685 research outputs found

    Perceptually optimised sign language video coding

    Get PDF

    QoS Scalability for Streamed Media Delivery

    Get PDF
    Applications with real-rate progress requirements, such as mediastreaming systems, are difficult to deploy in shared heterogenous environments such as the Internet. On the Internet, mediastreaming systems must be capable of trading off resource requirements against the quality of the media streams they deliver, in order to match wide-ranging dynamic variations in bandwidth between servers and clients. Since quality requirements tend to be user- and task-specific, mechanisms for capturing quality of service requirements and mapping them to appropriate resource-level adaptation policies are required. In this paper, we describe a general approach for automatically mapping user-level quality of service specifications onto resource consumption scaling policies. Quality of service specifications are given through utility functions, and priority packet dropping for layered media streams is the resource scaling technique. The approach emphasizes simple mechanisms, yet facilitates fine-grained policy-driven adaptation over a wide-range of bandwidth levels. We demonstrate the approach in a streamingvideo player that supports user-tailorable quality adaptation policies both for matching its resource consumption requirements to the capabilities of heterogeneous clients, and for responding to dynamic variations in system and network load

    Implementation of JPEG compression and motion estimation on FPGA hardware

    Full text link
    A hardware implementation of JPEG allows for real-time compression in data intensivve applications, such as high speed scanning, medical imaging and satellite image transmission. Implementation options include dedicated DSP or media processors, FPGA boards, and ASICs. Factors that affect the choice of platform selection involve cost, speed, memory, size, power consumption, and case of reconfiguration. The proposed hardware solution is based on a Very high speed integrated circuit Hardware Description Language (VHDL) implememtation of the codec with prefered realization using an FPGA board due to speed, cost and flexibility factors; The VHDL language is commonly used to model hardware impletations from a top down perspective. The VHDL code may be simulated to correct mistakes and subsequently synthesized into hardware using a synthesis tool, such as the xilinx ise suite. The same VHDL code may be synthesized into a number of sifferent hardware architetcures based on constraints given. For example speed was the major constraint when synthesizing the pipeline of jpeg encoding and decoding, while chip area and power consumption were primary constraints when synthesizing the on-die memory because of large area. Thus, there is a trade off between area and speed in logic synthesis

    Algorithms & implementation of advanced video coding standards

    Get PDF
    Advanced video coding standards have become widely deployed coding techniques used in numerous products, such as broadcast, video conference, mobile television and blu-ray disc, etc. New compression techniques are gradually included in video coding standards so that a 50% compression rate reduction is achievable every five years. However, the trend also has brought many problems, such as, dramatically increased computational complexity, co-existing multiple standards and gradually increased development time. To solve the above problems, this thesis intends to investigate efficient algorithms for the latest video coding standard, H.264/AVC. Two aspects of H.264/AVC standard are inspected in this thesis: (1) Speeding up intra4x4 prediction with parallel architecture. (2) Applying an efficient rate control algorithm based on deviation measure to intra frame. Another aim of this thesis is to work on low-complexity algorithms for MPEG-2 to H.264/AVC transcoder. Three main mapping algorithms and a computational complexity reduction algorithm are focused by this thesis: motion vector mapping, block mapping, field-frame mapping and efficient modes ranking algorithms. Finally, a new video coding framework methodology to reduce development time is examined. This thesis explores the implementation of MPEG-4 simple profile with the RVC framework. A key technique of automatically generating variable length decoder table is solved in this thesis. Moreover, another important video coding standard, DV/DVCPRO, is further modeled by RVC framework. Consequently, besides the available MPEG-4 simple profile and China audio/video standard, a new member is therefore added into the RVC framework family. A part of the research work presented in this thesis is targeted algorithms and implementation of video coding standards. In the wide topic, three main problems are investigated. The results show that the methodologies presented in this thesis are efficient and encourage

    Fine-Granularity Transmission Distortion Modeling for Video Packet Scheduling Over Mesh Networks

