17 research outputs found

    Design, Modeling, and Control Strategies for Soft Robots

    Get PDF

    Modeling and Force Estimation of Cardiac Catheters for Haptics-enabled Tele-intervention

    Get PDF
    Robot-assisted cardiovascular intervention (RCI) systems have shown success in reducing the x-ray exposure to surgeons and patients during cardiovascular interventional procedures. RCI systems typically are teleoperated systems with leader-follower architecture. With such system architecture, the surgeon is placed out of the x-ray exposure zone and uses a console to control the robot remotely. Despite its success in reducing x-ray exposure, clinicians have identified the lack of force feedback as to its main technological limitation that can lead to vascular perforation of the patient’s vessels and even their death. The objective of this thesis was to develop, verify, and validate mechatronics technology for real-time accurate and robust haptic feedback rendering for RCI systems. To attain the thesis objective, first, a thorough review of the state-of-the-art clinical requirements, modeling approaches and methods, and current knowledge gaps for the provision of force feedback for RCI systems was performed. Afterward, a real-time tip force estimation method based on image-based shape-sensing and learning-from-simulation was developed and validated. The learning-based model was fairly accurate but required a large database for training which was computationally expensive. Next, a new mechanistic model, i.e., finite arc method (FAM) for soft robots was proposed, formulated, solved, and validated that allowed for fast and accurate modeling of catheter deformation. With FAM, the required training database for the proposed learning-from-simulation method would be generated with high speed and accuracy. In the end, to robustly relay the estimated forces from real-time imaging from the follower robot to the leader haptic device, a novel impedance-based force feedback rendering modality was proposed and implemented on a representative teleoperated RCI system for experimental validation. The proposed method was compared with the classical direct force reflection method and showed enhanced stability, robustness, and accuracy in the presence of communication disruption. The results of this thesis showed that the performance of the proposed integrated force feedback rendering system was in fair compliance with the clinical requirements and had superior robustness compared to the classical direct force reflection method

    Wire-driven mechanism and highly efficient propulsion in water.

