STT-MRAM CIRCUIT 

DESIGN 

As the transistor scales down, it is prone to subthreshold leakage, gate-dielectric leakage, 

Short channel effect and drain induced barrier lowering. Now alternative of Access transistor is 

needed. We are using FinFET as access transistor in the STT-MRAM bit cell. FinFET based bit 

cell is designed to get an advantage of scaling down. Analysis is done and proven that the power 

consumption, standalone leakage current is less when compared to NMOS based STT-MRAM 

bit cell. Also determined FinFET based bit cell produces less access time to access the logic 

value from MTJ. 

3.1.INTRODUCTION 

Switch mechanism of access transistor in a STT-MRAM bit cell should be much 

effective to easily scale down and have a better control over MTJ to store respective logic value 

into it. As due to the electrical and physical limitation of a transistor it is necessary to go beyond 

NMOS technology. Standalone power is a crucial parameter of any L2 cache of Traditional 

Memory Hierarchy. As per the design, it should be capable of having less leakage in subthreshold 

region. That is if you are scaling down the access transistor of STT-MRAM bit cell, then there 

is prone to current between the source terminal and the drain terminal of the access transistor.    

3.1.1. Disadvantages to use MOS based Access Transistor 

Subthreshold Leakage, Gate-Dielectric Leakage, SCE (Short Channel Effect), DIBL 

(Drain Induced Barrier Lowering) of a transistor is limited to scale down the size of any 

transistor. Alternate device is FinFET technology.  
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3.1.2. Advantages of FinFET technology over MOS Transistor 

It reduces the effects of all disadvantages of MOS scale down and also having 

Higher ON current, Denser Layout than the transistor 

3.1.3. Comparison of FinFET based cell with existing models 

In Literature there are two existing designs working with FinFET based STT-

MRAM bit cell for better performance and to reduce the access time. In [29] they discuss the 

read failure and write failure aspects of the design. They used ASU-PTM model with 32nm 

technology node. In [30] they concentrated on write current, cell area and sub array performance 

parameters. Our design discusses cell area using CACTI 6.5 model. Our design concentrates on 

the performance parameters like delay, Leakage and power consumption of bit cell with one 

FinFET and One MTJ based bit cell. Detailed comparison on what we are working is shown in 

Table 6. 

3.2.FINFET BASED BIT CELL  

STT-MRAM bit cell consists of two basic components, one is Magnetic Tunnel Junction 

(MTJ) and other is access Transistor. Access Transistor here is N-FinFET. Gate terminal is 

connected to Word Line. Source of the FinFET is connected to Source Line of Memory System. 

Drain terminal is connected to Pinned layer of MTJ and Fixed Layer terminal of MTJ is 

connected to Bit Line.  

3.2.1. Writing Operation of bit Cell 

Writing Logic Zeros into MTJ mainly depends on Bit Line and Source Line values. Bit 

Line is given Bit line(BL) is Given with high value and source line (SL) is given with Low value 

to write logic 0 into MTJ (Parallel) provided Write Line is Activated. Bit line(BL) is given with 
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Low value and Source line(SL) is given with High value to write Logic 1 into MTJ (Anti-

Parallel) provided Write Line is Activated. Figure 22 shows the FinFET based bit cell with its 

associated Lines that are connected to it. 

Table 6: Comparison of Existing FinFET Technologies with our Design 

Parameters [29] [30] Our design 

Technology node 32nm 32nm 7nm 

Model ASU-PTM 

ASU-PTM with 

BSIM capacitance 

model 

ASU-PTM 

Read Failure Yes   

Write failure Yes   

Write current  Yes  

Cell Area  Yes yes 

Sub array performance  Yes  

Delay performance   Yes 

Leakage power   Yes 

Power Consumption   Yes 

 



37 

 
Figure 22: FinFET based STT-MRAM Bit Cell  

3.2.2. Reading Operation of STT-MRAM bit cell 

Sense amplifier plays a main role in sensing the data in any memory system. I am using 

error free sense amplifier which is modified version of the conventional sense amplifier. Figure 
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23 is the simulation of the bit cell sense from the sense amplifier connected to the bit cell 

provided the Word Line is activated. 