    Get PDF
    Digital Object Identifier 10.1109/TMM.2009.2036290Packet scheduling is a critical component in multi-session video streaming over mesh networks. Different video packets have different levels of contribution to the overall video presentation quality at the receiver side. In this work, we develop a fine-granularity transmission distortion model for the encoder to predict the quality degradation of decoded videos caused by lost video packets. Based on this packet-level transmission distortion model, we propose a content-and-deadline-aware scheduling (CDAS) scheme for multi-session video streaming over multi-hop mesh networks, where content priority, queuing delays, and dynamic network transmission conditions are jointly considered for each video packet. Our extensive experimental results demonstrate that the proposed transmission distortion model and the CDAS scheme significantly improve the performance of multi-session video streaming over mesh networks

    Providing 3D video services: the challenge from 2D to 3DTV quality of experience

    Get PDF
    Recently, three-dimensional (3D) video has decisively burst onto the entertainment industry scene, and has arrived in households even before the standardization process has been completed. 3D television (3DTV) adoption and deployment can be seen as a major leap in television history, similar to previous transitions from black and white (B&W) to color, from analog to digital television (TV), and from standard definition to high definition. In this paper, we analyze current 3D video technology trends in order to define a taxonomy of the availability and possible introduction of 3D-based services. We also propose an audiovisual network services architecture which provides a smooth transition from two-dimensional (2D) to 3DTV in an Internet Protocol (IP)-based scenario. Based on subjective assessment tests, we also analyze those factors which will influence the quality of experience in those 3D video services, focusing on effects of both coding and transmission errors. In addition, examples of the application of the architecture and results of assessment tests are provided

    Investigating low-bitrate, low-complexity H.264 region of interest techniques in error-prone environments

    Get PDF
    The H.264/AVC video coding standard leverages advanced compression methods to provide a significant increase in performance over previous CODECs in terms of picture quality, bitrate, and flexibility. The specification itself provides several profiles and levels that allow customization through the use of various advanced features. In addition to these features, several new video coding techniques have been developed since the standard\u27s inception. One such technique known as Region of Interest (RoI) coding has been in existence since before H.264\u27s formalization, and several means of implementing RoI coding in H.264 have been proposed. Region of Interest coding operates under the assumption that one or more regions of a sequence have higher priority than the rest of the video. One goal of RoI coding is to provide a decrease in bitrate without significant loss of perceptual quality, and this is particularly applicable to low complexity environments, if the proper implementation is used. Furthermore, RoI coding may allow for enhanced error resilience in the selected regions if desired, making RoI suitable for both low-bitrate and error-prone scenarios. The goal of this thesis project was to examine H.264 Region of Interest coding as it applies to such scenarios. A modified version of the H.264 JM Reference Software was created in which all non-Baseline profile features were removed. Six low-complexity RoI coding techniques, three targeting rate control and three targeting error resilience, were selected for implementation. Error and distortion modeling tools were created to enhance the quality of experimental data. Results were gathered by varying a range of coding parameters including frame size, target bitrate, and macroblock error rates. Methods were then examined based on their rate-distortion curves, ability to achieve target bitrates accurately, and per-region distortions where applicable

    Motion compensation and very low bit rate video coding

    Get PDF
    Recently, many activities of the International Telecommunication Union (ITU) and the International Standard Organization (ISO) are leading to define new standards for very low bit-rate video coding, such as H.263 and MPEG-4 after successful applications of the international standards H.261 and MPEG-1/2 for video coding above 64kbps. However, at very low bit-rate the classic block matching based DCT video coding scheme suffers seriously from blocking artifacts which degrade the quality of reconstructed video frames considerably. To solve this problem, a new technique in which motion compensation is based on dense motion field is presented in this dissertation. Four efficient new video coding algorithms based on this new technique for very low bit-rate are proposed. (1) After studying model-based video coding algorithms, we propose an optical flow based video coding algorithm with thresh-olding techniques. A statistic model is established for distribution of intensity difference between two successive frames, and four thresholds are used to control the bit-rate and the quality of reconstructed frames. It outperforms the typical model-based techniques in terms of complexity and quality of reconstructed frames. (2) An efficient algorithm using DCT coded optical flow. It is found that dense motion fields can be modeled as the first order auto-regressive model, and efficiently compressed with DCT technique, hence achieving very low bit-rate and higher visual quality than the H.263/TMN5. (3) A region-based discrete wavelet transform video coding algorithm. This algorithm implements dense motion field and regions are segmented according to their content significance. The DWT is applied to residual images region by region, and bits are adaptively allocated to regions. It improves the visual quality and PSNR of significant regions while maintaining low bit-rate. (4) A segmentation-based video coding algorithm for stereo sequence. A correlation-feedback algorithm with Kalman filter is utilized to improve the accuracy of optical flow fields. Three criteria, which are associated with 3-D information, 2-D connectivity and motion vector fields, respectively, are defined for object segmentation. A chain code is utilized to code the shapes of the segmented objects. it can achieve very high compression ratio up to several thousands

    Space-variant picture coding

    Get PDF
    PhDSpace-variant picture coding techniques exploit the strong spatial non-uniformity of the human visual system in order to increase coding efficiency in terms of perceived quality per bit. This thesis extends space-variant coding research in two directions. The first of these directions is in foveated coding. Past foveated coding research has been dominated by the single-viewer, gaze-contingent scenario. However, for research into the multi-viewer and probability-based scenarios, this thesis presents a missing piece: an algorithm for computing an additive multi-viewer sensitivity function based on an established eye resolution model, and, from this, a blur map that is optimal in the sense of discarding frequencies in least-noticeable- rst order. Furthermore, for the application of a blur map, a novel algorithm is presented for the efficient computation of high-accuracy smoothly space-variant Gaussian blurring, using a specialised filter bank which approximates perfect space-variant Gaussian blurring to arbitrarily high accuracy and at greatly reduced cost compared to the brute force approach of employing a separate low-pass filter at each image location. The second direction is that of artifi cially increasing the depth-of- field of an image, an idea borrowed from photography with the advantage of allowing an image to be reduced in bitrate while retaining or increasing overall aesthetic quality. Two synthetic depth of field algorithms are presented herein, with the desirable properties of aiming to mimic occlusion eff ects as occur in natural blurring, and of handling any number of blurring and occlusion levels with the same level of computational complexity. The merits of this coding approach have been investigated by subjective experiments to compare it with single-viewer foveated image coding. The results found the depth-based preblurring to generally be significantly preferable to the same level of foveation blurring

    Seminario sullo Standard MPEG-4: utilizzo ed aspetti implementativi

    Get PDF
    Una delle tecnologie chiave che hanno permesso il grande sviluppo della televisione digitale è la compressione video. La tecnologia di codifica video nota come MPEG-2, sviluppata nei primi anni novanta, è diventata lo standard di trasmissione DTV (Digital TV) sia satellitare sia terrestre in quasi tutti i paesi del mondo. Da allora la velocità dei microprocessori e le capacità di memoria dei dispositivi hardware per la codifica e la decodifica sono migliorate significativamente rendendo possibile lo sviluppo e l’implementazione di algoritmi di codifica innovativi in grado di abbattere significativamente i limiti di compressione dello standard MPEG-2. Tali innovazioni, sfociate nel 2003 nello standard MPEG-4 AVC (Advanced Video Coding), non hanno permesso di mantenere la compatibilità all’indietro con l’MPEG-2, e questo ha inizialmente costituito un limite alla loro introduzione nei sistemi di trasmissione DTV. Tuttavia, negli ultimi anni la codifica MPEG-4 AVC si è diffusa rapidamente, è stata adottata dal progetto DVB, recentemente dall’ATSC, ed è lo standard di codifica nell’IPTV. L’obiettivo di questo seminario, che si articola in due giornate, è quello di presentare lo standard di codifica MPEG-4 AVC con particolare attenzione agli aspetti implementativi del livello di codifica video.2008-11-18Sardegna Ricerche, Edificio 2, Località Piscinamanna 09010 Pula (CA) - ItaliaSeminario sullo Standard MPEG-4: utilizzo ed aspetti implementativ
    corecore