    Get PDF
    自然生物的杰出表现往往令人们叹为观止。正因为如此,在机器人研究中对自然界动植物的模仿从未间断。本文受动物肌肉骨骼系统(尤其是蛇的脊柱以及章鱼手臂的肌肉分布)的启发,设计了一种新型的仿生拉线机构。该机构由柔性骨架以及成对拉线组成。柔性骨架提供支撑,拉线模拟肌肉将驱动器的运动和力传递给骨架,并控制骨架运动。从骨架结构分,拉线机构可分为蛇形拉线机构以及连续型拉线机构;从骨架分段来看,拉线机构可分为单段式拉线机构以及多段式拉线机构,其中每段由一或两对拉线控制。拉线机构的主要性能特征包括:大柔性,高度欠驱动,杠杆效应,以及远程传力。机构的柔性使得它可以产生很大的弯曲变形;欠驱动设计极大地减少了驱动器的数目,简化了系统结构;在杠杆效应下,骨架末端速度、加速度与拉线的速度、加速度相比得到数十倍放大;通过拉线将驱动器的运动和力远程传递给执行机构,使得拉线机构结构简单紧凑。基于以上特征,拉线机构不仅适合工作于狭窄空间,同时也适合于摆动推进,尤其是水下推进。论文系统地介绍了拉线机构的设计,运动学,工作空间,静力学以及动力学模型。在常曲率假设下分别建立了蛇形拉线机构以及连续型拉线机构的运动学模型,在此基础上建立了一个通用运动学模型,以及工作空间模型。与传统避障相反,本文提出了一种利用现有障碍或主动布置约束来拓展工作空间的新方法。通过牛顿-欧拉法以及拉格朗日方程建立了蛇形拉线机构的静力学模型以及动力学模型。在非线性欧拉-伯努利梁理论下结合汉密尔顿原理建立了连续型拉线机构的静力学模型以及动力学模型。论文中利用拉线机构设计了一系列新型水下推进器。与传统机器鱼推进器设计方法(单关节,多关节以及基于智能材料的连续型设计)相比,基于拉线机构的水下推进器的优点在于:所需驱动器少,能更好地模拟鱼的游动,易于控制,推进效率高,以及容易衍生新型推进器。设计制作了四条拉线驱动机器鱼,以此为平台验证了拉线推进器的性能以及优点。实验结果表明,基于蛇形拉线机构的推进器可以提供较大推力;基于连续型拉线机构设计的推进器受摩擦影响较小;基于单段式拉线机构的推进器可以模仿鱼类摆动式推进,具有很好的转弯性能;基于多段式拉线机构的推进器可以同时模仿摆动式推进和波动式推进,具有更好的稳定性以及游速。此外,基于拉线机构制造了一种新型矢量推进器。该推进器可以提供任意方向的推力,从而提高机器鱼的机动性能。实验中,在两个额定功率为1瓦的电机驱动下,机器鱼的最大游速为0.67 体长/秒;最小转弯半径为0.24倍体长;转弯速度为51.4 度/秒;最高推进效率为92.85%。最后,采用拉线推进器制作了一个室内空中移动机器人,取名为Flying Octopus。它由一个氦气球提供浮力悬停在空中,通过四个独立控制的拉线扑翼驱动可在三维空间自由运动。Attracted by the outstanding performance of natural creatures, researchers have been mimicking animals and plants to develop their robots. Inspired by animals’ musculoskeletal system, especially the skeletal structure of snakes and octopus arm muscle arrangement, in this thesis, a novel wire-driven mechanism (WDM) is designed. It is composed of a flexible backbone and a number of controlling wire groups. The flexible backbone provides support, while the wire groups transmit motion and force from the actuators, mimicking the muscles. According to its backbone structure, the WDM is categorized as serpentine WDM and continuum WDM. Depending on the backbone segmentation, WDM is divided into single segment WDM and multi-segment WDM. Each segment is controlled by one or two wire groups. Features of WDM include: flexible, highly under-actuated, leverage effect, and long range force and motion transmission. The flexibility enables the WDM making large deformation, while the under-actuation greatly reduces th number of actuators, simplifying the system. With the leverage effect, WDM distal end velocity and acceleration is greatly amplified from that of wire. Also, in the WDM, the actuators and the backbone are serperated. Actuator’s motion is transmitted by the wires. This makes the WDM very compact. With these features, the WDM is not only well suited to confined space, but also flapping propulsion, especially in water.In the thesis, the design, kinematics, workspace, static and dynamic models of the WDM are explored systematically. Under the constant curvature assumption, the kinematic model of serpentine WDM and continuum WDM are established. A generalized model is also developed. Workspace model is built from the forward kinematic model. Rather than avoiding obstacles, a novel idea of employing obstacles or actively deploying constraints to expand workspace is also discussed for WDM-based flexible manipulators. The static model and dynamic model of serpentine WDM is developed using the Newton-Euler method and the Lagrange Equation, while that of continuum WDM is built under the non-linear Euler-Bernoulli Beam theory and the extended Hamilton’s principle.In the thesis, a number of novel WDM based underwater propulsors are developed. Compared with existing fish-like propulsor designs, including single joint design, multi-joint design, and smart material based continuum design, the proposed WDM-based propulsors have advantages in several aspects, such as employing less actuators, better resembling the fish swimming body curve, ease of control, and more importantly, being highly efficient. Also, brand new propulsors can be easily developed using the WDM. To demonstrate the features as well as the advantages of WDM propulsors, four robot fish prototypes are developed. Experiments show that the serpentine WDM-based propulsor could provide large flapping force while the continuum WDM-based propulsor is less affected by joint friction. On the other hand, single segment WDM propulsor can make oscillatory swim while multi- segment WDM propulsor can make both oscillatory and undulatory swims. The undulatory swimming outperforms the oscillatory swimming in stability and speed, but is inferior in turning around. In addition, a novel robot fish with vector propulsion capability is also developed. It can provide thrust in arbitrary directions, hence, improving the maneuverability of the robot fish. In the experiments, with the power limit of two watts, the maximum forward speed of the WDM robot fishes can reach 0.67 BL (Body Length)/s. The minimum turning radius is 0.24 BL, and the turning speed is 51.4°/s. The maximum Froude efficiency of the WDM robot fishes is 92.85%. Finally, the WDM-based propulsor is used to build an indoor Lighter-than-Air- Vehicle (LTAV), named Flying Octopus. It is suspended in the air by a helium balloon and actuated by four independently controlled wire-driven flapping wings. With the wing propulsion, it can move in 3D space effectively.