 

Figure 23: CIRCUIT simulation of STT-MRAM bit cell when an activating signal (WL=0.7V) 

is applied at the access transistor. 
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3.3.PERFORMANCE PARAMETERS OF FINFET BASED STT-MRAM BIT CELL 

SIMULATIONS 

Performance parameters that we are discussing in this session is delay, power consumption, 

Leakage power utilization, Delay and power in PVT conditions. Temperature dependence and 

showing the thermal instability of the bit cell. 

3.3.1. Delay Variation of FinFET based STT-MRAM bit cell. With respect to number of 

Fins of FinFET. 

Delay of bit cell constitutes the access speed of the memory system that we need to take 

care of. We have to choose a bit cell which can have a less delay value. We can change the delay 

value with the variation of number of Fins. As we can change current by varying number of Fins 

which is used to get sufficient amount of current to MTJ to store respective logic value into it. 

Figure 24 is the simulation of Delay parameter in terms of number of fins of the FinFET. When 

the number of fins on FinFET increases, delay of the bit cell also increases. Here we can observe 

delay of bit cell is almost constant after certain number of fins. We choose the minimum number 

of fins where delay is constant for rest of the simulation of FinFET based STT-MRAM bit cell. 

Points are extracted from ADE XL Simulator of cadence and plotted accordingly. 
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Figure 24: Delay Variation of FinFET based STT-MRAM bit cell with respect to number of 

Fins of FinFET 

3.3.2. Power consumption with respect toNumber of Fins of FinFET based STT-MRAM bit 

cell  

Power of FinFET based STT-MRAM bit cell depends on the current in the bit cell. As 

we know the current changes when the number of fins of a FinFET varies. Power consumption 

samples are extracted in ADEXL simulator of Cadence and plotted accordingly. Figure 25 gives 

the power consumption variation with respect to number of Fins of FinFET technology of 

FinFET based STT- MRAM bit cell. As we observed that the number of fins increases, power 

consumption also increases. Here graphs indicate that power consumption is linearly increasing 

up to 30 fins and then gradually increases after 30 fins of FinFET. This analysis is done to find 

the optimized value for number of fins based on low power consumption. This analysis is done 

while writing a logic value in to it. Power consumed by bit cell is calculated accordingly.  



41 

 
Figure 25: Power consumption variation of FinFET based STT-MRAM bit cell with respect to 

number of Fins of FinFET 

3.3.3. Leakage Power variation in FinFET based STT-MRAM bit cell with respect to 

number of Fins of FinFET 

As Leakage power is atmost important to know the standalone power utilization of any 

bit cell as this is the basic building block of memory unit. The analysis is done and points are 

extracted from ADE XL simulator of cadence and plotted graph. Figure 26 represents the 

simulation of Leakage power consumption of bit cell with respect to the number of fins of 

FinFET. There is abnormal behavior that we can observe at 20 fins of FinFET. At 30 fins it is 

observed that with less leakage power and constant for rest profile. So we choose 30 fins for 

FinFET to do all the simulations of logic value storage in memory system. This simulation is 

done with Low performance FinFET device model of ASU PTM model with 7nm technology 

node. 
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Figure 26: Leakage Power Variation of FinFET based STT-MRAM bit cell with respect to 

number of Fins of FinFET 

3.3.4. Delay variation with respect to process Technology of FinFET  

It is necessary to do analysis of delay variation of FinFET based STT-MRAM bit cell 

with all the technology nodes. Figure 27 represents the simulation of the delay of bit cell with 

respect to the technology node variation. Blue line represents low performance device of ASU-

PTM model of FinFET and orange solid line represents the low performance device of ASU-

PTM model of FinFET. Dotted line represents the optimal behavior of delay variation. We 

observed that the technology node decreases, delay also decreases respectively. This is the state 

of technology node variation with delay of FinFET based STT-MRAM bit cell. Points are 

extracted from ADEXL simulator in cadence and plotted graph.  
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Figure 27: Delay with respect to FinFET Technology Node 

3.3.5. Delay of bit cell variation with respect to Temperature Dependence at different 

voltage levels of high performance model of FinFET. 

Our design should work at any temperature, so simulation of delay with respect to 

temperature is more important to do delay variation. Figure 28 represents the simulation of Delay 

of high performance FinFET based STT-MRAM bit cell with respect to the temperature. It is 

observed that at different voltages, delay is varying with respect to temperature. As we know 

that at high temperatures In-Plane Magnetic Anisotropy based MTJ have thermal instability and 

decreases its delay. As the temperature increases, electrons in free layer takes less time to 

demagnetize and rotate the orientation of the electrons accordingly. So delay of the FinFET 

based STT-MRAM bit cell decreases accordingly. Model is taken from ASU-PTM in 7nm 

technology node and with high performance. Points are extracted from cadence ADEXL 
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simulator and plotted accordingly. Blue line indicated the profile at 0.5 V. Orange, gray and 

yellow lines represents the profile at 0.7V, 0.9V and 1V respectively. There is no much variation 

in all the profiles from 0.7V to 1V voltage supply to FinFET of bit cell. Temperature that we are 

doing simulations are at -40 ºC, 27 ºC and 125 ºC.  

 
Figure 28: Temperature Dependence with respective to Delay at different Voltage levels with 

high performance model of FinFET 

3.3.6. Delay of bit cell variation with respect to Temperature Dependence at different 

voltage levels of Low performance model of FinFET. 

Our design should work at any temperature, so simulation of delay with respect to 

temperature is more important to do delay variation. Figure 29 represents the simulation of Delay 

of Low performance FinFET based STT-MRAM bit cell with respect to the temperature. It is 

observed that at different voltages, delay is varying with respect to temperature. As we know 

that at high temperatures In-Plane Magnetic Anisotropy based MTJ have thermal instability and 

decreases its delay. As the temperature increases, electrons in free layer takes less time to 
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demagnetize and rotate the orientation of the electrons accordingly. So delay of the FinFET 

based STT-MRAM bit cell decreases accordingly. 0.5V profile in graph shows the instability 

behavior of MTJ. Model is taken from ASU-PTM in 7nm technology node and with high 

performance. Points are extracted from cadence ADEXL simulator and plotted accordingly. Blue 

line indicated the profile at 0.5 V. Orange, gray and yellow lines represents the profile at 0.7V, 

0.9V and 1V respectively. There is no much variation in all the profiles from 0.7V to 1V voltage 

supply to FinFET of bit cell. Temperature that we are doing simulations are at -40 ºC, 27 ºC and 

125 ºC.  

 
Figure 29: Temperature Dependence with respective to Delay at different Voltage levels with 

low performance model 

3.3.7. Delay of bit cell in different Process Voltage Temperature conditions  

Overall Delay performance of FinFET based STT-MRAM bit cell in PVT conditions is 

plotted in and shown variation in Figure 30. This profile is simulated using ADEXL simulator 

in cadence. Model of FinFET is taken from ASU-PTM models in 7nm technology node. It is 
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observed that the delay is decreased gradually as the voltage increased. Also delay decreases as 

the temperature increases. Delay decrease as the performance model is increasing(High 

Performance),  

 
Figure 30: Delay of STT-MRAM with FinFET Access Transistor in PVT conditions 

3.3.8. Power Utilized by STT-MRAM in different PVT conditions 

Overall power consumption of FinFET based STT-MRAM bit cell in PVT conditions is 

plotted in and shown variation in Figure 31. This profile is simulated using ADEXL simulator 

in cadence. Model of FinFET is taken from ASU-PTM models in 7nm technology node. It is 

observed that the power is increasing gradually as the voltage increased. Also power 

consumption increases as the temperature increases. Power consumption decrease as the 

performance model is decreasing. 
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Figure 31: Power Utilized by STT-MRAM in different PVT conditions 

3.3.9. Leakage Power Variation of FinFET based STT-MRAM bit cell with respect to 

temperature and voltage change 

As per the standalone power consumption, leakage power plays an important role and 

simulation is done with the variation of a leakage power consumption in different PVT 

conditions. Points are extracted from ADEXL simulator of cadence and plotted accordingly. 

High performance and low performance models of FinFET is using and voltages from 0.6V to 

1V. As the temperature increases provided voltage constant then leakage power increases. 

Leakage power increases for high performance devices when compared to low performance 

device model. There is abnormal behavior on leakage power when temperature is constant and 

voltage varies. Figure 32 shows the simulation of STT-MRAM bit cell for leakage power in PVT 

Conditions. Blue line represents high performance device profile and orange line represents the 

low performance device model simulation. FinFET model is taken from ASU-PTM in 7nm 

technology node. 
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Figure 32:Leakage Power Variation of FinFET based STT-MRAM bit cell with respect to 

temperature and voltage change 

3.3.10. Delay variation in PVT conditions with the variation of number of fins of FinFET 

of a STT-MRAM bit cell. 

Figure 33 represents the simulation of STT-MRAM bit cell delay variation with respect 

to PVT Conditions along with the variation of number of Fins of FinFET of STT-MRAM bit 

cell. The variation of Fins is analyzed from 20 Fins to 50 Fins. FinFET model we are using are 

high performance and low performance. Temperature variation is -40 ºC to 125 ºC. Voltage 

variation is 0.6 V to 1V. Points are extracted from ADEXL simulator of cadence and plotted 

accordingly. We can observe that the delay decreases as the temperature increase as we know 

that the demagnetization of electrons takes in little time at high temperature that results in less 

delay of the bit cell. Delay decreases as number of Fins of FinFET increases. Delay decreases as 
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we vary the model from high performance to low performance model with same attributes. 

Models are taken from ASU-PTM with 7nm technology node. 

 
Figure 33: Delay Variation with respect to Voltage and Temperature Variation for High and 

Low performance devices for different number of Fins 

3.4. CONCLUSION AND FUTURE WORK 

We simulated the performance characteristics of FinFET based STT-MRAM bit cell i.e., 

delay variation, power consumption, Leakage power analysis. This Simulations are also done in 

PVT conditions to optimized the design to the desired values. Later we need to concentrate on 

the architectural issues of the FinFET based STT-MRAM based bit cell memory system design.
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CHAPTER 4 

LOGIC-IN-MEMORY USING CNT-FET BASED STT-MRAM BIT CELL AND 

OPTIMIZATION  

The advantages of CNTFET over MOSFET is as follows. The effect of temperature on 

threshold voltage of CNTFET is negligibly small. The high threshold voltage can be achieved at 

low chiral vector pair. The threshold voltage increases with decreasing channel length in 

CNTFET devices, this is quite contrary to the well-known short channel effect.  At below 10 nm 

channel length the threshold voltage is increased rapidly in case of CNTFET device whereas in 

case of MOSFET device the threshold voltage decreases drastically below 10 nm channel length. 

The CNTFET devices are advantageous over MOSFETs due to their reduced quantum 

capacitance, as the value of quantum capacitance is an increasing issue in MOSFETs that leads 

to an increased propagation delay and hence leads to performance degradation.  

4.1.PROPOSED BIT CELL 

As per the conventional design there is only one access transistor in logic bit cell. When we 

are designing CNTFET based STT-MRAM bit cell using conventional bit cell, CNTFET doesn’t 

provide sufficient amount of energy to store a logic value into MTJ. But to use an advantage of 

CNTFET and used to store the logic value it is necessary to see an alternative. There is 

mechanism keeping CNTFETS in parallel and can provide a sufficient amount of energy into 

MTJ to store a logic value into it. So here is a proposed bit cell using CNTFET access transistor 

which have an additional advantage over the conventional STT-MRAM bit cell. Figure 34 

represents the bit cell of STT-MRAM where CNTFET is access transistor. 
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Figure 34: CNTFET access Transistor based STT-MRAM bit cell. 

4.2.WRITING OPERATION OF CNTFET BASED STT-MRAM BIT CELL. 

 In order to write 1, Read_Line should be given as Low Voltage, Source_Line is given 

with High Voltage and Write_Line [0:2] should be given with 0.4 V that is MTJ free layer is 

Antiparallel with Fixed Layer. In order to write 0, Read_Line should be given as High Voltage, 

Source_Line is given with Low Voltage and Write_Line [0:2] should be given with 0.4 V that 

is MTJ Free Layer is Parallel with Fixed Layer. 

4.3.READING OPERATION OF CNTFET BASED STT-MRAM BIT CELL. 

Less than the operated value is given to Read_Line and connected to conventional 

sense amplifier and give the word line [0:2] as high value and then the sense amplifier gives 

the logic stored in the MTJ.  
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4.4.SIMULATION OF BIT CELL. 

 

Figure 35: Simulation of CNTFET based STT-MRAM bit cell. 

Simulation is done in cadence ADE environment in normal corner with 32nm channel length.  

There is more delay than the FinFET model but there is advantage of Power utilization and area 

consideration. FinFET uses 30 Fins as nominal which is more area than CNTFET. When their 

word line is inactive i.e., Word_Line [0:2] has low value then MTJ contains the previous value 

that can be observed at 38ns in State signal beside CNTFET utilizes only 0.4 V to Switch-ON but 

FinFET utilizes 0.7 V. Figure 35 represents the cadence simulation of STT-MRAM bit cell to 

store the logic value into MTJ. 
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4.5.DELAY PERFORMANCE PARAMETER SIMULATION 

Delay performance is simulated in cadence ADEXL Simulator and points are extracted 

and plotted accordingly. Asper the simulation it is observed that the delay is abnormal until the 

length of channel is 32nm and there after it is constant and there is less variation. This analysis 

is done to choose the channel length accordingly. 

 

Figure 36: Delay variation of STT-MRAM bit cell. 

4.6.ADVANTAGES AND DISADVANTAGES OF CNTFET BASED STT- MRAM BIT 

CELL. 

Logic in Memory, as this bit cell consists of three access transistor, it is capable of storing 

more logic values and can be store according to the logic that we did in the bit cell. The 

demonstrated bit cell can be used as AND gate and can be used to store 8 logic values into it. 

Area is less when compared to FinFET or planar NMOS based bit cell as due to its nanoscale. It 
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uses only 0.4 V in order to activate the access transistor to store the logic value into the MTJ. 

Disadvantage is its ACCESS time.  

4.7.CONCLUSION AND FUTURE WORK  

Bit cell using CNTFET s demonstrated and stated its advantages and disadvantages. We 

need to do more analysis to integrate the bit cell in Memory system.  
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CHAPTER 5 

ERROR FREE SENSE AMPLIFIER DESIGN FOR STT-MRAM NONVOLATILE 

MEMORY 

 

The spin transfer torque magnetic random access (STT-MRAM) is suitable for embedded 

memories and also for the second level cache memory in the mobile CPU’s. The most capable 

NVM component is STT-MRAM, which enhances the performance by 3.3 nS access time. It has 

strong radiation hardness, higher integrity and maximum endurance compared to SRAM. The 

power consumption of STT-MRAM is decreased by an order of magnitude by reducing the 

writing current. In this article, a new error free sense amplifier circuit is proposed. The detail 

analysis of the sense amplifier circuit is provided here. Finally, the performance of the proposed 

the sense amplifier is compared with existing sense amplifiers.  

Index Terms: Clamped BL sense amplifier, Fore-Placed sense amplifier, MTJ 

5.1.INTRODUCTION 

Magnetic Random Access Memory (MRAM) is an alternative to SRAM for the Cache 

memory design because of its non-volatile nature. The access speed of single MRAM bit cell is 

2-10 nS. While 30 ns access speed is achieved for the on-chip application. Recent researches in 

the spintronic are disclosing a diversity of magnetic memory devices, which have the non-

volatility (NV). STT-MRAM has couple of advantages  i.e. non-volatility, fast read speed and 

write speed, high retention time, unlimited endurance, and compatible with CMOS.  

5.1.1. MTJ operation 

Instead of using the electric charge to carry the data, the magnetic storage phenomenon is 

used in the magnetic tunneling junction (MTJ) [1]. Figure 37 shows the mode of operation of 
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MTJ, which has three layers. The electron spin of the pinned or fixed layer (e.g. Fe, Co, CoFeB) 

doesn’t change. But the electron spin of the free magnetic layer (e.g. Fe, Co, CoFeB) changes 

depending on the applied voltage. The free layer is responsible for the spin polarized current by 

offering a resistance. Spin Polarized current is formed due to the change of the direction of 

electrons in the free layer in accordance with the pinned layer. The thin dielectric tunnel barrier 

(i.e. MgO) is used as an insulation. MTJ offers low and high resistances which define the parallel 

and antiparallel states of STT-MRAM [1]. 

In the writing cycle, MTJ dissipates less energy because it uses the electron spin direction 

property to store a data. While, conventional memories i.e. SRAM, DRAM, Flash use the 

electron momentum property to store a data. Therefore, the electron spin based memory 

consumes less power than the electron momentum based memory. To achieve the low hysteresis 

loop, a ferromagnetic material with low coericivity is used as the free layer [4]. 

5.1.2. Single bit STT-MRAM   

Figure 38 shows the single bit cell STT-MRAM including a MTJ and an access transistor. It 

is anticipated that the direction of electrons changes according to the current generation because 

of the spinning. The scalability and less power consumption are benefits of STT-MRAM [8]. 

The switching in the data storage layer occurs through the spin polarized current with the spin 

transfer torque (STT) across the junction. However, the scalability issue is resolved though 

reducing the writing current value. In the large scale memory design, the tunneling oxide gets 

damaged because of the high current density. For computation, STT-MRAM requires a high 

writing energy to establish a flip flop device [8]. 
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(a) 

 

 

(b) 

Figure 37: Spin orientation of electrons both in the pinned and free layers, which represents the 

mode of operation and bit stored in MTJ (a) parallel mode of MTJ (bit “1”) (b) anti parallel 

mode of MTJ (bit “0”). 

5.1.3. Sense amplifier 

To read the state of MTJ a sense amplifier is required. The sense amplifier should have high 

sense margin, reliability and simple implementation. It senses the current on the pinned layer 

and amplifies to the desired level. 

The state of art of the current STT-MRAM sense amplifier are summarized in Table 7. The 

sensing circuit of MRAM is very crucial. There are several sense amplifiers are reported to read 

MRAM. The Clamped bit-line sense amplifier (BLSA) requires large difference in current value 

to compare but the delay is more [25]. The power consumption of The Current-mode sense 

amplifier is lower than the clamped BLSA [26]. The Fore-placed sense amplifier requires more 

transistors for normal operation [27].  
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Table 7: Comparison of the existing sense amplifiers of STT-MRAMs. 

Sense amplifier  

Power 

Consumption 

(mW) 

No. of 

transistors 
Reliability 

Technolog

y  

Feature 

(nm) 

Parallel 

Reading 

and writing 

Clamped BLSA 

[25] 
0.2006 10 Medium 

180 
No 

Current Mode 

sense amplifier 

[26] 

0.1756 8 High 180 No 

Fore-placed 

sense amplifier 

[27] 

Low 9 High 180 No 

5.2. EXISTING DESIGNS 

Figure 39 shows the sense amplifier, which do not have the activation signal and Figure 40 

shows the corresponding output waveform. Figure 41 show the sense amplifier, which has the 

activation signal and Figure 42 shows the corresponding output waveform. Figure 43 explains 

the new proposed sensing amplifier for STT-MRAM reading mechanism and Figure 44 shows 

the corresponding output waveform. The compact model of MTJ from [23] is used in this paper 

for simulations. 

5.2.1. Precharge Sense Amplifier Without Activation Signal 

      Figure 39 shows the sense amplifier circuit with two back to back inverters which allows 

comparison between the reference current and MTJ current. There is an error in the output and 

sense margin is acceptable. The resistance of the reference MTJ is set to compare the equivalent 

resistance of the resistance of MTJ at the parallel and antiparallel state. This circuit is reliable 

but the initial state of the output shows wrong value because both Q_m and Q_m’ are charged 
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to high through PMOS transistors of the pre-charge circuit. The supply voltage of the circuit 

Vdd=1.2 V. After pre-charging (PCL= 0 V) both output lines Qm and Qm’ will be 1.  

 

(a) 

 

(b) 

Figure 38: STT-MRAM bit cell including a MTJ and an access transistor. (a) 3D model 

MRAM (sense amplifier is not shown) [1], (b) circuit representation of MRAM with the sense 

amplifier. 
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The reference MTJ is connected with 0V. Two precharge PMOS transistors increases 

Qm and Qm’ pull up to Vdd and trigger the sense amplifier circuit. When PCL= 0V, P1 and P2 

make the output lines to Vdd - Vth and reduce the sense margin. Still the sense margin is 

acceptable. The access transistor can be shared between the bit cell MTJ and reference cell MTJ. 

By this way the area is reduced without losing any performance. 

 

Figure 39: A precharge sense amplifier of STT-MRAM in 45 nm technology without the 

activating signal. This sense amplifier circuit allows low sense margin and the parallel read-

write capability [24]. 
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The back to back inverters is reliable because it’s sense margin is higher than the capacitor and 

pass transistor logic sense amplifier. The sense margin of the back to back inverters is 1.194 V, 

which is close to the high logic level (1.2V). While the sense margins of the capacitor and pass 

transistor logic sense amplifiers are 0.0244 V and 0.1597 V respectively. 

 

 

Figure 40: Output waveforms of pre-charge sense amplifier circuit of Figure 39. 

Figure 40 shows the output waveforms of the precharge sense amplifier without any 

activation signal. Initially, PCL= 0V is applied, which activates the P1 and P2 and charges Qm 

and Qm’ to +1.2 V as power supply with drop (vdd-vth) in it. Usually, PCL= 0 V for 1-2 nS. But 



62 

PCL= 0 V for 12 nS for better understanding. When PCL=1.2 V, P1 and P2 are turned off and 

disconnected from the sense amplifier. Although PCL= 0 V triggers the circuit, PCL=1.2 V starts 

the correct write. /read operation of STT-MRAM circuit. When, BL= +1.2 V, the state of MTJ 

changes from the parallel state to anti parallel state, which leads to Qm=0 and Qm’=1. While 

BL= -1.2 V, the state of MTJ changes from the anti-parallel state to parallel state writing, which 

leads to Qm=1 and Qm’=0. So, in the anti-parallel state, Qm=0 and Qm’=1 while in the parallel 

state writing, Qm=1 and Qm’=0. This circuit allows the read and write operation in parallel. The 

access transistor size (W/L) determines the sense margin of the circuit. 

