1,291 research outputs found

    Novel miniature MRI-compatible fiber-optic force sensor for cardiac catherization procedures

    Get PDF
    Proceedings of: 2010 IEEE International Conference on Robotics and Automation (ICRA'10), May 3-8, 2010, Anchorage (Alaska, USA)This paper presents the prototype design and development of a miniature MR-compatible fiber optic force sensor suitable for the detection of force during MR-guided cardiac catheterization. The working principle is based on light intensity modulation where a fiber optic cable interrogates a reflective surface at a predefined distance inside a catheter shaft. When a force is applied to the tip of the catheter, a force sensitive structure varies the distance and the orientation of the reflective surface with reference to the optical fiber. The visual feedback from the MRI scanner can be used to determine whether or not the catheter tip is normal or tangential to the tissue surface. In both cases the light is modulated accordingly and the axial or lateral force can be estimated. The sensor exhibits adequate linear response, having a good working range, very good resolution and good sensitivity in both axial and lateral force directions. In addition, the use of low-cost and MR-compatible materials for its development makes the sensor safe for use inside MRI environments.European Community's Seventh Framework Progra

    Image-based Optical Miniaturized Three-Axis Force Sensor for Cardiac Catheterization

    Get PDF
    In order to determine the cause of and to treat an abnormal heart rhythm, electrophysiological studies and ablation procedures of the heart, sensorized catheters are required. During catheterization, force sensors at the tip of the catheter are essential to provide quantitative information on the interacting force between the catheter tip and the heart tissue. In this study, we are proposing a small sized, robust, and low-cost three-axis force sensor for the catheter tip. The miniaturized force sensor uses fiber-optic technology (small sized multi-cores optical fiber and a CCD camera) based on image processing to read out the forces by measuring light intensity which are modulated as a function of the applied force. In addition, image processing techniques and a Kalman filter are used to reduce the noise of the light intensity signals. In this paper, we explain the design and fabrication of our three-axis force sensor and our approach for reducing noise levels by applying a Kalman filter model, and finally discuss the calibration procedure. Moreover, we provide an assessment of the performance of the proposed sensor

    Three-Axis Fiber-Optic Body Force Sensor for Flexible Manipulators

    Get PDF
    This paper proposes a force/torque sensor structure that can be easily integrated into a flexible manipulator structure. The sensor's ring-like structure with its hollow inner section provides ample space for auxiliary components, such as cables and tubes, to be passed through and, hence, is very suitable for integration with tendon-driven and fluid-actuated manipulators. The sensor structure can also accommodate the wiring for a distributed sensor system as well as for diagnostic instruments that may be incorporated in the manipulator. Employing a sensing approach based on optical fibers as done here allows for the creation of sensors that are free of electrical currents at the point of sensing and immune to magnetic fields. These sensors are inherently safe when used in the close vicinity of humans and their measuring performance is not impaired when they are operated in or nearby machines, such as magnetic resonance imaging scanners. This type of sensor concept is particularly suitable for inclusion in instruments and robotic tools for minimally invasive surgery. This paper summarizes the design, integration challenges, and calibration of the proposed optical three-axis force sensor. The experimental results confirm the effectiveness of our optical sensing approach and show that after calibrating its stiffness matrix, force and momentum components can be determined accurately

    Three-Axis Fiber-Optic Body Force Sensor for Flexible Manipulators

    Get PDF
    This paper proposes a force/torque sensor structure that can be easily integrated with a flexible manipulator structure. The sensor’s ring-like structure with its hollow inner section provides ample space for auxiliary components, such as cables and tubes, to be passed through and, hence, is very suitable for integration with tendon-driven and fluid-actuated manipulators. The sensor structure can also accommodate the wiring for a distributed sensor system as well as for diagnostic instruments that may be incorporated in the manipulator. Employing a sensing approach based on optical fibers as done here allows for the creation of sensors that are free of electrical currents at the point of sensing and immune to magnetic fields. These sensors are inherently safe when used in the close vicinity of humans and their measuring performance is not impaired when they are operated in or nearby machines such as magnetic resonance imaging (MRI) scanners. This type of sensor concept is particularly suitable for inclusion in instruments and robotic tools for minimally invasive surgery (MIS). The paper summarizes the design, integration challenges and calibration of the proposed optical three-axis force sensor. The experimental results confirm the effectiveness of our optical sensing approach and show that after calibrating its stiffness matrix, force and momentum components can be determined accurately

    Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback

    Get PDF
    Image guided surgery (IGS), which has been developing fast recently, benefits significantly from the superior accuracy of robots and magnetic resonance imaging (MRI) which is a great soft tissue imaging modality. Teleoperation is especially desired in the MRI because of the highly constrained space inside the closed-bore MRI and the lack of haptic feedback with the fully autonomous robotic systems. It also very well maintains the human in the loop that significantly enhances safety. This dissertation describes the development of teleoperation approaches and implementation on an example system for MRI with details of different key components. The dissertation firstly describes the general teleoperation architecture with modular software and hardware components. The MRI-compatible robot controller, driving technology as well as the robot navigation and control software are introduced. As a crucial step to determine the robot location inside the MRI, two methods of registration and tracking are discussed. The first method utilizes the existing Z shaped fiducial frame design but with a newly developed multi-image registration method which has higher accuracy with a smaller fiducial frame. The second method is a new fiducial design with a cylindrical shaped frame which is especially suitable for registration and tracking for needles. Alongside, a single-image based algorithm is developed to not only reach higher accuracy but also run faster. In addition, performance enhanced fiducial frame is also studied by integrating self-resonant coils. A surgical master-slave teleoperation system for the application of percutaneous interventional procedures under continuous MRI guidance is presented. The slave robot is a piezoelectric-actuated needle insertion robot with fiber optic force sensor integrated. The master robot is a pneumatic-driven haptic device which not only controls the position of the slave robot, but also renders the force associated with needle placement interventions to the surgeon. Both of master and slave robots mechanical design, kinematics, force sensing and feedback technologies are discussed. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. MRI compatibility is evaluated extensively. Teleoperated needle steering is also demonstrated under live MR imaging. A control system of a clinical grade MRI-compatible parallel 4-DOF surgical manipulator for minimally invasive in-bore prostate percutaneous interventions through the patient’s perineum is discussed in the end. The proposed manipulator takes advantage of four sliders actuated by piezoelectric motors and incremental rotary encoders, which are compatible with the MRI environment. Two generations of optical limit switches are designed to provide better safety features for real clinical use. The performance of both generations of the limit switch is tested. MRI guided accuracy and MRI-compatibility of whole robotic system is also evaluated. Two clinical prostate biopsy cases have been conducted with this assistive robot

    Review of fiber-optic pressure sensors for biomedical and biomechanical applications

    Get PDF
    As optical fibers revolutionize the way data is carried in telecommunications, the same is happening in the world of sensing. Fiber-optic sensors (FOS) rely on the principle of changing the properties of light that propagate in the fiber due to the effect of a specific physical or chemical parameter. We demonstrate the potentialities of this sensing concept to assess pressure in biomedical and biomechanical applications. FOSs are introduced after an overview of conventional sensors that are being used in the field. Pointing out their limitations, particularly as minimally invasive sensors, is also the starting point to argue FOSs are an alternative or a substitution technology. Even so, this technology will be more or less effective depending on the efforts to present more affordable turnkey solutions and peer-reviewed papers reporting in vivo experiments and clinical trials.info:eu-repo/semantics/publishedVersio

    Using the Fringe Field of MRI Scanner for the Navigation of Microguidewires in the Vascular System