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Li, Zheng.Thesis (Ph.D.)--Chinese University of Hong Kong, 2013.Includes bibliographical references (leaves 205-214).Abstracts also in Chinese.Abstracth --- p.i摘要 --- p.iiiAcknowledgement --- p.vList of Figures --- p.xiList of Tables --- p.xviiChapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Background --- p.1Chapter 1.2 --- Related Research --- p.2Chapter 1.2.1 --- Flexible Manipulator --- p.2Chapter 1.2.2 --- Robot Fish --- p.10Chapter 1.3 --- Motivation of the Dissertation --- p.13Chapter 1.4 --- Organization of the Dissertation --- p.14Chapter Chapter 2 --- Biomimetic Wire-Driven Mechanism --- p.16Chapter 2.1 --- Inspiration from Nature --- p.16Chapter 2.1.1 --- Snake Skeleton --- p.18Chapter 2.1.2 --- Octopus Arm --- p.19Chapter 2.2 --- Wire-Driven Mechanism Design --- p.20Chapter 2.2.1 --- Flexible Backbone --- p.20Chapter 2.2.2 --- Backbone Segmentation --- p.26Chapter 2.2.3 --- Wire Configuration --- p.28Chapter 2.3 --- Wire-Driven Mechanism Categorization --- p.31Chapter 2.4 --- Summary --- p.32Chapter Chapter 3 --- Kinematics and Workspace of the Wire-Driven Mechanism --- p.33Chapter 3.1 --- Kinematic Model of Single Segment WDM --- p.33Chapter 3.1.1 --- Kinematic Model of the Serpentine WDM --- p.34Chapter 3.1.2 --- Kinematic Model of the Continuum WDM --- p.39Chapter 3.1.3 --- A Generalized Kinematic Model --- p.43Chapter 3.2 --- Kinematic Model of Multi-Segment WDM --- p.47Chapter 3.2.1 --- Forward Kinematics --- p.47Chapter 3.2.2 --- Inverse Kinematics --- p.51Chapter 3.3 --- Workspace --- p.52Chapter 3.3.1 --- Workspace of Single Segment WDM --- p.52Chapter 3.3.2 --- Workspace of Multi-Segment WDM --- p.53Chapter 3.4 --- Employing Obstacles to Expand WDM Workspace --- p.55Chapter 3.4.1 --- Constrained Kinematics Model of WDM --- p.55Chapter 3.4.2 --- WDM Workspace with Constraints --- p.61Chapter 3.5 --- Model Validation via Experiment --- p.64Chapter 3.5.1 --- Single Segment WDM Kinematic Model Validation --- p.64Chapter 3.5.2 --- Multi-Segment WDM Kinematic Model Validation --- p.66Chapter 3.5.3 --- Constrained Kinematic Model Validation --- p.70Chapter 3.6 --- Summary --- p.73Chapter Chapter 4 --- Statics and Dynamics of the Wire-Driven Mechanism --- p.75Chapter 4.1 --- Static Model of the Wire-Driven Mechanism --- p.75Chapter 4.1.1 --- Static Model of SPSP WDM --- p.75Chapter 4.1.2 --- Static Model of SPCP WDM --- p.81Chapter 4.2 --- Dynamic Model of the Wire-Driven Mechanism --- p.88Chapter 4.2.1 --- Dynamic Model of SPSP WDM --- p.88Chapter 4.2.2 --- Dynamic Model of SPCP WDM --- p.92Chapter 4.3 --- Summary --- p.94Chapter Chapter 5 --- Application I - Wire-Driven Robot Fish --- p.95Chapter 5.1 --- Fish Swimming Introduction --- p.95Chapter 5.1.1 --- Fish Swimming Categories --- p.95Chapter 5.1.2 --- Body Curve Function --- p.96Chapter 5.1.3 --- Fish Swimming Hydrodynamics --- p.101Chapter 5.1.4 --- Fish Swimming Data --- p.103Chapter 5.2 --- Oscillatory Wire-Driven Robot Fish --- p.104Chapter 5.2.1 --- Serpentine Oscillatory Wire-Driven Robot Fish Design --- p.105Chapter 5.2.2 --- Continuum Oscillatory Wire-Driven Robot Fish Design --- p.110Chapter 5.2.3 --- Oscillatory Robot Fish Propulsion Model --- p.114Chapter 5.2.4 --- Robot Fish Swimming Control --- p.116Chapter 5.2.5 --- Swimming Experiments --- p.118Chapter 5.3 --- Undulatory Wire-Driven Robot Fish --- p.125Chapter 5.3.1 --- Undulatory Wire-Driven Robot Fish Design --- p.125Chapter 5.3.2 --- Undulatory Wire-Driven Robot Fish Propulsion Model --- p.130Chapter 5.3.3 --- Swimming Experiments --- p.131Chapter 5.4 --- Vector Propelled Wire-Driven Robot Fish --- p.136Chapter 5.4.1 --- Vector Propelled Wire-Driven Robot Fish Design --- p.136Chapter 5.4.2 --- Tail Motion Analysis --- p.140Chapter 5.4.3 --- Swimming Experiments --- p.142Chapter 5.5 --- Wire-Driven Robot Fish Performance and Discussion --- p.144Chapter 5.5.1 --- Performance --- p.144Chapter 5.5.2 --- Discussion --- p.147Chapter 5.6 --- Summary --- p.149Chapter Chapter 6 --- Aplication II - Wire-Driven LTAV - Flying Octopus --- p.151Chapter 6.1 --- Introduction --- p.151Chapter 6.2 --- Flying Octopus Design --- p.152Chapter 6.2.1 --- Flying Octopus Body Design --- p.152Chapter 6.2.2 --- Wire-Driven Flapping Wing Design --- p.153Chapter 6.3 --- Flying Octopus Motion Control --- p.156Chapter 6.3.1 --- Propulsion Model --- p.156Chapter 6.3.2 --- Motion Control Strategy --- p.157Chapter 6.3.3 --- Motion Simulation --- p.159Chapter 6.4 --- Prototype and Indoor Experiments --- p.161Chapter 6.4.1 --- Flying Octopus Prototype --- p.161Chapter 6.4.2 --- Indoor Experiments --- p.163Chapter 6.4.3 --- Discussion --- p.165Chapter 6.5 --- Summary --- p.166Chapter Chapter 7 --- Conclusions and Future Work --- p.167Chapter Appendix A - --- Publication Record --- p.170Chapter Appendix B - --- Derivation --- p.172Chapter Appendix C --- Matlab Programs --- p.176References --- p.20