5.2.2. Pre-Charge Sense Amplifier by Using Activation Signal 

      Figure 41 shows the pre-charge sense amplifier circuit by using the activating signal, which 

separates the sense amplifier circuit and writing circuit. When RL is low, N3 and N4 transistors 

are off, then the sense amplifier is unable to read MTJ state but write operation is allowed. When 

RL is high, N3 and N4 transistors are on, then the sense amplifier reads MTJ state. The reference 

bit cell is modeled in such way that it’s resistance is equal to the average resistance of the parallel 

and antiparallel state. The area is reduced by using only one access transistor, which is shared 

between the reference cell and bit cell. This circuit is more reliable than the capacitor and pass 

transistor logic and precharge sense amplifier without activation signal sense amplifiers. But the 

output Qm and Qm’ at PCL= 0 V is erroneous.  

     Figure 42 represents output waveforms of the pre-charge sense amplifier, which utilizes the 

activation signal. The operation is similar to the the pre-charge sense amplifier. 
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5.3.PROPOSED SENSE AMPLIFIER  

Figure 43 shows the proposed sense amplifier circuit, which initializes STT-MRAM 

correctly. Therefore, no error at the output with improved sense margin. when PCL=0, P3 and 

N3 are on, then Qm goes to high and Qm’ goes to low. An additional inverter is needed to 

activate N3, which replaces PMOS of the existing pre-charge sense amplifiers.  

Figure 44 shows output waveforms of the proposed sense amplifier that is more reliable and 

easy to implement. The proposed sense amplifier allows both the simultaneous and separate 

write and read operation. So, control on the sense amplifier is more with reduced power 

consumption. When both RL and WL are high, the reading and writing operation are done 

simultaneously. Initially, Qm and Qm’ are at high and low respectively. When WL is activated, 

the output Qm’ holds the value according to BL input. When, BL= +1.2 V, the state of MTJ 

changes from the parallel state to anti parallel state, which leads to Qm=0 and Qm’=1. While 

BL= -1.2 V, the state of MTJ changes from the anti-parallel state to parallel state writing, which 

leads to Qm=1 and Qm’=0. So, in the anti-parallel state, Qm=0 and Qm’=1 while in the parallel 

state writing, Qm=1 and Qm’=0. Table 8 shows the comparison of the proposed sense amplifier 

of STT-MRAM with the existing sense amplifiers. 
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Figure 41: Pre-charge sense amplifier circuit by using the activating signal [9]. 

 

Figure 42: Output waveform of the pre-charge sense amplifier by using the activation signal. 
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Figure 43: Proposed sense amplifier circuit

 

Figure 44: Output waveforms of the proposed pre-charge sense amplifier. 
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Table 8: Comparison of the proposed sense amplifier of STT-MRAM with the existing sense 

amplifiers. 

Sense amplifier 
Sense 

margin 

No. of 

transistors 

Technolo

gy 

Feature 

(nm) 

1st error 

output Reliabili

ty 

Parallel 

Writing & 

Reading 

 

Pre charge 

sense amplifier 

without 

activating 

signal [24] 

1.194 6 45 

 

 

yes low yes 

Pre charge 

sense amplifier 

with activation 

signal [28] 

1.199 8 45 

 

yes 
low 

Depends on 

activation 

signal 

Proposed pre 

charge sense 

amplifier 

1.144 8 45 

 

no high 

Depends on 

activation 

signal 

5.4.CONCLUSION AND FUTURE WORK 

A novel sense amplifier is proposed and analyzed in details by SPICE simulation. The 

comparison of the proposed sense amplifier with existing sense amplifiers shows that the 

proposed sense amplifier outperforms existing sense amplifiers in the error correction. The 

proposed sense amplifier gives no error signal at the beginning while the existing sense 

amplifiers give error signal when they trigger. To gain the error free sense amplifier we had to 

trade-off with the sense margin and the number of transistors (Table 8). Our future work involves 

ultra-low power STT-MRAM sense amplifier design.  
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