    Get PDF
    Le traitement du cancer, la prévention des accidents vasculaires cérébraux et le diagnostic ou le traitement des maladies vasculaires périphériques sont tous des cas d'application d'interventions à base de cathéter par le biais d'un traitement invasif minimal. Cependant, la pratique du cathétérisme est généralement pratiquée manuellement et dépend fortement de l'expérience et des compétences de l'interventionniste. La robotisation du cathétérisme a été étudiée pour faciliter la procédure en augmentant les niveaux d’autonomie par rapport à cette pratique clinique. En ce qui concerne ce problème, un des problèmes concerne le placement super sélectif du cathéter dans les artères plus étroites nécessitant une miniaturisation de l'instrument cathéter / fil de guidage attaché. Un microguide qui fonctionne dans des vaisseaux sanguins étroits et tortueux subit différentes forces mécaniques telles que le frottement avec la paroi du vaisseau. Ces forces peuvent empêcher la progression de la pointe du fil de guidage dans les vaisseaux. Une méthode proposée consiste à appliquer une force de traction à la pointe du microguide pour diriger et insérer le dispositif tout en poussant l’instrument attaché à partir de l’autre extrémité n’est plus pratique, et à exploiter le gradient du champ de franges IRM surnommé Fringe Field Navigation (FFN ) est proposée comme solution pour assurer cet actionnement. Le concept de FFN repose sur le positionnement d'un patient sur six DOF dans le champ périphérique du scanner IRM afin de permettre un actionnement directionnel pour la navigation du fil-guide. Ce travail rend compte des développements requis pour la mise en oeuvre de la FFN et l’étude du potentiel et des possibilités qu’elle offre au cathétérisme, en veillant au renforcement de l’autonomie. La cartographie du champ de franges d'un scanner IRM 3T est effectuée et la structure du champ de franges en ce qui concerne son uniformité locale est examinée. Une méthode pour la navigation d'un fil de guidage le long d'un chemin vasculaire souhaité basée sur le positionnement robotique du patient à six DOF est développée. Des expériences de FFN guidées par rayons X in vitro et in vivo sur un modèle porcin sont effectuées pour naviguer dans un fil de guidage dans la multibifurcation et les vaisseaux étroits. Une caractéristique unique de FFN est le haut gradient du champ magnétique. Il est démontré in vitro et in vivo que cette force surmonte le problème de l'insertion d'un fil microguide dans des vaisseaux tortueux et étroits pour permettre de faire avancer le fil-guide avec une distale douce au-delà de la limite d'insertion manuelle. La robustesse de FFN contre les erreurs de positionnement du patient est étudiée en relation avec l'uniformité locale dans le champ périphérique. La force élevée du champ magnétique disponible dans le champ de franges IRM peut amener les matériaux magnétiques doux à son état de saturation. Ici, le concept d'utilisation d'un ressort est présenté comme une alternative vi déformable aux aimants permanents solides pour la pointe du fil-guide. La navigation d'un microguide avec une pointe de ressort en structure vasculaire complexe est également réalisée in vitro. L'autonomie de FFN en ce qui concerne la planification d'une procédure avec autonomie de tâche obtenue dans ce travail augmente le potentiel de FFN en automatisant certaines étapes d'une procédure. En conclusion, FFN pour naviguer dans les microguides dans la structure vasculaire complexe avec autonomie pour effectuer le positionnement du patient et contrôler l'insertion du fil de guidage - avec démonstration in vivo dans un modèle porcin - peut être considéré comme un nouvel outil robotique facilitant le cathétérisme vasculaire. tout en aidant à cibler les vaisseaux lointains dans le système vasculaire.----------ABSTRACT Treatment of cancer, prevention of stroke, and diagnosis or treatment of peripheral vascular diseases are all the cases of application of catheter-based interventions through a minimal-invasive treatment. However, performing catheterization is generally practiced manually, and it highly depends on the experience and the skills of the interventionist. Robotization of catheterization has been investigated to facilitate the procedure by increasing the levels of autonomy to this clinical practice. Regarding it, one issue is the super selective placement of the catheter in the narrower arteries that require miniaturization of the tethered catheter/guidewire instrument. A microguidewire that operates in narrow and tortuous blood vessels experiences different mechanical forces like friction with the vessel wall. These forces can prevent the advancement of the tip of the guidewire in the vessels. A proposed method is applying a pulling force at the tip of the microguidewire to steer and insert the device while pushing the tethered instrument from the other end is no longer practical, and exploiting the gradient of the MRI fringe field dubbed as Fringe Field Navigation (FFN) is proposed as a solution to provide this actuation. The concept of FFN is based on six DOF positioning of a patient in the fringe field of the MRI scanner to enable directional actuation for the navigation of the guidewire. This work reports on the required developments for implementing FFN and investigating the potential and the possibilities that FFN introduces to the catheterization, with attention to enhancing the autonomy. Mapping the fringe field of a 3T MRI scanner is performed, and the structure of the fringe field regarding its local uniformity is investigated. A method for the navigation of a guidewire along a desired vascular path based on six DOF robotic patient positioning is developed. In vitro and in vivo x-ray Guided FFN experiments on a swine model of are performed to navigate a guidewire in the multibifurcation and narrow vessels. A unique feature of FFN is the high gradient of the magnetic field. It is demonstrated in vitro and in vivo that this force overcomes the issue of insertion of a microguidewire in tortuous and narrow vessels to enable advancing the guidewire with a soft distal beyond the limit of manual insertion. Robustness of FFN against the error in the positioning of the patient is investigated in relation to the local uniformity in the fringe field. The high strength of the magnetic field available in MRI fringe field can bring soft magnetic materials to its saturation state. Here, the concept of using a spring is introduced as a deformable alternative to solid permanent magnets for the tip of the guidewire. Navigation of a microguidewire with a viii spring tip in complex vascular structure is also performed in vitro. The autonomy of FFN regarding planning a procedure with Task Autonomy achieved in this work enhances the potential of FFN by automatization of certain steps of a procedure. As a conclusion, FFN to navigate microguidewires in the complex vascular structure with autonomy in performing tasks of patient positioning and controlling the insertion of the guidewire – with in vivo demonstration in swine model – can be considered as a novel robotic tool for facilitating the vascular catheterization while helping to target remote vessels in the vascular system
    • …
    corecore