    Bioinspired Light Robots from Liquid Crystal Networks

    Get PDF
    Bioinspired material research aims at learning from the sophisticated design principles of nature, in order to develop novel artificial materials with advanced functionalities. Some of the sophisticated capabilities of biological materials, such as their ability to self-heal or adapt to environmental changes, are challenging to realize in artificial systems. Nevertheless, many efforts have been recently devoted to develop artificial materials with adaptive functions, especially materials which can generate movement in response to external stimuli. One such effort is the field of soft robots, which aims towards fabrication of autonomous adaptive systems with flexibility, beyond the current capability of conventional robotics. However, in most cases, soft robots still need to be connected to hard electronics for powering and rely on complicated algorithms to control their deformation modes. Soft robots that can be powered remotely and are capable of self-regulating function, are of great interest across the scientific community.In order to realize such responsive and adaptive systems, researches across the globe are making constant efforts to develop new, ever-more sophisticated stimuliresponsive materials. Among the different stimuli-responsive materials, liquid crystal networks (LCNs) are the most suited ones to design smart actuating systems as they can be controlled and powered remotely with light and thereby obviate the need for external control circuitry. They enable pre-programable shape changes, hence equipping a single material with multiple actuation modes. In addition to light, they can also be actuated by variety of stimuli such as heat, humidity, pH, electric and magnetic fields etc., or a combination of these. Based on these advantages of LCNs, we seek inspiration from natural actuator systems present in plants and animals to devise different light controllable soft robotic systems.In this thesis, inspired from biological systems such as octopus arm movements, iris movements in eyes, object detection and capturing ability of Venus flytraps and opening and closing of certain nocturnal flowers, we demonstrate several light robots that can be programmed to show pre-determined shape changes. By employing a proper device design, these light robots can even show the characteristics of selfregulation and object recognition, which brings new advances to the field of LCNbased light robots. For instance, octopod light robot can show bidirectional bending owing to alignment programming using a commercial laser projector; artificial iris is a fully light controllable device that can self-regulate its aperture size based on intensity of incident light; the optical flytrap can not only autonomously close on an object coming into its ‘‘mouth’’ but it can also distinguish between different kinds of objects based on optical feedback, and finally, integration of light and humidity responsiveness in a single LCN actuator enables a nocturnal flower-mimicking actuator, which provides an opportunity to understand the delicate interplay between different simultaneously occurring stimuli in a monolithic actuator.We believe that besides providing a deeper understanding on the photoactuation in liquid crystal networks, at fundamental level, our work opens new avenues by providing several pathways towards next-generation intelligent soft microrobots

    Advances in Structural Mechanics Modeled with FEM

    Get PDF
    It is well known that many structural and physical problems cannot be solved by analytical approaches. These problems require the development of numerical methods to get approximate but accurate solutions. The minite element method (FEM) represents one of the most typical methodologies that can be used to achieve this aim, due to its simple implementation, easy adaptability, and very good accuracy. For these reasons, the FEM is a widespread technique which is employed in many engineering fields, such as civil, mechanical, and aerospace engineering. The large-scale deployment of powerful computers and the consequent recent improvement of the computational resources have provided the tools to develop numerical approaches that are able to solve more complex structural systems characterized by peculiar mechanical configurations. Laminated or multi-phase composites, structures made of innovative materials, and nanostructures are just some examples of applications that are commonly and accurately solved by the FEM. Analogously, the same numerical approaches can be employed to validate the results of experimental tests. The main aim of this Special Issue is to collect numerical investigations focused on the use of the finite element metho

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version

    MR compatible continuum robot based on closed elastica with bending and twisting

    No full text

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore